CN113452081A - 一种新能源消纳提升量后评估方法及装置 - Google Patents

一种新能源消纳提升量后评估方法及装置 Download PDF

Info

Publication number
CN113452081A
CN113452081A CN202110653218.7A CN202110653218A CN113452081A CN 113452081 A CN113452081 A CN 113452081A CN 202110653218 A CN202110653218 A CN 202110653218A CN 113452081 A CN113452081 A CN 113452081A
Authority
CN
China
Prior art keywords
simulation
new energy
period
energy consumption
power grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110653218.7A
Other languages
English (en)
Inventor
李湃
王伟胜
刘纯
桑桢城
黄越辉
张金平
董凌
杨洪志
王学斌
傅国斌
宋锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Qinghai Electric Power Co Ltd
Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Qinghai Electric Power Co Ltd
Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Qinghai Electric Power Co Ltd, Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110653218.7A priority Critical patent/CN113452081A/zh
Publication of CN113452081A publication Critical patent/CN113452081A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及新能源并网与控制技术领域,具体提供了一种新能源消纳提升量后评估方法及装置,旨在解决新能源消纳提升量难以准确量化评估的技术问题。该方法通过利用时序运行优化模型,学习未采取措施时电源和电网的开机和运行策略,然后基于给定的边界条件模拟计算未采取措施时电网的新能源消纳量,从而实现对新能源消纳提升量的准确量化评估。

Description

一种新能源消纳提升量后评估方法及装置
技术领域
本发明涉及新能源并网与控制领域,具体涉及一种新能源消纳提升量后评估方法及装置。
背景技术
随着“双碳”目标的提出,“十四五”期间的新能源装机将继续保持快速增长趋势,预计2030年多地将普遍形成高比例新能源电力系统的局面。新能源装机占比的持续增加,会给电网的新能源消纳带来巨大的压力。为实现新能源的高效消纳,多地电网也积极推动了火电机组灵活性改造、多类型电源互补运行、增强电网输电能力、增加新能源装机与用电负荷规模、利用可调节负荷的需求响应能力、提高电网外送能力等不同措施。
为更好的指导新能源消纳提升工作,需要提出科学的后评估手段,准确量化各项措施实施之后对电网新能源消纳量的实际提升作用,以满足未来新能源规模不断发展和高效消纳的应用需求。
开展新能源消纳提升量的后评估工作,需要对比各项措施实施前后电网的新能源消纳量。在给定评估期的情况下,电网实际的新能源消纳量反映的是各项措施实施后的新能源消纳情况,因此后评估的关键在于准确计算评估期内,如果未实施相关措施电网预计的新能源消纳量。由于省级电网源、网、荷节点数量多,火电机组开机方式和电网运行方式复杂多样,并且不同措施的提升作用相互耦合影响,目前还缺乏行之有效的计算手段,使得新能源消纳提升量难以准确量化评估。
发明内容
为了克服上述缺陷,提出了本发明,以提供解决或至少部分地解决新能源消纳提升量难以准确量化评估的技术问题的新能源消纳提升量后评估方法及装置。
第一方面,提供一种新能源消纳提升量后评估方法,所述新能源消纳提升量后评估方法包括:
步骤S101将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
步骤S102对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
步骤S103判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至步骤S104,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述步骤S102;
步骤S104将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
步骤S105基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
优选的,所述对所述预先建立的时序仿真运行优化模型进行仿真计算,包括:
求解所述预先建立的时序仿真运行优化模型,得到电网内新能源出力总和,并将该电网内新能源出力总和作为电网的新能源消纳量仿真结果。
优选的,所述边界条件包括:系统用电负荷、正/负备用需求、火电机组与水电机组的最小和最大技术出力、必须开机的火电和水电机组台数、风电和光伏发电的理论出力、可调节负荷功率和电量的最大调整比例、省间联络线交换功率、线路功率分配因子、线路最大输电容量、水电机组最小和最大发电量、最大启停机次数上限、火电机组最小开关机时长、火电机组出力爬坡上限。
优选的,所述预先建立的时序仿真运行优化模型的目标函数的计算式如下:
Figure BDA0003112621520000021
上式中,n为电网节点序号,N为电网节点的数量,
Figure BDA0003112621520000022
为t时段节点n的风电出力;
Figure BDA0003112621520000023
为t时段节点n的光伏发电出力,Θ0为离线仿真期或评估期的时间段集合。
优选的,所述预先建立的时序仿真运行优化模型的约束条件包括:系统功率平衡约束、系统备用需求约束、新能源出力约束、水电机组出力范围约束、水电机组发电量约束、火电机组出力范围约束、火电机组开关机状态约束、火电机组最大启停机次数约束、火电机组必须开机约束、线路传输安全约束、第一可调节负荷电量约束、第二可调节负荷电量约束、火电机组的出力爬坡约束和最小开关机约束。
优选的,所述步骤S103中,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,包括:
若电网在离线仿真期的新能源消纳量仿真结果大于电网在离线仿真期的新能源消纳量实际结果,则降低预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限,否则增加预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限。
进一步的,所述火电机组最大启停机次数约束的计算式如下:
Figure BDA0003112621520000031
上式中,
Figure BDA0003112621520000032
为离线仿真期/评估期内第i月的时段集合,ut为离线仿真期/评估期内火电机组在t时段的启机状态,vt为离线仿真期/评估期内火电机组在t时段的停机状态,Ki为离线仿真期/评估期内第i月火电机组的最大启停机次数上限,I为离线仿真期/评估期内月份的总个数,i为离线仿真期/评估期内月份的序号。
优选的,所述电网在评估期的新能源消纳量提升量的计算式如下:
ΔE=E0-E1
上式中,ΔE为电网在评估期的新能源消纳量提升量,E0为电网在评估期的新能源消纳量实际结果,E1为所述电网在评估期的新能源消纳量仿真结果。
第二方面,提供一种新能源消纳提升量后评估装置,所述新能源消纳提升量后评估装置包括:
设置模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
计算模块,用于对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
判断模块,用于判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至调试模块,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述计算模块;
调试模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
确定模块,用于基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
第三方面,提供一种存储装置,该存储装置其中存储有多条程序代码,所述程序代码适于由处理器加载并运行以执行上述任一项技术方案所述的新能源消纳提升量后评估方法。
本发明上述一个或多个技术方案,至少具有如下一种或多种有益效果:
本发明提供了一种新能源消纳提升量后评估方法,方法包括:步骤S101将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;步骤S102对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;步骤S103判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至步骤S104,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述步骤S102;步骤S104将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;步骤S105基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。与现有新能源消纳提升量量化评估方法相比,本发明提供的技术方案能够定量计算电网采取消纳提升措施前后的新能源消纳提升量。该方案首先基于时序仿真运行优化模型来学习未采取消纳提升措施时电源和电网的开机和运行策略,然后基于所学习的策略和调整后的电网运行边界条件,计算未采取消纳提升措施时电网的新能源消纳量。时序仿真运行优化模型不仅考虑了实际电网源、网、荷各类边界条件,还设置了全网机组共用的启机和停机状态变量来保证火电机组在同一时刻进行启机或停机,实现对复杂的火电机组开机策略的简化,通过配合最大启停机次数和最小开机台数要求,可以量化模拟火电机组的开机策略和电网运行方式要求,实现对电网新能源消纳提升量的科学量化评估。
附图说明
图1是根据本发明的一个实施例的新能源消纳提升量后评估方法的主要步骤流程示意图;
图2是本发明的一个实施例的新能源消纳提升量后评估方法的具体步骤流程示意图;
图3是根据本发明的一个实施例的新能源消纳提升量后评估装置的主要结构框图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
参阅附图1和图2,图1是根据本发明的一个实施例的新能源消纳提升量后评估方法的主要步骤流程示意图,图2是本发明的一个实施例的新能源消纳提升量后评估方法的具体步骤流程示意图。
如图1所示,本发明实施例中的新能源消纳提升量后评估方法主要包括以下步骤:
步骤S101将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
步骤S102对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
步骤S103判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至步骤S104,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述步骤S102;
步骤S104将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
步骤S105基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
本实施例中,所述对所述预先建立的时序仿真运行优化模型进行仿真计算,包括:
求解所述预先建立的时序仿真运行优化模型,得到电网内新能源出力总和,并将该电网内新能源出力总和作为电网的新能源消纳量仿真结果。
本实施例中,所述预先建立的时序仿真运行优化模型的目标函数的计算式如下:
Figure BDA0003112621520000061
上式中,n为电网节点序号,N为电网节点的数量,
Figure BDA0003112621520000062
为t时段节点n的风电出力;
Figure BDA0003112621520000063
为t时段节点n的光伏发电出力,Θ0为离线仿真期或评估期的时间段集合。
本实施例中,所述预先建立的时序仿真运行优化模型的约束条件包括:系统功率平衡约束、系统备用需求约束、新能源出力约束、水电机组出力范围约束、水电机组发电量约束、火电机组出力范围约束、火电机组开关机状态约束、火电机组最大启停机次数约束、火电机组必须开机约束、线路传输安全约束、第一可调节负荷电量约束、第二可调节负荷电量约束、火电机组的出力爬坡约束和最小开关机约束。
在一个实施方式中,上述约束条件可以为:
1)系统功率平衡约束
Figure BDA0003112621520000064
式中:
Figure BDA0003112621520000065
表示节点n火电机组在t时段的出力,为优化变量;
Figure BDA0003112621520000066
表示节点n水电机组在t时段的出力,为优化变量;
Figure BDA0003112621520000067
表示节点n在t时段的用电负荷;
Figure BDA0003112621520000068
表示电网省间联络线在t时段的交换功率;
Figure BDA0003112621520000069
表示节点n在t时段的可调节负荷调增量,为优化变量;
Figure BDA00031126215200000610
表示节点n在t时段的可调节负荷调减量,为优化变量。
2)系统备用需求约束
Figure BDA00031126215200000611
式中,
Figure BDA00031126215200000612
Figure BDA00031126215200000613
表示节点n火电机组g在t时段的最大和最小技术出力;
Figure BDA00031126215200000614
Figure BDA00031126215200000615
表示节点n水电机组h在t时段的最大和最小技术出力;
Figure BDA00031126215200000616
Figure BDA00031126215200000617
表示全网在t时段的正备用和负备用需求。
3)新能源出力约束
Figure BDA0003112621520000071
式中:
Figure BDA0003112621520000072
Figure BDA0003112621520000073
分别表示节点n风电和光伏发电的理论出力。
4)水电机组出力范围约束
Figure BDA0003112621520000074
式中:
Figure BDA0003112621520000075
表示节点n水电机组h在t时段的运行状态,为0-1优化变量;当
Figure BDA0003112621520000076
时表示节点n水电机组h在t时段处于开机状态;当
Figure BDA0003112621520000077
时表示节点n水电机组h在t时段处于关机状态。
5)水电机组发电量约束
Figure BDA0003112621520000078
式中:
Figure BDA0003112621520000079
Figure BDA00031126215200000710
表示仿真期内第i月内水电机组h的最大和最小发电量。
6)火电机组出力范围约束
Figure BDA00031126215200000711
式中:
Figure BDA00031126215200000712
表示节点n火电机组g在t时段的运行状态,为0-1优化变量;当
Figure BDA00031126215200000713
时表示节点n火电机组g在t时段处于开机状态;当
Figure BDA00031126215200000714
时表示节点n火电机组g在t时段处于关机状态。
7)火电机组开关机状态约束
Figure BDA00031126215200000715
式中:ut表示全网火电机组在t时段的启机状态,为0-1优化变量;当ut=1时表示全网火电机组可以在t时段启机;当ut=0时表示全网火电机组不能在t时段启机。vt表示全网火电机组在t时段的停机状态,为0-1优化变量;当vt=1时表示全网火电机组可以在t时段停机;当vt=0时表示全网火电机组不能在t时段停机。
传统的火电机组开关机状态约束需要对每台机组设置启机和停机状态变量,但在本模型中,仅设置全网机组共用的启机和停机状态变量,这样可以保证全网的火电机组在同一时刻进行启机或停机,进而实现对复杂的火电机组开机策略的简化。
8)火电机组最大启停机次数约束
Figure BDA0003112621520000081
上式中,
Figure BDA0003112621520000082
为离线仿真期/评估期内第i月的时段集合,ut为离线仿真期/评估期内火电机组在t时段的启机状态,vt为离线仿真期/评估期内火电机组在t时段的停机状态,Ki为离线仿真期/评估期内第i月火电机组的最大启停机次数上限,I为离线仿真期/评估期内月份的总个数,i为离线仿真期/评估期内月份的序号。
该约束配合火电机组开关机状态约束能够有效限制全网火电机组的启停次数,通过调整最大启停机次数上限可以反映出仿真期内火电机组的开机策略。
9)火电机组必须开机约束
Figure BDA0003112621520000083
式中:δt表示全网在t时段必须开机的火电和水电机组台数。
该约束表示各时段下全网需要保证一定数量的火电和水电机组开机,即为电网运行提供了电压、频率和惯量支撑,反映了电网运行方式的要求。
10)线路传输安全约束
Figure BDA0003112621520000084
式中:m表示线路编号,M表示线路个数;
Figure BDA0003112621520000085
表示第m条线路的最大输电容量;
Figure BDA0003112621520000086
表示第m条线路对应第n个节点的功率分配因子。
11)第一可调节负荷电量约束
Figure BDA0003112621520000087
式中:j表示仿真期内日期的序号,J表示仿真期内的日期个数,
Figure BDA0003112621520000088
表示仿真期内第j日的时段范围;
Figure BDA0003112621520000089
表示节点n负荷在第j日的可调节负荷电量的最大调整比例。该约束表示可调节负荷在每日的调增量与调减量保持一致,不超过当日负荷电量的一定比例。
12)第二可调节负荷电量约束
Figure BDA0003112621520000091
式中:
Figure BDA0003112621520000092
Figure BDA0003112621520000093
分别表示节点n负荷在t时段的可调节负荷功率的最大调增和调减比例。该约束限定了在各时段可调节负荷不超过用电负荷的一定比例。
除上述约束条件外,时序仿真运行优化模型还包括火电机组的出力爬坡约束和最小开关机约束,此处不再详细赘述。
模型中的优化变量包括:风电和光伏发电在各时段出力、火电机组和水电在各时段出力、火电机组运行状态和启/停机状态、可调节负荷的调增量和调减量。
模型的边界条件包括:系统用电负荷、正/负备用需求、火电机组与水电机组的最小和最大技术出力、必须开机的火电和水电机组台数、风电和光伏发电的理论出力、可调节负荷功率和电量的最大调整比例、省间联络线交换功率、线路功率分配因子、线路最大输电容量、水电机组最小和最大发电量、最大启停机次数上限、火电机组最小开关机时长、火电机组出力爬坡上限。
模型为混合整数线性规划模型,可直接调用商业求解器Cplex等进行求解。
进一步的,本实施例中,所述步骤S103中,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,包括:
若电网在离线仿真期的新能源消纳量仿真结果大于电网在离线仿真期的新能源消纳量实际结果,则降低预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限,否则增加预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限。
本实施例中,所述电网在评估期的新能源消纳量提升量的计算式如下:
ΔE=E0-E1
上式中,ΔE为电网在评估期的新能源消纳量提升量,E0为电网在评估期的新能源消纳量实际结果,E1为所述电网在评估期的新能源消纳量仿真结果。
本发明提供的一种新能源消纳提升量后评估方法的最优实施例中可以包括如图2所示的具体流程,具体参考新能源消纳提升量后评估方法的实施例所描述的内容,此处不再赘述。
基于同一发明构思,本发明还提供一种新能源消纳提升量后评估装置,如图3所示,所述新能源消纳提升量后评估装置包括:
设置模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
计算模块,用于对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
判断模块,用于判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至调试模块,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述计算模块;
调试模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
确定模块,用于基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
优选的,所述对所述预先建立的时序仿真运行优化模型进行仿真计算,包括:
求解所述预先建立的时序仿真运行优化模型,得到电网内新能源出力总和,并将该电网内新能源出力总和作为电网的新能源消纳量仿真结果。
优选的,所述边界条件包括:系统用电负荷、正/负备用需求、火电机组与水电机组的最小和最大技术出力、必须开机的火电和水电机组台数、风电和光伏发电的理论出力、可调节负荷功率和电量的最大调整比例、省间联络线交换功率、线路功率分配因子、线路最大输电容量、水电机组最小和最大发电量、最大启停机次数上限、火电机组最小开关机时长、火电机组出力爬坡上限。
优选的,所述预先建立的时序仿真运行优化模型的目标函数的计算式如下:
Figure BDA0003112621520000101
上式中,n为电网节点序号,N为电网节点的数量,
Figure BDA0003112621520000102
为t时段节点n的风电出力;
Figure BDA0003112621520000103
为t时段节点n的光伏发电出力,Θ0为离线仿真期或评估期的时间段集合。
优选的,所述预先建立的时序仿真运行优化模型的约束条件包括:系统功率平衡约束、系统备用需求约束、新能源出力约束、水电机组出力范围约束、水电机组发电量约束、火电机组出力范围约束、火电机组开关机状态约束、火电机组最大启停机次数约束、火电机组必须开机约束、线路传输安全约束、第一可调节负荷电量约束、第二可调节负荷电量约束、火电机组的出力爬坡约束和最小开关机约束。
优选的,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,包括:
若电网在离线仿真期的新能源消纳量仿真结果大于电网在离线仿真期的新能源消纳量实际结果,则降低预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限,否则增加预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限。
进一步的,所述火电机组最大启停机次数约束的计算式如下:
Figure BDA0003112621520000111
上式中,
Figure BDA0003112621520000112
为离线仿真期/评估期内第i月的时段集合,ut为离线仿真期/评估期内火电机组在t时段的启机状态,vt为离线仿真期/评估期内火电机组在t时段的停机状态,Ki为离线仿真期/评估期内第i月火电机组的最大启停机次数上限,I为离线仿真期/评估期内月份的总个数,i为离线仿真期/评估期内月份的序号。
优选的,所述电网在评估期的新能源消纳量提升量的计算式如下:
ΔE=E0-E1
上式中,ΔE为电网在评估期的新能源消纳量提升量,E0为电网在评估期的新能源消纳量实际结果,E1为所述电网在评估期的新能源消纳量仿真结果。
进一步,本发明还提供了一种存储装置。在根据本发明的一个存储装置实施例中,存储装置可以被配置成存储执行上述方法实施例的新能源消纳提升量后评估方法的程序,该程序可以由处理器加载并运行以实现上述新能源消纳提升量后评估方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该存储装置可以是包括各种电子设备形成的存储装置设备,可选的,本发明实施例中存储是非暂时性的计算机可读存储介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种新能源消纳提升量后评估方法,其特征在于,所述方法包括:
步骤S101将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
步骤S102对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
步骤S103判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至步骤S104,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述步骤S102;
步骤S104将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
步骤S105基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
2.如权利要求1所述的方法,其特征在于,所述对所述预先建立的时序仿真运行优化模型进行仿真计算,包括:
求解所述预先建立的时序仿真运行优化模型,得到电网内新能源出力总和,并将该电网内新能源出力总和作为电网的新能源消纳量仿真结果。
3.如权利要求1所述的方法,其特征在于,所述边界条件包括:系统用电负荷、正/负备用需求、火电机组与水电机组的最小和最大技术出力、必须开机的火电和水电机组台数、风电和光伏发电的理论出力、可调节负荷功率和电量的最大调整比例、省间联络线交换功率、线路功率分配因子、线路最大输电容量、水电机组最小和最大发电量、最大启停机次数上限、火电机组最小开关机时长、火电机组出力爬坡上限。
4.如权利要求1所述的方法,其特征在于,所述预先建立的时序仿真运行优化模型的目标函数的计算式如下:
Figure FDA0003112621510000011
上式中,n为电网节点序号,N为电网节点的数量,
Figure FDA0003112621510000012
为t时段节点n的风电出力;
Figure FDA0003112621510000013
为t时段节点n的光伏发电出力,Θ0为离线仿真期或评估期的时间段集合。
5.如权利要求1所述的方法,其特征在于,所述预先建立的时序仿真运行优化模型的约束条件包括:系统功率平衡约束、系统备用需求约束、新能源出力约束、水电机组出力范围约束、水电机组发电量约束、火电机组出力范围约束、火电机组开关机状态约束、火电机组最大启停机次数约束、火电机组必须开机约束、线路传输安全约束、第一可调节负荷电量约束、第二可调节负荷电量约束、火电机组的出力爬坡约束和最小开关机约束。
6.如权利要求1所述的方法,其特征在于,所述步骤S103中,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,包括:
若电网在离线仿真期的新能源消纳量仿真结果大于电网在离线仿真期的新能源消纳量实际结果,则降低预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限,否则增加预先建立的时序仿真运行优化模型中各月火电机组的最大启停机上限。
7.如权利要求5所述的方法,其特征在于,所述火电机组最大启停机次数约束的计算式如下:
Figure FDA0003112621510000021
上式中,
Figure FDA0003112621510000022
为离线仿真期/评估期内第i月的时段集合,ut为离线仿真期/评估期内火电机组在t时段的启机状态,vt为离线仿真期/评估期内火电机组在t时段的停机状态,Ki为离线仿真期/评估期内第i月火电机组的最大启停机次数上限,I为离线仿真期/评估期内月份的总个数,i为离线仿真期/评估期内月份的序号。
8.如权利要求1所述的方法,其特征在于,所述电网在评估期的新能源消纳量提升量的计算式如下:
ΔE=E0-E1
上式中,ΔE为电网在评估期的新能源消纳量提升量,E0为电网在评估期的新能源消纳量实际结果,E1为所述电网在评估期的新能源消纳量仿真结果。
9.一种新能源消纳提升量后评估装置,其特征在于,所述装置包括:
设置模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在离线仿真期的边界条件;
计算模块,用于对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在离线仿真期的新能源消纳量仿真结果;
判断模块,用于判断电网在离线仿真期的新能源消纳量仿真结果与电网在离线仿真期的新能源消纳量实际结果是否相同,若是,则将预先建立的时序仿真运行优化模型中火电机组的最大启停机上限作为最优运行策略控制量,并转至调试模块,否则,基于比较结果调节预先建立的时序仿真运行优化模型中火电机组的最大启停机上限,并返回所述计算模块;
调试模块,用于将预先建立的时序仿真运行优化模型中约束条件的边界条件设置为电网在评估期的边界条件,调节所述预先建立的时序仿真运行优化模型中火电机组的最大启停机上限为所述最优运行策略控制量,对所述预先建立的时序仿真运行优化模型进行仿真计算,得到电网在评估期的新能源消纳量仿真结果;
确定模块,用于基于所述电网在评估期的新能源消纳量仿真结果及电网在评估期的新能源消纳量实际结果评估电网在评估期的新能源消纳量提升量;
其中,所述离线仿真期的结束时间在所述评估期的开始时间之前。
10.一种存储装置,其中存储有多条程序代码,其特征在于,所述程序代码适于由处理器加载并运行以执行权利要求1至8中任一项所述的新能源消纳提升量后评估方法。
CN202110653218.7A 2021-06-11 2021-06-11 一种新能源消纳提升量后评估方法及装置 Pending CN113452081A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110653218.7A CN113452081A (zh) 2021-06-11 2021-06-11 一种新能源消纳提升量后评估方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110653218.7A CN113452081A (zh) 2021-06-11 2021-06-11 一种新能源消纳提升量后评估方法及装置

Publications (1)

Publication Number Publication Date
CN113452081A true CN113452081A (zh) 2021-09-28

Family

ID=77811439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110653218.7A Pending CN113452081A (zh) 2021-06-11 2021-06-11 一种新能源消纳提升量后评估方法及装置

Country Status (1)

Country Link
CN (1) CN113452081A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114676569A (zh) * 2022-03-24 2022-06-28 中国电力科学研究院有限公司 电网仿真分析算例及其生成方法、生成系统、设备、介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114676569A (zh) * 2022-03-24 2022-06-28 中国电力科学研究院有限公司 电网仿真分析算例及其生成方法、生成系统、设备、介质

Similar Documents

Publication Publication Date Title
CN112104007B (zh) 一种广义源储系统调度的集中控制方法
CN107248751B (zh) 一种实现配电网负荷功率削峰填谷的储能站调度控制方法
CN107491867B (zh) 一种用于多周期发输变检修计划的安全校核及评估方法
CN111555281B (zh) 一种电力系统灵活性资源配置仿真方法及装置
CN108039737B (zh) 一种源网荷协调运行模拟系统
CN109066744B (zh) 一种含储能配电网协调调度方法和系统
CN103886388A (zh) 一种多周期发电计划协调优化与闭环控制方法
CN104143839B (zh) 基于功率预测的风电场集群限出力有功功率分配方法
CN112186734B (zh) 一种电力系统中长期运行模拟方法、储存介质及计算设备
Li et al. A coordinated peak shaving strategy using neural network for discretely adjustable energy-intensive load and battery energy storage
CN111525628B (zh) 考虑多时间尺度灵活性约束的含风电并网机组组合方法
CN112288490A (zh) 电力现货市场下不同发电成本机组的出清方法及系统
CN110752598B (zh) 多点分布式储能系统灵活性评价方法和装置
CN115528674A (zh) 基于减载运行的海上风电场虚拟惯量最优分配方法及系统
CN112308411A (zh) 基于动态碳交易模型的综合能源站随机规划方法及系统
CN116470543A (zh) 一种虚拟电厂的运行控制方法、装置、设备及介质
CN111476474A (zh) 梯级水电站减少弃水量的调度方法
CN107769266A (zh) 一种多时间尺度发电与备用联合优化方法
CN108767855B (zh) 一种时序持续混合的电力系统随机生产模拟方法
CN113452081A (zh) 一种新能源消纳提升量后评估方法及装置
CN108288132B (zh) 一种基于源荷互动电力系统调度的建模方法
CN115566680B (zh) 一种新能源电力系统时序生产模拟运行优化方法及装置
CN112491080A (zh) 一种新能源装机布局规划方法和系统
CN110676846A (zh) 电力调峰方法、调度中心及电力调峰系统
WO2024077752A1 (zh) 一种混合储能系统充放电状态实时优化控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication