CN113451430B - 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件 - Google Patents

石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件 Download PDF

Info

Publication number
CN113451430B
CN113451430B CN202110746535.3A CN202110746535A CN113451430B CN 113451430 B CN113451430 B CN 113451430B CN 202110746535 A CN202110746535 A CN 202110746535A CN 113451430 B CN113451430 B CN 113451430B
Authority
CN
China
Prior art keywords
layer
double
graphene
tellurium
van der
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110746535.3A
Other languages
English (en)
Other versions
CN113451430A (zh
Inventor
贺园园
程娜
赵健伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202110746535.3A priority Critical patent/CN113451430B/zh
Publication of CN113451430A publication Critical patent/CN113451430A/zh
Application granted granted Critical
Publication of CN113451430B publication Critical patent/CN113451430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,由单层石墨烯、双层碲烯和单层硼烯构成;沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成中心散射区,n3段构成右电极区;单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结。本发明利用双层碲烯的晶格取向和水平施加电场的方向调控左电极与中心散射区间的横向肖特基势垒,增强光电二极管的整流效应,得到简易、高效的兼具高光探测率和高光响应度的异质结光电二极管。

Description

石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件
技术领域
本发明涉及半导体技术领域,尤其涉及一种利用结构各向异性提高兼具高光探测率和高光响应度的双层碲烯/硼烯范德华异质结的光电二极管器件结构。
背景技术
下一代电子光电器件的日益小型化伴随着克服短沟道效应的要求,使人们必须探索新型的器件结构。以二维范德华异质结为例,范德华整合即是将合成好的结构单元通过范德华相互作用物理组装在一起,为人们提供了一种低能耗的整合方法,该方法不受晶格和制程的限制。二维材料的光电性质可以通过范德华整合得到调控,使范德华异质结有望应用于光电器件,诸如光电二极管、激光器、光伏电池或者光探测器等。例如,通过将MoS2和Ti3C2Tx垂直堆叠,构成范德华异质结的光探测器对750nm波长光照的负响应度高达1.9A/W,探测率达到2.1×1010Jones(相当于cm·Hz1/2·W-1)。尽管已发现的二维半导体具有优异的器件性能,但严苛的制备条件、大尺寸单层的制备难度和低环境稳定性都成为二维范德华异质结应用于光电器件的障碍。因此,人们有必要继续探索新型的既具有更高稳定性又制备成本低廉的二维材料。
2017年,人们使用分子束外延法,以高取向度的热解石墨作为基底,成功地制备出大尺寸的新型VIA族二维原子晶体碲烯,这种材料在常温下的空气中能稳定存在2个月以上。与传统的二维层状材料不同,双层碲烯以α晶型稳定存在,在一个方向上呈非层状结构,因此赋予其独特的性质,例如载流子迁移率可从几百增至上千cm2 V-1s-1,远高于MoS2。此外,由于其近乎直接的带隙,碲烯的光吸收特性也十分优越。实验制得的碲烯场效应晶体管的开关比高达到106,载流子迁移率达到700cm2V-1s-1,远高于基于MoS2和MoSe2的场效应晶体管。迄今为止,尽管人们已经预测双层碲烯光探测器具有超强的各向异性的光响应度和超高的消光比,但尚未有人将双层碲烯实际应用于光电子器件。其中,很大的原因在于人们尚不清楚如何调控基于双层碲烯的范德华异质结的层间势垒,因为范德华异质结是光电子器件,尤其是光电二极管的核心部件。过去的研究通常使用调节层间距离、插入其他二维材料单层、施加垂直于异质结的外加压力或外加电场等方法实现范德华异质结的层间肖特基接触由p型转变为n型。
然而,由于在肖特基光电二极管中存在光栅压效应,电子或者空穴陷入局域电子态中,光生载流子的瞬态时间延长,导致在得到高光响应度的同时往往伴随着低光探测率。与此同时,由于存在光伏效应,较高的肖特基势垒往往会造成在负偏压下出现超低的暗电流,尽管这可以提高器件的光探测率,但也会造成低光响应度。因此,肖特基光电二极管经常遇到在光探测率和光响应度之间不得不妥协只取其一的问题。
发明内容
为了解决现有技术的上述问题,本发明提供一种兼具高光探测率和高光响应度的双层碲烯/硼烯范德华异质结光电二极管器件结构,解决现有技术中光电二极管器件无法兼具高光探测率和高光响应度的问题。
为了达到上述目的,本发明采用的主要技术方案包括:
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,由单层石墨烯、双层碲烯和单层硼烯构成;
沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成中心散射区,n3段构成右电极区;
单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结。
作为优选的技术方案:
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,石墨烯/双层碲烯范德华异质结的左端半无限延伸(半无限延伸是半导体器件模拟领域的规范术语,电极区域做半无限延伸模拟出来的结果才是可靠的),单层硼烯的右端半无限延伸。石墨烯为左电极提供充足的电子载流子。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件的真空层厚度为
Figure BDA0003143166100000021
(真空层厚度也是半导体器件模拟领域的规范术语,其值设置于此同样也是为了保证模拟结果可靠)。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,中心散射区的长度为L或2L,L为
Figure BDA0003143166100000022
双层碲烯/硼烯范德华异质结沿水平方向D重复2N个晶格周期,N为1、2或3。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,双层碲烯的结构属于α晶型,其晶格取向为[001]、[010]或[100]晶向,这三种晶格取向有最强的光学性质各向异性,因而作为本发明的优选。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,水平方向D为与双层碲烯共平面的水平电场a-方向或水平电场c-方向,水平电场a-方向为沿着坐标轴的x方向水平施加的电场的方向,水平电场c-方向为沿着坐标轴的z方向水平施加的电场的方向,坐标轴是范德华异质结晶胞的坐标轴,是为了便于指明方向人为标记的。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,水平方向D为与双层碲烯共平面的水平电场c-方向,水平方向D如此优选是因为在水平电场c-方向上碲原子间以共价键连接,确保了电流传输的高效率,因此在该方向上器件表现出更高的导电性。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,双层碲烯的晶格取向为[100]晶向,双层碲烯的晶格取向如此优选是因为当c-方向的水平电场施加在晶向为[100]的双层碲烯平面上时,正负偏压下左电极与中心散射区间的横向电子和空穴肖特基势垒高度差较大,有助于增强器件的整流效应。
如上所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,中心散射区的长度为2L;N为1,中心散射区的长度和N如此优选是因为随着中心散射区的长度增加,左电极与中心散射区间的肖特基势垒宽度变大,有效地提高电子和空穴在左右电极间传输的非对称性,进而提升器件的整流效应。
已知本发明的石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件的结构,本领域技术人员可根据现有技术将其成功制备,例如拉曼光谱可以用来控制碲烯、石墨烯和硼烯的层数和碲烯的晶向;热退火方法使这种器件结构两侧与金属能更好的接触,跟金属连接好后两端的材料就能做电极使用。
本发明的原理是:
本发明的光电二极管的器件结构从左至右由左电极、中心散射区和右电极组成,在左电极区,双层碲烯的上表面堆叠石墨烯单层,载流子由石墨烯层转移至碲烯层;在中心散射区,双层碲烯与硼烯垂直堆叠在一起,构成光敏元件;单层硼烯作为右电极材料。
在该光电二极管器件中,可通过改变双层碲烯的晶格取向,调节中心散射区里双层碲烯和硼烯间的垂直隧穿势垒,提高光吸收率,提升器件的光探测率;进一步通过改变水平电场施加方向,调节左电极与中心散射区间的横向空穴肖特基势垒和电子肖特基势垒,最终实现光电二极管电子传输非对称性的调控,最终达到提升器件光响应度的目的。其中,本发明是通过改变双层碲烯的晶格取向和改变与其垂直堆叠的二维材料种类来降低范德华异质结层间肖特基势垒和升高层间隧穿势垒的,在石墨烯/双层碲烯范德华异质结中,双层碲烯的晶格取向由[100]转变至[001],层间电子-空穴分离的程度增强,肖特基势垒逐渐减小;在双层碲烯/硼烯范德华异质结中,双层碲烯的晶格取向由[001]转变至[100],层间隧穿势垒逐渐升高,光吸收率显著提高。
如图4~9所示,石墨烯和硼烯与双层碲烯垂直堆叠可以使异质结中电子和空穴有效分离,从而在红外光激励的作用下,有效地调动双层碲烯层产生光电流。层间肖特基势垒的存在使石墨烯/双层碲烯的光吸收率明显低于双层碲烯/硼烯,尤其是长波段区。高隧穿势垒的存在促进双层[100]碲烯与硼烯间发生电子-空穴分离,提高其对红外光的吸收率。因此,通过改变范德华异质结中与双层碲烯垂直堆叠的材料和双层碲烯的晶格取向可以有效地调控异质结的吸收光波长和吸光效率。
表1为不同晶格取向的双层碲烯分别与石墨烯、硼烯垂直堆叠构建范德华异质结的电学性质和层间势垒的变化。
表1
Figure BDA0003143166100000041
*以石墨烯/双层[001]碲烯为例,
Figure BDA0003143166100000042
的晶格匹配是指双层[001]碲烯的2×2晶胞能与石墨烯的
Figure BDA0003143166100000043
晶胞在最大程度上达到匹配效果。
如表1所示,在基于双层碲烯的范德华异质结形成过程中,无论堆叠材料是石墨烯还是硼烯,晶格失配都小于3%,确保了异质结的稳定存在。通过能带结构计算,石墨烯/双层[100]碲烯(双层碲烯的晶格取向为[100]的石墨烯/双层碲烯)在沿着电场c-方向的电子肖特基势垒远大于空穴肖特基势垒,层间呈p型肖特基接触;石墨烯/双层[001]碲烯(双层碲烯的晶格取向为[001]的石墨烯/双层碲烯)在沿着电场a-方向的空穴肖特基势垒远大于电子肖特基势垒,层间呈n型肖特基接触。通过改变双层碲烯的晶格取向和电场方向,实现异质结的层间肖特基势垒调控。在双层碲烯/硼烯范德华异质结中,无论双层碲烯的晶格如何改变,异质结的肖特基势垒均降低为零,层间转变为欧姆接触。则石墨烯与双层碲烯层间为肖特基接触,双层碲烯与硼烯层间为欧姆接触。与此同时,通过静电电位分布计算,双层[100]碲烯/硼烯的层间隧穿势垒最大,约1.78eV,隧穿势垒宽度也最大,约
Figure BDA0003143166100000044
在该范德华异质结中,载流子的隧穿几率最低,约4.85%。通过改变双层碲烯的晶格取向,实现异质结的层间隧穿势垒调控。
有益效果:
(1)本发明提供的利用双层碲烯的晶格取向调控层间势垒的范德华异质结光电二极管器件结构,通过双层碲烯和单层硼烯在中心散射区内进行垂直堆叠形成范德华异质结,异质结中电子和空穴得到有效分离,从而在光激励的作用下,能有效地调动异质结在红外光区的光电转换,成为光电二极管的光敏元件。
(2)本发明通过改变双层碲烯的晶格取向调控异质结的层间电子-空穴分离程度,进一步增强光敏元件的光吸收强度。在此基础上,在左电极区内将石墨烯垂直堆叠在双层碲烯的上表面,构建石墨烯/双层碲烯范德华异质结。利用双层碲烯的晶格取向和水平施加电场的方向调控左电极与中心散射区间的横向肖特基势垒,增强光电二极管的整流效应,得到简易、高效的新型异质结光电二极管。
附图说明
图1为不同晶格取向的双层碲烯2×2晶胞沿坐标轴x方向的侧视图,其中,a为双层[001]碲烯(晶格取向为[001]的双层碲烯),b为双层[010]碲烯(晶格取向为[010]的双层碲烯),c为双层[100]碲烯(晶格取向为[100]的双层碲烯);
图2为不同晶格取向的石墨烯/双层碲烯范德华异质结的俯视图,其中,a为石墨烯/双层[010]碲烯(双层碲烯的晶格取向为[010]的石墨烯/双层碲烯),b为石墨烯/双层[100]碲烯(双层碲烯的晶格取向为[100]的石墨烯/双层碲烯),c为石墨烯/双层[001]碲烯(双层碲烯的晶格取向为[001]的石墨烯/双层碲烯);
图3为不同晶格取向的双层碲烯/硼烯范德华异质结的俯视图,其中,a为双层[010]碲烯/硼烯(双层碲烯的晶格取向为[010]的双层碲烯/硼烯),b为双层[100]碲烯/硼烯(双层碲烯的晶格取向为[100]的双层碲烯/硼烯);c为双层[001]碲烯/硼烯(双层碲烯的晶格取向为[001]的双层碲烯/硼烯);
图4~9为不同晶格取向和施加水平电场方向下双层碲烯、石墨烯/双层碲烯和双层碲烯/硼烯的光吸收率对比,其中,c-双层[001]碲烯为双层[001]碲烯沿水平电场c-方向上的光吸收率,石墨烯/c-双层[001]碲烯为石墨烯/双层[001]碲烯沿水平电场c-方向上的光吸收率,c-双层[001]碲烯/硼烯为双层[001]碲烯/硼烯沿水平电场c-方向上的光吸收率,c-双层[100]碲烯为双层[100]碲烯沿水平电场c-方向上的光吸收率,石墨烯/c-双层[100]碲烯为石墨烯/双层[100]碲烯沿水平电场c-方向上的光吸收率,c-双层[100]碲烯/硼烯为双层[100]碲烯/硼烯沿水平电场c-方向上的光吸收率,c-双层[010]碲烯为双层[010]碲烯沿水平电场c-方向上的光吸收率,石墨烯/c-双层[010]碲烯为石墨烯/双层[010]碲烯沿水平电场c-方向上的光吸收率,c-双层[010]碲烯/硼烯为双层[010]碲烯/硼烯沿水平电场c-方向上的光吸收率,a-双层[001]碲烯为双层[001]碲烯沿水平电场a-方向上的光吸收率,石墨烯/a-双层[001]碲烯为石墨烯/双层[001]碲烯沿水平电场a-方向上的光吸收率,a-双层[001]碲烯/硼烯为双层[001]碲烯/硼烯沿水平电场a-方向上的光吸收率,a-双层[100]碲烯为双层[100]碲烯沿水平电场a-方向上的光吸收率,石墨烯/a-双层[100]碲烯为石墨烯/双层[100]碲烯沿水平电场a-方向上的光吸收率,a-双层[100]碲烯/硼烯为双层[100]碲烯/硼烯沿水平电场a-方向上的光吸收率,a-双层[010]碲烯为双层[010]碲烯沿水平电场a-方向上的光吸收率,石墨烯/a-双层[010]碲烯为石墨烯/双层[010]碲烯沿水平电场a-方向上的光吸收率,a-双层[010]碲烯/硼烯为双层[010]碲烯沿水平电场a-方向上的光吸收率;
图10为实施例1制得的一种石墨烯/c-双层[010]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图11为实施例2制得的一种石墨烯/a-双层[010]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图12为实施例3制得的一种石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图13为实施例4制得的一种石墨烯/a-双层[100]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图14为实施例5制得的一种石墨烯/c-双层[001]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图15为实施例6制得的一种石墨烯/a-双层[001]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图16为实施例7制得的一种中心散射区内双层碲烯与硼烯堆叠区域长度为N的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图17为实施例8制得的一种中心散射区内双层碲烯与硼烯堆叠区域长度为2N的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图18为实施例9制得的一种中心散射区内双层碲烯与硼烯堆叠区域长度为3N的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的结构示意图;
图19~24为实施例1~6制得的石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件中不同碲烯晶格取向和施加水平电场方向下的电流-电压曲线和正负偏压下的整流比;其中,石墨烯/双层[010]碲烯/硼烯为分别沿水平电场c-方向和a-方向构建的石墨烯/双层[010]碲烯/硼烯范德华异质结光电二极管器件,石墨烯/双层[100]碲烯/硼烯为分别沿水平电场c-方向和a-方向构建的石墨烯/双层[100]碲烯/硼烯范德华异质结光电二极管器件,石墨烯/双层[001]碲烯/硼烯为分别沿水平电场c-方向和a-方向构建的石墨烯/双层[001]碲烯/硼烯范德华异质结光电二极管器件;
图25为实施例7~9制得的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的中心散射区内不同长度的双层碲烯与硼烯堆叠区域条件下的电流-电压曲线;
图26为实施例7~9制得的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的中心散射区内不同长度的双层碲烯与硼烯堆叠区域条件下的正负偏压下的整流比;
其中,1-单层石墨烯,2-双层碲烯,3-双层碲烯/硼烯范德华异质结,4-单层硼烯。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
光敏结构中,双层碲烯的晶格取向和水平电场的施加方向决定所述光电二极管吸收光的波长和吸收光强度,其中吸收光强度可用于表征光电二极管器件的光探测率。电极区域的石墨烯/双层碲烯范德华异质结与中心散射区的双层碲烯间的横向电子肖特基势垒和空穴肖特基势垒决定所述光电二极管的整流效应,电流整流比可用于表征光电二极管的光响应度。本发明通过测试石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长>0.76μm的红外光谱吸收率判断其是否具有高光探测率,通过测试石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件在施加外加电场时正负偏压下的电流整流比判断其是否对光照有高响应度。对于正向整流效应,电流整流比RR的计算公式如下:RR=|I(+Vb)/I(-Vb);对于负向整流效应,电流整流比RR的计算公式如下:RR=-|I(-Vb)/I(+Vb)|,式中I(+Vb)和I(-Vb)分别是相同绝对值的正负偏压,RR正值越大代表正向整流效应越强,RR负值越大代表负向整流效应越强。
实施例1
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000071
如图1(b)、10所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[010]晶向;
与双层碲烯共平面的水平电场c-方向(水平电场c-方向为沿着范德华异质结晶胞的坐标轴的z方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000072
)的中心散射区,n3段构成右电极区;
如图2(a)所示,单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
如图3(a)所示,m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为0.76~11.04μm-1,在施加外加电场时正负偏压下的电流整流比达-1.66~1.01。
实施例2
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000082
如图11所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[010]晶向;
与双层碲烯共平面的水平电场a-方向(水平电场a-方向为沿着范德华异质结晶胞的坐标轴的x方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000083
)的中心散射区,n3段构成右电极区;
单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为8.37~17.83μm-1,在施加外加电场时正负偏压下的电流整流比达-15.73~2.65。
实施例3
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000081
如图1(c)、12所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[100]晶向;
与双层碲烯共平面的水平电场c-方向(水平电场c-方向为沿着范德华异质结晶胞的坐标轴的z方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000084
)的中心散射区,n3段构成右电极区;
如图2(b)所示,单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
如图3(b)所示,m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为127.27~272.57μm-1,在施加外加电场时正负偏压下的电流整流比高达-35.20~-104.94。
实施例4
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000091
如图13所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[100]晶向;
与双层碲烯共平面的水平电场a-方向(水平电场a-方向为沿着范德华异质结晶胞的坐标轴的x方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000092
的中心散射区,n3段构成右电极区;
单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为61.68~280.37μm-1,在施加外加电场时正负偏压下的电流整流比高达1.56~11.39。
实施例5
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000093
如图1(a)、14所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[001]晶向;
与双层碲烯共平面的水平电场c-方向(水平电场c-方向为沿着范德华异质结晶胞的坐标轴的z方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000094
的中心散射区,n3段构成右电极区;
如图2(c)所示,单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
如图3(c)所示,m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为14.77~22.48μm-1,在施加外加电场时正负偏压下的电流整流比达-1.11~2.16。
实施例6
一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,真空层厚度为
Figure BDA0003143166100000101
如图15所示,由单层石墨烯1、双层碲烯2和单层硼烯4构成;双层碲烯的结构属于α晶型,其晶格取向为[001]晶向;
与双层碲烯共平面的水平电场a-方向(水平电场a-方向为沿着范德华异质结晶胞的坐标轴的x方向水平施加的电场的方向)为水平方向D,沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成长度为L(L为
Figure BDA0003143166100000102
的中心散射区,n3段构成右电极区;
单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸;
m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结3,成为光电二极管的感光元件;双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期,单个周期的长度为中心散射区总长度的1/10。
石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件对波长为0.76~4.00μm的红外光谱吸收率为1.40~13.20μm-1,在施加外加电场时正负偏压下的电流整流比达1.12~1.71。
实施例1~6制得的石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件中不同碲烯晶格取向和施加水平电场方向下的电流-电压曲线和正负偏压下的整流比如图19~24所示,无论双层碲烯的晶向如何改变,水平电场c-方向的导电性均优于a-方向。其中,以石墨烯/c-双层[001]碲烯/硼烯范德华异质结光电二极管的导电性最高。但从电流-电压曲线计算得到正负偏压下的电流整流比,在水平电场c-方向上当双层碲烯的晶向由[001]转变为[100],范德华异质结的整流效应可由正转负。石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管的整流比RR在偏压绝对值为0.9V时达到最大负值,即-104.94。经过电流整流比数值比较,石墨烯/c-双层[100]碲烯/硼烯范德华异质结能最大程度地提高光响应度,因此是适用于光电二极管的最佳器件结构。
实施例7
一种石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件,如图16所示,基本同实施例3,不同之处仅在于实施例7中m2段、m3段、n1段和n2段构成长度为2L的中心散射区,双层碲烯/硼烯范德华异质结沿水平方向D重复2个周期(记为N=1),单个周期的长度为中心散射区总长度的1/20。
石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件-在施加外加电场时正负偏压下的电流整流比高达-559.63~-1326.67。
实施例8
一种石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件,如图17所示,基本同实施例7,不同之处仅在于实施例8中双层碲烯/硼烯范德华异质结沿水平方向D重复4个周期(记为N=2),单个周期的长度为中心散射区总长度的1/20;
石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件在施加外加电场时正负偏压下的电流整流比达-1.34~-7.41。
实施例9
一种石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件,如图18所示,基本同实施例7,不同之处仅在于实施例9中双层碲烯/硼烯范德华异质结沿水平方向D重复6个周期(记为N=3),单个周期的长度为中心散射区总长度的1/20;
石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件在施加外加电场时正负偏压下的电流整流比达-3.19~2.09。
实施例7~9制得的石墨烯/c-双层[100]碲烯/硼烯范德华异质结光电二极管器件的中心散射区内不同长度的双层碲烯与硼烯堆叠区域条件下的电流-电压曲线和正负偏压下的整流比如图25~26所示,当中心散射区长度延长1倍,但仍保持中心散射区内c-双层[100]碲烯/硼烯范德华异质结的长度为散射区延长前总长度的1/10(即延长后的1/20),这时左电极区的石墨烯/c-双层[100]碲烯与中心散射区的c-双层[100]碲烯的间距增大,导致横向肖特基势垒宽度增大,电流显著下降。由于正偏压下横向电子肖特基势垒的高度远高于负偏压下横向空穴肖特基势垒的高度,导致器件的负整流效应增强,电流整流比进一步增大至-1356.59,说明延长中心散射区长度能显著提升器件的光响应度。随着中心散射区内的c-双层[100]碲烯/硼烯范德华异质结的长度由N=1增至N=3,左电极区的石墨烯/c-双层[100]碲烯与中心散射区内的c-双层[100]碲烯/硼烯间的距离反而变小。这会导致正负偏压下横向电子与空穴肖特基势垒的高度差变小,进而削弱器件的负整流效应,甚至在高偏压下N=3的器件中整流效应由负转正。因此,通过改变中心散射区的长度和c-双层[100]碲烯与硼烯间的堆叠程度,器件性能表明中心散射区长度延长1倍、c-双层[100]碲烯/硼烯范德华异质结长度为散射区总长度1/10的石墨烯/c-双层[100]碲烯/硼烯具有最强的负整流效应。再结合c-双层[100]碲烯/硼烯的光吸收率最高,该结构也成为了光电二极管的最佳器件结构。

Claims (9)

1.一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,由单层石墨烯、双层碲烯和单层硼烯构成;
沿水平方向D,双层碲烯自左至右由m1段、m2段和m3段组成,单层硼烯自左至右由n1段、n2段和n3段组成;单层石墨烯和m1段构成左电极区,m2段、m3段、n1段和n2段构成中心散射区,n3段构成右电极区;
单层石墨烯沿水平方向D垂直堆叠在m1段上形成石墨烯/双层碲烯范德华异质结;m3段沿水平方向D垂直堆叠在n1段上形成双层碲烯/硼烯范德华异质结。
2.根据权利要求1所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,石墨烯/双层碲烯范德华异质结的左端半无限延伸,单层硼烯的右端半无限延伸。
3.根据权利要求1所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件的真空层厚度为
Figure FDA0003143166090000011
4.根据权利要求1所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,中心散射区的长度为L或2L,L为
Figure FDA0003143166090000012
双层碲烯/硼烯范德华异质结沿水平方向D重复2N个晶格周期,N为1、2或3。
5.根据权利要求4所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,双层碲烯的结构属于α晶型,其晶格取向为[001]、[010]或[100]晶向。
6.根据权利要求5所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,水平方向D为与双层碲烯共平面的水平电场a-方向或水平电场c-方向,水平电场a-方向为沿着坐标轴的x方向水平施加的电场的方向,水平电场c-方向为沿着坐标轴的z方向水平施加的电场的方向,坐标轴是范德华异质结晶胞的坐标轴。
7.根据权利要求6所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,水平方向D为与双层碲烯共平面的水平电场c-方向。
8.根据权利要求7所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,双层碲烯的晶格取向为[100]晶向。
9.根据权利要求8所述的一种石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件,其特征在于,中心散射区的长度为2L;N为1。
CN202110746535.3A 2021-07-01 2021-07-01 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件 Active CN113451430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110746535.3A CN113451430B (zh) 2021-07-01 2021-07-01 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110746535.3A CN113451430B (zh) 2021-07-01 2021-07-01 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件

Publications (2)

Publication Number Publication Date
CN113451430A CN113451430A (zh) 2021-09-28
CN113451430B true CN113451430B (zh) 2022-07-12

Family

ID=77814784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110746535.3A Active CN113451430B (zh) 2021-07-01 2021-07-01 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件

Country Status (1)

Country Link
CN (1) CN113451430B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878173A (zh) * 2018-05-25 2018-11-23 中国电子科技集团公司第十八研究所 一种石墨烯正极片异质结掺杂的制备方法
KR20190006231A (ko) * 2017-07-10 2019-01-18 연세대학교 산학협력단 2 차원 이종 접합 구조 기반 가스 센서 및 이의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026736B1 (ko) * 2013-03-29 2019-11-04 삼성전자주식회사 이종 적층 구조의 절연시트, 그의 제조방법 및 이를 구비하는 전기소자
US11685653B2 (en) * 2019-02-01 2023-06-27 Purdue Research Foundation Substrate-free crystalline 2D nanomaterials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006231A (ko) * 2017-07-10 2019-01-18 연세대학교 산학협력단 2 차원 이종 접합 구조 기반 가스 센서 및 이의 제조 방법
CN108878173A (zh) * 2018-05-25 2018-11-23 中国电子科技集团公司第十八研究所 一种石墨烯正极片异质结掺杂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新型二维材料的结构设计及性能调控的第一性原理研究;朱志立;《中国博士学位论文全文数据库》;20170815;第1-15页 *

Also Published As

Publication number Publication date
CN113451430A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Xie et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications
Li et al. Carbon/silicon heterojunction solar cells: state of the art and prospects
US20160343899A1 (en) Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
WO2015143371A1 (en) Hole blocking, electron transporting and window layer for optimized cuin(1-x)ga(x)se2 solar cells
KR20080044183A (ko) 비정질-결정성 탠덤형 나노구조 태양전지
KR20130133156A (ko) 등급화된 재결합 층에 의해 분리된 다중 접합부들을 갖는 광전지 디바이스들
Zhu et al. Piezo-phototronic and pyro-phototronic effects to enhance Cu (In, Ga) Se 2 thin film solar cells
Kumar et al. Design issues for optimum solar cell configuration
Farhadi et al. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation
US20110220198A1 (en) Method and Device Utilizing Strained AZO Layer and Interfacial Fermi Level Pinning in Bifacial Thin Film PV Cells
CN113451430B (zh) 石墨烯/双层碲烯/硼烯范德华异质结光电二极管器件
Tiwari et al. Simulation engineering in quantum dots for efficient photovoltaic solar cell using copper iodide as hole transport layer
CN113644159B (zh) 一种基于二维材料的光电探测器及其制备方法
US10580926B2 (en) Multi-junction solar cell
Naseri et al. An efficient double junction CIGS solar cell using a 4H-SiC nano layer
Banerjee et al. High efficient CIGS based thin film solar cell performance optimization using PC1D
Ashry et al. Electrical characteristic measurement of the fabricated CdSe/p-Si heterojunction solar cell under radiation effect
EP2469608B1 (de) Bipolardiode mit optischem Quantenstrukturabsorber
TW201121060A (en) Solar cells and apparatus comprising the same
Kancharla et al. Optimization of electrical and optical properties of tin sulfide for thin film photovoltaics using SCAPS
CN219350245U (zh) 一种铊镍硒和硒化铋异质结构光电探测器
Soheili et al. A double junction CZTS/CIGS solar cell optimization using analytical method
Belal et al. Numerical Simulation of CuInSe2 (CIS) Thin Film Solar Cell with (ZnO, ZnO: F) Buffer Layers
KR20130104347A (ko) 태양 전지 및 그 제조 방법
Rahman et al. Enhancing Efficiency in MoTe2-Based Solar Cells: The Impact of Sb2S3 Hole Transport Layer and Thickness Optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant