CN108288132B - 一种基于源荷互动电力系统调度的建模方法 - Google Patents

一种基于源荷互动电力系统调度的建模方法 Download PDF

Info

Publication number
CN108288132B
CN108288132B CN201810224314.8A CN201810224314A CN108288132B CN 108288132 B CN108288132 B CN 108288132B CN 201810224314 A CN201810224314 A CN 201810224314A CN 108288132 B CN108288132 B CN 108288132B
Authority
CN
China
Prior art keywords
price
node
demand
curve
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810224314.8A
Other languages
English (en)
Other versions
CN108288132A (zh
Inventor
邢超
李胜男
马红升
陈勇
刘明群
周鑫
何廷一
和鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power Grid Co Ltd filed Critical Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority to CN201810224314.8A priority Critical patent/CN108288132B/zh
Publication of CN108288132A publication Critical patent/CN108288132A/zh
Application granted granted Critical
Publication of CN108288132B publication Critical patent/CN108288132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Quality & Reliability (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提供一种基于源荷互动电力系统调度的建模方法,充分考虑电价因素的影响,不仅考虑决策出机组组合,还要使社会福利最大。此外在该模型中,风电出力被假设为确定,价格弹性需求曲线也是确定的。同时在每个时间段内的用电需求包含弹性需求和非弹性需求,但在目标函数的消费者剩余当中的用电需求仅有弹性需求,因为非弹性需求的消费者剩余为0。如此构建的数学模型能全面的反映出用户实际的需求响应;并且在目标函数约束条件确定过程中,除保证电力系统能够安全可靠地运行,决策变量满足一些常规约束条件外,还考虑需求响应后的约束条件,以使模型更好的反应实际情况,为后期调度决策提供准确的依据。

Description

一种基于源荷互动电力系统调度的建模方法
技术领域
本申请涉及电网控制技术领域,尤其涉及一种基于源荷互动电力系统调度的建模方法。
背景技术
随着工业革命以来数百年的大规模开发利用,传动的化石能源正面临资源枯竭、污染排放严重等现实问题,同时带来环境污染和气候变化等问题也严重影响着人类可持续发展。建立再化石能源基础上的能源生产和消费方式亟待转变。同时,世界以风能、太阳能为代表的间歇性新能源发电总体处于加快发展阶段。
但是,电力系统的基本特征是保证能量的供需平衡,在传统调度模式下,虽然电能难以大量储存,但是火电、水电和核电等传统发电过程的一次能源是可以储存的,因而电能的输出是可控的。电力系统通常只考虑来自需求侧的随机不确定性,通过调度发电机组的开停和出力来满足预测的负荷需求,即采用发电跟踪负荷的模式。以风电和太阳能发电为代表的间歇性新能源发电与传统发电的本质差异在与其一次能源即风能、太阳能是不可储存的,其发电功率输出只能在一次能源只能在一次能源约束下的可控。因此,当大规模风电接入电力系统时,发电本身变得不可控制,因此,电力系统源荷双侧出现随机性。
目前,考虑间歇性新能源接入的电力系统调度模型,主要包括传统仅考虑电源侧控制的调度和计及需求侧响应的源荷互动式调度模型两类。前者仅以电源侧的控制资源为调度手段,同时平抑负荷和间歇性新能源的出力波动。由于电源侧可调资源有限,随着间歇性能源的大规模接入,这种仅从电源侧出发进行调度的传统方法往往难以满足实际需求。而需求侧响应具有成本低、控制灵活的特点,因而在传统调度模型中纳入需求侧响应资源,是一种可行而有效的方法。将需求侧响应作为一种新的决策手段纳入到调度体系之中,并在此基础上构建系统的日前调度模型,以达到提高其运行效益的目的,而目前对于需求侧控制手段本身的不确定性考虑较少,不利于模型在实际中的应用,从而导致调度决策的错误。
发明内容
本申请提供了一种基于源荷互动电力系统调度的建模方法,以解决目前对于需求侧控制手段本身的不确定性考虑较少,不利于模型在实际中的应用,从而导致调度决策的错误的问题。
本申请提供一种基于源荷互动电力系统调度的建模方法包括:
获取用户各个时段的用电量和对应的电价;
根据所述各个时段的用电量和对应的电价,计算得到自弹性系数和交叉弹性数;
根据自弹性系数和交叉弹性系数,生成电量电价弹性矩阵;
利用所述电量电价弹性矩阵、用户各时段的用电量和对应的电价,生成电价响应模型;
根据所述电价响应模型,生成价格弹性需求曲线和所述价格弹性曲线对应的不确定性集合;
线性化所述价格弹性曲线,得到线性价格弹性曲线和所述线性价格曲线对应的不确定性集合;
获取风电出力的不确定性集合、线性燃料成本函数,利用所述风电出力的不确定性集合、线性燃料成本函数、线性价格弹性曲线和所述线性价格曲线对应的不确定性集合,建立日前调度模型。
由以上技术方案可知,本申请提供一种基于源荷互动电力系统调度的建模方法,充分考虑电价因素的影响,不仅考虑决策出机组组合,还要使社会福利最大。将这一部分定义实际生活中一些用电需求却不受电价的影响的负荷定位为“非弹性需求”,如医院和学校;与此相对应的“弹性需求”定义为用电需求随电价的变化而变化。此外在该模型中,风电出力被假设为确定,价格弹性需求曲线也是确定的。同时在每个时间段内的用电需求包含弹性需求和非弹性需求,但在目标函数的消费者剩余当中的用电需求仅有弹性需求,因为非弹性需求的消费者剩余为0。如此构建的数学模型能全面的反映出用户实际的需求响应;并且在目标函数约束条件确定过程中,除保证电力系统能够安全可靠地运行,决策变量满足一些常规约束条件外,还考虑需求响应后的约束条件,以使模型更好的反应实际情况,为后期调度决策提供准确的依据。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供一种基于源荷互动电力系统调度的建模方法的流程图;
图2为价格弹性需求曲线图;
图3为需求曲线和供给曲线图;
图4为分段函数近似价格弹性需求曲线图。
具体实施方式
如图1所示,本申请实施例提供一种基于源荷互动电力系统调度的建模方法包括:
步骤11:获取用户各个时段的用电量和对应的电价。
确定目标用户群及典型用户,一般来说,大中型工商业用户是提供需求响应潜力的主要来源,此外,还可以根据具体需求将目标用户扩大第一产业、小型工商业和居民用户等。具体各时段的电价可包括各地实施的具体需求响应项目,如峰谷电价(TOU)、尖峰电价(CPP)、实时电价(RTP)等。
步骤12:根据所述各个时段的用电量和对应的电价,计算得到自弹性系数和交叉弹性数。
用户对电量价格的响应的类型包括两种:单时段响应和多时段响应。所谓单时段响应,就是用户仅对当前时间段的电量电价产生响应,增加或者降低对电量的使用和消费,且不会对用电负荷进行重新调整;对于多时段响应,就是用户对不同时段的电价产生的响应,即用户根据各个时段的电价情况,调整自己的用电方案。多时段响应相比于单时段响应,更符合实际的用电情况。在多时段响应的场景模型中,弹性系数分为自弹性系数和交叉弹性系数,分别用于表示用户对当前时段的电价响应和对其他时段电价的响应。
步骤13:根据自弹性系数和交叉弹性系数,生成电量电价弹性矩阵。
步骤14:利用所述电量电价弹性矩阵、用户各时段的用电量和对应的电价,生成电价响应模型。
步骤15:根据所述电价响应模型,生成价格弹性需求曲线和所述价格弹性曲线对应的不确定性集合。
价格弹性曲线对应的不确定性集合用于反应价格弹性需求曲线的不确定模型,其中包括价格弹性需求曲线的不确定性的偏差范围和约束条件。
受用户习惯影响,并由电价响应模型可以看出需求侧响应存在不确定性,具体地,如图2所示,对于给定的某个价格p0,相应的需求是不确定的(d0的范围)。类似地,对于给定的需求d0,相应的价格也可以在一定范围内变化(p0的范围)。因此,价格弹性需求曲线为
Figure BDA0001600866080000031
Figure BDA0001600866080000032
其中
Figure BDA0001600866080000033
表示用于描述价格弹性需求曲线的不确定性的偏差,
Figure BDA0001600866080000034
是可以由给定参考点
Figure BDA0001600866080000035
决定的参数值,
Figure BDA0001600866080000036
为节点b在时间段t内的电价,
Figure BDA0001600866080000037
是t时间段中节点b处所给定的价格弹性值。
曲线作为分段函数,对于价格弹性需求曲线中的每个
Figure BDA0001600866080000041
相应的
Figure BDA0001600866080000042
允许在范围
Figure BDA0001600866080000043
内变化,其中
Figure BDA0001600866080000044
表示基准电价参考值,
Figure BDA0001600866080000045
Figure BDA0001600866080000046
的偏差,
Figure BDA0001600866080000047
Figure BDA0001600866080000048
的上限。所述价格弹性需求曲线对应的不确定性集合为
Figure BDA0001600866080000049
Figure BDA00016008660800000410
Figure BDA00016008660800000411
的偏差,
Figure BDA00016008660800000412
Figure BDA00016008660800000413
的上限,T表示时间段集,B表示总线,K表示价格弹性需求曲线。
步骤16:线性化所述价格弹性曲线,得到线性价格弹性曲线和所述线性价格曲线对应的不确定性集合。
一般来说,当电价上涨时,需求将会减少。然而,一些电力消费不受电力价格的影响。本申请将这一部分定义为“非弹性需求”,而需求的另一部分随电力价格的变化而变化,本申请将这部分定义为“弹性需求”。对应于最大社会福利的电力需求,其定义为消费者剩余和供应商盈余的总和。由于非弹性需求部分有一个无限的边际价值。本申请假设,消费者剩余的非弹性需求部分是一个常数。
步骤17:获取风电出力的不确定性集合、线性燃料成本函数,利用所述风电出力的不确定性集合、线性燃料成本函数、线性价格弹性曲线和所述线性价格曲线对应的不确定性集合,建立日前调度模型。
由于风电具有间歇性质,难以精确地表征风力功率输出。假设风力输出在
Figure BDA00016008660800000414
区间内,其中
Figure BDA00016008660800000415
代表在时间段t内总线b的风力输出的预测值,以及
Figure BDA00016008660800000416
Figure BDA00016008660800000417
分别代表高于和低于允许的最大偏差值。该间隔通常可以通过使用分位数来生成。例如,本文可以设置
Figure BDA00016008660800000418
Figure BDA00016008660800000419
分别等于不确定风力输出的.95-和.05-分位数。实际的风电输出功率
Figure BDA00016008660800000420
被允许在给定区间内的任何值。本实施例使用基数不确定性集来调整所提模型的保守性。对于这种方法,本文引入整数πb作为基数预算,以限制风力输出远离其在总线b处的预测值的时间段的数量。例如,如果πb被设置为0,则假定每个总线处的风力输出波动小,并且可以通过预测值近似。如果πb=6,风力输出的显著波动就会被认为发生在不超过六个时间周期。可以认为,该“预算参数”πb可以用于调整系统的保守性。对于任何给定的预算πb小于24,基于该不确定集获得的最优解仍然可行,任何可能的风力输出在其给定的上下限之间具有很高的概率(例如,当πb≥8时,鲁棒优化机组保证方案是可行的,且概率高于95%)。在该设置下,在每个总线b处,当风力输出达到其上限、下限或预测值以及风力输出不处于其预测值的周期的总数时,发生最坏情况的风力输出情形应该不超过预算值πb。因此,所述风力出力的不确定集合为
Figure BDA0001600866080000051
Figure BDA0001600866080000052
Figure BDA0001600866080000053
代表在时间段t内总线b的风力输出的预测值;以及
Figure BDA0001600866080000054
分别代表高于和低于允许的最大偏差值;πb作为基数预算,以限制风力输出远离其在总线b处的预测值的时间段的数量;
Figure BDA0001600866080000055
Figure BDA0001600866080000056
是二进制变量,T表示时间段集,R|B|×|T|表示实数集合,其维度为|B|×|T|,B为节点集合,T为时间段集。风电出力的不确定性集合用来反应风电出力的不确定模型,其中可以包括风电出力的上限和下限,及其在供电过程中的约束条件等参数,通过确定该不确定性集合,可以确定风电供电的波动范围。
在实际生产当中,机组的燃料成本函数
Figure BDA0001600866080000057
可以表示为二次函数,使用N段线性函数来近似燃料成本函数
Figure BDA0001600866080000058
Figure BDA0001600866080000059
Figure BDA00016008660800000510
是第j段函线的截距和斜率,
Figure BDA00016008660800000511
是辅助变量,T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure BDA00016008660800000512
为节点b在时间段t内的非弹性需求部分,
Figure BDA00016008660800000513
为二进制变量,用于指示在时间段t中发电机i是否在节点b上。
假设在每一个总线上的负载包括非弹性和弹性元件,可以模拟需求曲线和供给曲线,如图4所示。电力供需在交点
Figure BDA00016008660800000514
处达到平衡,由于日前调度优化模型考虑了电价因素,因此目标函数需保证社会福利最大。此外在该模型中,风电出力被假设为确定值,价格弹性需求曲线也是确定的。模拟需求曲线和供给曲线,如图3所示。
最终确定的日前调度模型包括目标函数和约束条件,
所述目标函数为
Figure BDA0001600866080000061
T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure BDA0001600866080000062
表示发电机i在节点b的启动成本,
Figure BDA0001600866080000063
为发电机i在节点b的停机成本,
Figure BDA0001600866080000064
为发电机i在节点b处在时间段t内产生的电量,
Figure BDA0001600866080000065
为节点b在时间段t内的实际用电需求,
Figure BDA0001600866080000066
为节点b在时间段t内的价格弹性需求曲线的积分,
Figure BDA0001600866080000067
为发电机i在节点b处的燃料成本函数,
Figure BDA0001600866080000068
为二进制变量,用于指示发电机i是否在时间段t内在节点b上启动,
Figure BDA0001600866080000069
为二进制变量,用于指示发电机i在时间段t是否在节点b处关闭。该目标函数使得社会福利最大化,并省略常数部分。
所述约束条件包括机组技术约束条件、系统约束条件和需求响应约束条件,
所述机组技术约束条件为
Figure BDA00016008660800000610
Figure BDA00016008660800000611
上述两个约束条件表示最小的开机时间和最小的停机时间限制。
Figure BDA00016008660800000612
Figure BDA00016008660800000613
上述两个约束条件为计算机组的启动和关闭状态变量。
Figure BDA00016008660800000614
该约束条件为强制执行没太发电机组的功率输出上限和下限。
Figure BDA00016008660800000615
Figure BDA00016008660800000616
上述两个约束条件为实施每台机组的斜率限制。
所述系统约束条件为
Figure BDA0001600866080000071
该约束条件确保负载平衡。
Figure BDA0001600866080000072
该约束条件是传输线容量限制。
所述需求响应约束条件为
Figure BDA0001600866080000073
该约束条件强制需求的下限和上限。
Figure BDA0001600866080000074
其中,
Figure BDA0001600866080000075
表示发电机i在节点b处的最小正常运行时间;
Figure BDA0001600866080000076
表示发电机i在节点b处的最小停机时间;
Figure BDA0001600866080000077
表示发电机i在节点b的最小发电量;
Figure BDA0001600866080000078
为发电机i在节点b的最大发电量;
Figure BDA0001600866080000079
为二进制变量,用于指示在时间段t中发电机i是否在节点b上;
Figure BDA00016008660800000710
为二进制变量,用于指示发电机i是否在时间段t内在节点b上启动;
Figure BDA00016008660800000711
为二进制变量,用于指示发电机i在时间段t是否在节点b处关闭;Ω为连接两个节点的传输线路;
Figure BDA00016008660800000712
为节点b在时间段t内的实际用电需求;
Figure BDA00016008660800000713
为连接节点i和节点b的传输线的传输容量;
Figure BDA00016008660800000714
为节点b在时间段t内的非弹性需求部;
Figure BDA00016008660800000715
为节点b在时间段t内的最大需求,
Figure BDA00016008660800000716
是在t时间段内b的非弹性需求,T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure BDA00016008660800000717
表示节点b上的第i台发电机组功率的下降速度约束,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段。
由以上技术方案可知,本申请提供一种基于源荷互动电力系统调度的建模方法,充分考虑电价因素的影响,不仅考虑决策出机组组合,还要使社会福利最大。将这一部分定义实际生活中一些用电需求却不受电价的影响的负荷定位为“非弹性需求”,如医院和学校;与此相对应的“弹性需求”定义为用电需求随电价的变化而变化。此外在该模型中,风电出力被假设为确定,价格弹性需求曲线也是确定的。同时在每个时间段内的用电需求包含弹性需求和非弹性需求,但在目标函数的消费者剩余当中的用电需求仅有弹性需求,因为非弹性需求的消费者剩余为0。如此构建的数学模型能全面的反映出用户实际的需求响应;并且在目标函数约束条件确定过程中,除保证电力系统能够安全可靠地运行,决策变量满足一些常规约束条件外,还考虑需求响应后的约束条件,以使模型更好的反应实际情况,为后期调度决策提供准确的依据。
在本申请另一实施例中,上述步骤14包括:
步骤141:根据所述各个时段的用电量和对应的电价,按照如下公式计算得到自弹性系数和交叉弹性系数;
Figure BDA0001600866080000081
Figure BDA0001600866080000082
Δq和Δp分别为电量q和电价p的相对增量,εii为自弹性系数,εij为交叉弹性系数,i和j分别表示第i和第j时段。
步骤142:根据自弹性系数和交叉弹性系数,生成电量电价弹性矩阵,所述电量电价弹性矩阵为
Figure BDA0001600866080000083
电量电价弹性矩阵用来描述电价的变动引起电量的相对变动。
步骤143:利用所述电量电价弹性矩阵、用户各时段的用电量和对应的电价,生成的电价响应模型为
Figure BDA0001600866080000084
在本申请又一实施例中,上述步骤16包括:
步骤161:假设所述价格弹性需求曲线的价格弹性恒定,则得到优化后的价格弹性需求曲线,所述优化后的价格弹性需求曲线为
Figure BDA0001600866080000085
其中
Figure BDA0001600866080000086
表示用于描述价格弹性需求曲线的不确定性的偏差,
Figure BDA0001600866080000087
是可以由给定参考点
Figure BDA0001600866080000088
决定的参数值,
Figure BDA0001600866080000089
为节点b在时间段t内的电价,
Figure BDA00016008660800000810
是t时间段中节点b处所给定的价格弹性值。
Figure BDA00016008660800000811
是在t时间段内b的非弹性需求,因为需求有非弹性的成分,所以有
Figure BDA00016008660800000812
Figure BDA00016008660800000813
进一步实行上限
Figure BDA0001600866080000091
得到
Figure BDA0001600866080000092
因此,非弹性的成分,即社会福利等于需求曲线从
Figure BDA0001600866080000093
Figure BDA0001600866080000094
的积分(在模型中表示为
Figure BDA0001600866080000095
)加上一个常数(即需求曲线从0到
Figure BDA0001600866080000096
的积分)和供给曲线的积分从0到
Figure BDA0001600866080000097
在模型中,为了计算方便,省略了常数部分,这将提供相同的最优解。
步骤162:根据所述优化后的价格弹性需求曲线,参见图4,生成对应的分段函数,所述分段函数为
Figure BDA0001600866080000098
Figure BDA0001600866080000099
Figure BDA00016008660800000910
Figure BDA00016008660800000911
表示优化后的价格弹性需求曲线从
Figure BDA00016008660800000912
Figure BDA00016008660800000913
的积分,
Figure BDA00016008660800000914
是分段函数的第k段,
Figure BDA00016008660800000915
是k段处的相应价格,
Figure BDA00016008660800000916
是在k段处为需求引入的辅助变量,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段。
步骤163:将
Figure BDA00016008660800000917
最大化,得到线性价格弹性曲线和所述线性价格曲线对应的不确定性集合,所述线性价格弹性曲线为
Figure BDA00016008660800000918
当存在某个s0使得
Figure BDA00016008660800000919
成立时,可以证明
Figure BDA00016008660800000920
是价格弹性需求曲线的近似积分,即
Figure BDA00016008660800000921
是合理的。
所述线性价格曲线对应的不确定性集合为
Figure BDA0001600866080000102
Figure BDA0001600866080000103
Figure BDA0001600866080000104
的偏差,
Figure BDA0001600866080000105
Figure BDA0001600866080000106
的上限,T表示时间段集,B表示总线,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段。
上述本实施例提出了价格弹性需求曲线以及如何使用线性函数将其近似。然而,实际的价格弹性需求曲线是不确定的。当ISOs/RTOs作出日前调度决策时,必须允许价格弹性需求曲线在一定范围内变化。为了调整保守性,引入参数
Figure BDA0001600866080000107
以限制偏差的总量,即
Figure BDA0001600866080000108
可以通过改变
Figure BDA0001600866080000109
的值来调整所提出的方法的保守性。值越小,需求响应曲线的不确定性也就越小。
以上技术方案可知,本申请提供一种基于源荷互动电力系统调度的建模方法,充分考虑电价因素的影响,不仅考虑决策出机组组合,还要使社会福利最大。将这一部分定义实际生活中一些用电需求却不受电价的影响的负荷定位为“非弹性需求”,如医院和学校;与此相对应的“弹性需求”定义为用电需求随电价的变化而变化。此外在该模型中,风电出力被假设为确定,价格弹性需求曲线也是确定的。同时在每个时间段内的用电需求包含弹性需求和非弹性需求,但在目标函数的消费者剩余当中的用电需求仅有弹性需求,因为非弹性需求的消费者剩余为0。如此构建的数学模型能全面的反映出用户实际的需求响应;并且在目标函数约束条件确定过程中,除保证电力系统能够安全可靠地运行,决策变量满足一些常规约束条件外,还考虑需求响应后的约束条件,以使模型更好的反应实际情况,为后期调度决策提供准确的依据。

Claims (2)

1.一种基于源荷互动电力系统调度的建模方法,其特征在于,所述方法包括:
获取用户各个时段的用电量和对应的电价;
根据所述各个时段的用电量和对应的电价,计算得到自弹性系数和交叉弹性系 数;
根据自弹性系数和交叉弹性系数,生成电量电价弹性矩阵;
利用所述电量电价弹性矩阵、用户各时段的用电量和对应的电价,生成电价响应模型;
根据所述电价响应模型,生成价格弹性需求曲线和所述价格弹性需求曲线对应的不确定性集合;
线性化所述价格弹性需求曲线,得到线性价格弹性曲线和所述线性价格弹性曲线对应的不确定性集合;
获取风电出力的不确定性集合、线性燃料成本函数,利用所述风电出力的不确定性集合、线性燃料成本函数、线性价格弹性曲线和所述线性价格弹性曲线对应的不确定性集合,建立日前调度模型;
其中,所述根据所述各个时段的用电量和对应的电价,生成电价相应模型包括:
根据所述各个时段的用电量和对应的电价,按照如下公式计算得到自弹性系数和交叉弹性系数;
Figure FDA0003170653460000011
Figure FDA0003170653460000012
Δq和Δp分别为电量q和电价p的相对增量,εii为自弹性系数,εij为交叉弹性系数,i和j分别表示第i和第j时段;
根据自弹性系数和交叉弹性系数,生成电量电价弹性矩阵,所述电量电价弹性矩阵为
Figure FDA0003170653460000013
利用所述电量电价弹性矩阵、用户各时段的用电量和对应的电价,生成的电价响应模型为
Figure FDA0003170653460000014
其中,所述价格弹性需求曲线为
Figure FDA0003170653460000015
Figure FDA0003170653460000016
其中
Figure FDA0003170653460000021
表示用于描述价格弹性需求曲线的不确定性的偏差,
Figure FDA0003170653460000022
是可以由给定参考点
Figure FDA0003170653460000023
决定的参数值,
Figure FDA0003170653460000024
为节点b在时间段t内的电价,
Figure FDA0003170653460000025
是t时间段中节点b处所给定的价格弹性值;
所述价格弹性需求曲线对应的不确定性集合为
Figure FDA0003170653460000026
Figure FDA0003170653460000027
Figure FDA0003170653460000028
的偏差,
Figure FDA0003170653460000029
Figure FDA00031706534600000210
的上限,T表示时间段集,B表示总线,K表示价格弹性需求曲线;
其中,所述风电出力的不确定集合为
Figure FDA00031706534600000211
Figure FDA00031706534600000212
Wt b*代表在时间段t内总线b的风力输出的预测值;以及Wt b+,Wt b-分别代表高于和低于允许的最大偏差值;πb作为基数预算,以限制风力输出远离其在总线b处的预测值的时间段的数量;
Figure FDA00031706534600000213
Figure FDA00031706534600000214
是二进制变量,T表示时间段集,R|B|×|T|表示实数集合,其维度为|B|×|T|,B为节点集合,T为时间段集;
其中,线性燃料成本函数为:
Figure FDA00031706534600000215
Figure FDA00031706534600000216
Figure FDA00031706534600000217
是第j段函线的截距和斜率,
Figure FDA00031706534600000218
是辅助变量,T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure FDA00031706534600000219
为节点b在时间段t内的非弹性需求部分,
Figure FDA00031706534600000220
为二进制变量,用于指示在时间段t中发电机i是否在节点b上;
其中,所述日前调度模型包括目标函数和约束条件,
所述目标函数为
Figure FDA00031706534600000221
T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure FDA00031706534600000222
表示发电机i在节点b的启动成本,
Figure FDA00031706534600000223
为发电机i在节点b的停机成本,
Figure FDA00031706534600000224
为发电机i在节点b处在时间段t内产生的电量,
Figure FDA00031706534600000225
为节点b在时间段t内的实际用电需求,rt b为节点b在时间段t内的价格弹性需求曲线的积分,fi b为发电机i在节点b处的燃料成本函数,
Figure FDA00031706534600000226
为二进制变量,用于指示发电机i是否在时间段t内在节点b上启动,
Figure FDA00031706534600000227
为二进制变量,用于指示发电机i在时间段t是否在节点b处关闭;
所述约束条件包括机组技术约束条件、系统约束条件和需求响应约束条件,
所述机组技术约束条件为
Figure FDA0003170653460000031
Figure FDA0003170653460000032
Figure FDA0003170653460000033
Figure FDA0003170653460000034
Figure FDA0003170653460000035
Figure FDA0003170653460000036
Figure FDA0003170653460000037
所述系统约束条件为
Figure FDA0003170653460000038
Figure FDA0003170653460000039
所述需求响应约束条件为
Figure FDA00031706534600000310
Figure FDA00031706534600000311
其中,
Figure FDA00031706534600000312
表示发电机i在节点b处的最小正常运行时间;
Figure FDA00031706534600000313
表示发电机i在节点b处的最小停机时间;
Figure FDA00031706534600000314
表示发电机i在节点b的最小发电量;
Figure FDA00031706534600000315
为发电机i在节点b的最大发电量;
Figure FDA00031706534600000316
为二进制变量,用于指示在时间段t中发电机i是否在节点b上;
Figure FDA00031706534600000317
为二进制变量,用于指示发电机i是否在时间段t内在节点b上启动;
Figure FDA00031706534600000318
为二进制变量,用于指示发电机i在时间段t是否在节点b处关闭;Ω为连接两个节点的传输线路;
Figure FDA00031706534600000319
为节点b在时间段t内的实际用电需求;
Figure FDA00031706534600000320
为连接节点i和节点b的传输线的传输容量;
Figure FDA00031706534600000321
为节点b在时间段t内的非弹性需求部;
Figure FDA00031706534600000322
为节点b在时间段t内的最大需求,
Figure FDA00031706534600000323
是在t时间段内b的非弹性需求,T表示时间段的集合,B表示节点的集合,Gb表示节点b处的发电机组,
Figure FDA00031706534600000324
表示节点b上的第i台发电机组功率的下降速度约束,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段。
2.如权利要求1所述的基于源荷互动电力系统调度的建模方法,其特征在于,线性化所述价格弹性曲线,得到线性价格弹性曲线和所述线性价格曲线对应的不确定性集合包括:
假设所述价格弹性需求曲线的价格弹性恒定,则得到优化后的价格弹性需求曲线,所述优化后的价格弹性需求曲线为
Figure FDA0003170653460000041
其中
Figure FDA0003170653460000042
表示用于描述价格弹性需求曲线的不确定性的偏差,
Figure FDA0003170653460000043
是可以由给定参考点
Figure FDA0003170653460000044
决定的参数值,
Figure FDA0003170653460000045
为节点b在时间段t内的电价,
Figure FDA0003170653460000046
是t时间段中节点b处所给定的价格弹性值;
根据所述优化后的价格弹性需求曲线,生成对应的分段函数,所述分段函数为
Figure FDA0003170653460000047
Figure FDA0003170653460000048
Figure FDA0003170653460000049
Figure FDA00031706534600000410
表示优化后的价格弹性需求曲线从
Figure FDA00031706534600000411
Figure FDA00031706534600000412
的积分,
Figure FDA00031706534600000413
是分段函数的第k段,
Figure FDA00031706534600000414
是k段处的相应价格,
Figure FDA00031706534600000415
是在k段处为需求引入的辅助变量,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段;
Figure FDA00031706534600000416
最大化,得到线性价格弹性曲线和所述线性价格曲线对应的不确定性集合,所述线性价格弹性曲线为
Figure FDA00031706534600000417
所述线性价格曲线对应的不确定性集合为
Figure FDA00031706534600000418
Figure FDA00031706534600000419
Figure FDA00031706534600000420
的偏差,
Figure FDA00031706534600000421
Figure FDA00031706534600000422
的上限,T表示时间段集,B表示总线,K是价格弹性需求曲线的所有段长集合,k是所有段长集合中的某一段。
CN201810224314.8A 2018-03-19 2018-03-19 一种基于源荷互动电力系统调度的建模方法 Active CN108288132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810224314.8A CN108288132B (zh) 2018-03-19 2018-03-19 一种基于源荷互动电力系统调度的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810224314.8A CN108288132B (zh) 2018-03-19 2018-03-19 一种基于源荷互动电力系统调度的建模方法

Publications (2)

Publication Number Publication Date
CN108288132A CN108288132A (zh) 2018-07-17
CN108288132B true CN108288132B (zh) 2021-10-08

Family

ID=62833711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810224314.8A Active CN108288132B (zh) 2018-03-19 2018-03-19 一种基于源荷互动电力系统调度的建模方法

Country Status (1)

Country Link
CN (1) CN108288132B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109242199A (zh) * 2018-09-27 2019-01-18 东南大学 一种可用于源荷互动环境下的主动负荷安全调度方法
CN110943458B (zh) * 2019-07-01 2021-08-06 浙江大学 一种电力系统鲁棒解列方法
CN113393054B (zh) * 2021-07-05 2023-11-24 华北电力大学 一种风储联合系统的优化调度方法及优化调度系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9058443B2 (en) * 2012-07-17 2015-06-16 International Business Machines Corporation Planning economic energy dispatch in electrical grid under uncertainty
CN103679357B (zh) * 2013-12-06 2017-05-10 国网山东省电力公司 基于价格和激励的电力需求响应的智能决策方法
CN105634024A (zh) * 2016-02-23 2016-06-01 国网江苏省电力公司电力科学研究院 基于价格需求响应的日内经济调度模型及线性求解方法
CN106651473B (zh) * 2017-01-23 2021-01-29 国网福建省电力有限公司 考虑日前小时电价和多种需求响应促进风电接纳水平方法
CN106961124A (zh) * 2017-02-27 2017-07-18 南阳理工学院 一种基于价格需求响应的经济调度模型

Also Published As

Publication number Publication date
CN108288132A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
Wang et al. A near-optimal model-based control algorithm for households equipped with residential photovoltaic power generation and energy storage systems
Wang et al. Adaptive control for energy storage systems in households with photovoltaic modules
Gelazanskas et al. Demand side management in smart grid: A review and proposals for future direction
Ding et al. A demand response energy management scheme for industrial facilities in smart grid
Bertsimas et al. Adaptive robust optimization for the security constrained unit commitment problem
Liu et al. Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting
CN111555281B (zh) 一种电力系统灵活性资源配置仿真方法及装置
Xie et al. Sizing renewable generation and energy storage in stand-alone microgrids considering distributionally robust shortfall risk
CN108288132B (zh) 一种基于源荷互动电力系统调度的建模方法
Shen et al. Generation scheduling of a hydrodominated provincial system considering forecast errors of wind and solar power
Kobayashi et al. Coordinated operation of a battery energy storage system and thermal generators for supply–demand balance maintenance and efficient use of photovoltaic energy
CN107910866B (zh) 一种考虑需求侧响应不确定性的电力系统日前优化调度方法
El Kafazi et al. Multiobjective scheduling-based energy management system considering renewable energy and energy storage systems: A case study and experimental result
CN108418213B (zh) 一种基于源荷互动电力系统调度的方法
Zec et al. Load management in an off-grid hybrid PV–wind–battery system using the power flow control algorithm and fuzzy logic controller
Zhou et al. A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power
US20230299584A1 (en) Method and device for predicting an energy service offering and software program product
Li et al. Real-time scheduling of time-shiftable loads in smart grid with dynamic pricing and photovoltaic power generation
Zhai et al. MPC-based two-stage rolling power dispatch approach for wind-integrated power system
Shen et al. Modeling of Generation Scheduling for Multiple Provincial Power Grids Using Peak-Shaving Indexes
Lu et al. Optimal flexibility dispatch of demand side resources with high penetration of renewables: a Stackelberg game method
Izumida et al. Economic analysis of operating reserve using forecasted variable renewable generation
Aihara et al. Optimal weekly operation scheduling of pumped storage hydropower plant considering optimal hot reserve capacity in a power system with a large penetration of photovoltaic generation
Chen Optimize configuration of multi energy storage system in a standalone microgrid
US20210175717A1 (en) Controlling microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant