CN113450947A - Parallel pair cable with characteristic impedance capable of maintaining continuity - Google Patents

Parallel pair cable with characteristic impedance capable of maintaining continuity Download PDF

Info

Publication number
CN113450947A
CN113450947A CN202110726080.9A CN202110726080A CN113450947A CN 113450947 A CN113450947 A CN 113450947A CN 202110726080 A CN202110726080 A CN 202110726080A CN 113450947 A CN113450947 A CN 113450947A
Authority
CN
China
Prior art keywords
characteristic impedance
insulating layer
shielding layer
cable
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110726080.9A
Other languages
Chinese (zh)
Inventor
甘杰斌
甘鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jiutong Technology Co ltd
Original Assignee
Shenzhen Jiutong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jiutong Technology Co ltd filed Critical Shenzhen Jiutong Technology Co ltd
Priority to CN202110726080.9A priority Critical patent/CN113450947A/en
Publication of CN113450947A publication Critical patent/CN113450947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

The invention discloses a parallel pair cable with characteristic impedance capable of keeping continuity, which belongs to the technical field of cables and comprises a cable core formed by at least one pair of line pairs, a first shielding layer, a second shielding layer and a first sheath which are sequentially arranged outside the cable core, wherein each line pair comprises two signal lines, a third shielding layer wrapping the two signal lines and a second sheath arranged outside the third shielding layer, each signal line comprises a central conductor and an insulating layer wrapping the central conductor, and the parallel pair cable is characterized in that: the two signal wires are wound and wrapped with a PTFE total insulating layer, and the PTFE total insulating layer is positioned between the third shielding layer and the two signal wires; the cable is provided with a third shielding layer and a PTFE total insulating layer, the third shielding layer is removed during welding treatment, and meanwhile, when the PTFE total insulating layer is removed, only the insulating layer is left, so that the characteristic impedance of the cable is ensured to be the same no matter whether the third shielding layer and the PTFE total insulating layer are removed, the continuity of the characteristic impedance of the cable is realized, and the integrity of a high-frequency communication signal is ensured.

Description

Parallel pair cable with characteristic impedance capable of maintaining continuity
Technical Field
The invention belongs to the technical field of cables, and relates to a parallel pair cable with characteristic impedance capable of keeping continuity.
Background
With the development of new-generation communication technologies such as 5G, interconnection between a server and a data storage center, and connection between the server and a terminal, the signal capacity is required to be large, and thus the bandwidth required by a cable assembly is high. Conventional cables use solid PE or PP, or foam extrusion, and aluminum foil or copper foil for communication and shielding, as shown in fig. 1 and 2. When assembling the traditional parallel pair, the jacket and the shielding material of the parallel pair need to be stripped, and then the conductor and the bottom wire are welded on the PCB. The characteristic impedance test is carried out on the cable with the structure, the cable adopts a 28AWG (1/0.0.32) conductor, the insulating material is of a PE structure as an example, the characteristic impedance of the cable without stripping a sheath and a shielding material is 100 ohms, the characteristic impedance after the shielding is removed is 109.2 ohms, the characteristic impedance is discontinuous, and when the signal frequency is higher, the wavelength is shorter, and the discontinuity has serious influence on the integrity of the signal.
Disclosure of Invention
The invention aims to: the parallel pair cable with the characteristic impedance capable of maintaining continuity is provided, and the problem that the characteristic impedance of the cable is discontinuous, when the signal frequency is higher, the wavelength is shorter, and the characteristic impedance discontinuity of the cable has serious influence on the integrity of the signal is solved.
The technical scheme adopted by the invention is as follows:
the utility model provides a characteristic impedance can keep parallel of continuity to cable, includes the cable core that at least a pair of line pair constitutes and sets gradually first shielding layer, second shielding layer and first sheath outside the cable core, the line pair includes two signal lines, winds the third shielding layer of two signal lines and sets up the second sheath in the third shielding layer outside, the signal line includes central conductor and winds the insulating layer of package on central conductor, two signal lines are provided with PTFE total insulation layer around the package, PTFE total insulation layer is located between third shielding layer and two signal lines.
Further, the central conductor is a single silver-plated conductor or a plurality of silver-plated stranded conductors.
Further, the insulating layer is made of FEP insulating material.
Furthermore, the pair of wires also comprises a grounding wire, and the grounding wire is parallel to the two signal wires and is coated in the PTFE total insulating layer.
Further, the third shielding layer is a wrapped copper foil, a directly wrapped aluminum foil, a directly wrapped copper foil or a directly wrapped PET.
Further, the characteristic impedance of the line pair satisfies the following equation:
Figure BDA0003137640610000011
wherein a is the outer diameter of the insulating layer, D is the outer diameter of the central conductor, and DsAnd epsilon is the composite dielectric constant of the PTFE total insulating layer and the insulating layers of the two central conductors, wherein the outer diameter of the PTFE total insulating layer is.
In summary, due to the adoption of the technical scheme, the invention has the beneficial effects that:
the parallel pair cable with the characteristic impedance capable of keeping continuity is provided with the third shielding layer and the PTFE total insulating layer, the third shielding layer is removed during welding, and only the insulating layer is left when the PTFE total insulating layer is removed, so that the characteristic impedance of the cable is guaranteed to be the same no matter whether the third shielding layer and the PTFE total insulating layer are removed, the continuity of the characteristic impedance of the cable is realized, and the integrity of a high-frequency communication signal is guaranteed.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings that are required to be used in the embodiments will be briefly described below, it should be understood that the following drawings only illustrate some embodiments of the present invention and therefore should not be considered as limiting the scope, and that for those skilled in the art, other relevant drawings can be obtained according to the drawings without inventive effort, wherein:
FIG. 1 is a schematic view of a prior art cable construction;
FIG. 2 is a schematic diagram of the construction of a wire pair of a prior art cable;
FIG. 3 is a schematic view of a cable construction of the present invention;
FIG. 4 is a schematic diagram of the construction of a wire pair of the cable of the present invention;
the labels in the figure are: 1-wire pair, 2-first shielding layer, 3-second shielding layer, 4-first sheath, 5-central conductor, 6-insulating layer, 7-third shielding layer, 8-second sheath, 9-PTFE total insulating layer and 10-grounding wire.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention. The components of embodiments of the present invention generally described and illustrated in the figures herein may be arranged and designed in a wide variety of different configurations.
Thus, the following detailed description of the embodiments of the present invention, presented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments of the present invention without making any creative effort, shall fall within the protection scope of the present invention.
It is noted that relational terms such as "first" and "second," and the like, may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
Examples
As shown in FIGS. 1 and 2, a 28AWG (1/0.0.32) conductor is used, and the insulating layer 6 is of PE structure as an example.
Characteristic impedance when the cable is shielded:
Figure BDA0003137640610000031
epsilon is dielectric constant of the insulating medium, a is the outer diameter of the insulating layer 6, and d is the outer diameter of the central conductor 5;
as is known, d is 0.32mm, characteristic impedance is 100 ohms, and e is 2.3;
the characteristic impedance of the wire pair is 100 ohms when the insulation outer diameter a is 1.135mm calculated by the above equation.
When the soldering is performed, the third shield layer 7 is removed and branching is performed, and the characteristic impedance of this portion:
Figure BDA0003137640610000032
epsilon is dielectric constant of the insulating medium, a is the outer diameter of the insulating layer 6, and d is the outer diameter of the central conductor 5;
as known, d is 0.32mm, a is 1.23, and e is 2.6;
the characteristic impedance of the cable of the PCB pad part (excluding the third shielding layer 7 section) can be obtained:
Figure BDA0003137640610000033
it can be seen that during the processing, due to the processing requirements, the third shielding layer 7 needs to be peeled off and then wire-bonding is performed, so that one-end characteristic impedance mismatch exists between the high-speed wire and the PCB pad. In a high speed transmission signal path, the signal integrity is destroyed if the length of this mismatch region exceeds the wavelength of the signal.
The invention adopts a novel structure, as shown in fig. 3 and 4, a parallel pair cable with characteristic impedance capable of maintaining continuity provided by the preferred embodiment of the invention comprises a cable core formed by at least one pair of line pairs 1, and a first shielding layer 2, a second shielding layer 3 and a first jacket 4 which are sequentially arranged outside the cable core, wherein the line pair 1 comprises two signal lines, a third shielding layer 7 wrapping the two signal lines and a second jacket 8 arranged outside the third shielding layer 7, the third shielding layer 7 is wrapped copper foil, or directly wrapped aluminum foil, or directly wrapped copper foil, or directly wrapped PET, the signal lines comprise a central conductor 5 and an insulating layer 6 wrapping the central conductor 5, the central conductor 5 is a single silver-plated conductor or a plurality of silver-plated twisted conductors, the insulating layer 6 is made of FEP insulating material, the two signal lines are wrapped by PTFE total insulating layers 9, the PTFE total insulation layer 9 is located between the third shielding layer 7 and the two signal lines, the pair 1 further includes a ground line 10, the ground line 10 is parallel to the two signal lines and is wrapped in the PTFE total insulation layer 9, specifically, the characteristic impedance of the pair satisfies the following formula:
Figure BDA0003137640610000034
wherein a is the outer diameter of the insulating layer 6, D is the outer diameter of the central conductor 5, DsThe outer diameter of the PTFE total insulation 9 is defined as epsilon, which is the composite dielectric constant of the PTFE total insulation 9 and the insulation 6 of the two central conductors 5.
In the wire pair 1 in this embodiment, an insulating layer 6 is extruded on the central conductors 5, and then a low-density PTFE total insulating layer 9 is wrapped around the two central conductors 5, and then a third shielding layer 7 is wrapped around or directly wrapped around the two central conductors. The characteristic impedance of the line pair satisfies the following formula:
Figure BDA0003137640610000041
ε is the composite dielectric constant of the PTFE total insulation 9 and the insulation 6 of the two center conductors 5, a is the outer diameter of the insulation 6, d is the outer diameter of the center conductor 5, and Ds is the outer diameter of the PTFE total insulation 9.
Case (2): selecting an insulating material PE of a traditional process, and when the shielding material is removed and the characteristic impedance is 100 ohms, the insulating outer diameter is as follows:
characteristic impedance with the third shielding layer 7 of the line pair removed:
Figure BDA0003137640610000042
as is known, epsilon is 2.3, d is 0.32mm, and characteristic impedance Z is 100 ohms;
from this, the outer diameter a of the insulating layer 6 can be calculated to be 0.73 mm;
and establishing an algorithm model, dynamically adjusting the composite dielectric constant Ds of the insulating layers 6 wrapping the low-density PTFE total insulating layer 9 and the two central conductors 5, and adjusting the characteristic impedance of the line pair 1 to 100 ohms.
When the proportion of the wrapped ePTFE material of the PTFE total insulation layer 9 is 0.7g/cc, the thickness is 0.229mm, and the wrapped ePTFE material and the insulation layer 6 with the outer diameter of 0.73mm form composite insulation. The dielectric composite permittivity is known from the calculation as 1.662.
Knowing that the outer diameter a of the insulating layer 6 is 0.73, the outer diameter d of the center conductor 5 is 0.32mm, the outer diameter Ds of the PTFE total insulating layer 9 is 1.55, and the composite dielectric constant ∈ is 1.662, the characteristic impedance of the wire pair 1 designed with the PTFE total insulating layer 9 was calculated as follows:
Figure BDA0003137640610000043
in the cable with the third shielding layer 7 and the PTFE total insulation layer 9, the characteristic impedance is 100 ohms, the third shielding layer 7 needs to be removed during welding, only the insulation layer 6 (with the outer diameter of 0.73mm) is left when the PTFE total insulation layer 9 is removed at the same time, and the characteristic impedance is also ensured to be 100 ohms by the part, so that the continuity of the characteristic impedance is realized, and the integrity of a high-frequency communication signal is ensured.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and should not be taken as limiting the scope of the present invention, and any modifications, equivalents and improvements made by those skilled in the art within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (6)

1. The utility model provides a characteristic impedance can keep parallel pair cable of continuity, includes the cable core that at least a pair of line pair constitutes and sets gradually first shielding layer, second shielding layer and the first sheath outside the cable core, the line pair includes two signal lines, winds the third shielding layer of two signal lines and sets up the second sheath in the third shielding layer outside, the signal line includes central conductor and winds the insulating layer of package on central conductor, its characterized in that: and the two signal wires are wound and wrapped with a PTFE total insulation layer, and the PTFE total insulation layer is positioned between the third shielding layer and the two signal wires.
2. A parallel-pair cable having a characteristic impedance that maintains continuity, as claimed in claim 1, wherein: the central conductor is a single silver-plated conductor or a plurality of silver-plated stranded conductors.
3. A parallel-pair cable having a characteristic impedance that maintains continuity, as claimed in claim 1, wherein: the insulating layer is made of FEP insulating material.
4. A parallel-pair cable having a characteristic impedance that maintains continuity, as claimed in claim 1, wherein: the pair of wires further comprises a grounding wire, wherein the grounding wire is parallel to the two signal wires and is wrapped in the PTFE total insulating layer.
5. A parallel-pair cable having a characteristic impedance that maintains continuity, as claimed in claim 1, wherein: the third shielding layer is a wrapped copper foil, a directly wrapped aluminum foil, a directly wrapped copper foil or a directly wrapped PET.
6. A parallel-pair cable having a characteristic impedance that maintains continuity, as claimed in claim 1, wherein: the characteristic impedance of the line pair satisfies the following formula:
Figure FDA0003137640600000011
wherein a is the outer diameter of the insulating layer, D is the outer diameter of the central conductor, and DsAnd epsilon is the composite dielectric constant of the PTFE total insulating layer and the insulating layers of the two central conductors, wherein the outer diameter of the PTFE total insulating layer is.
CN202110726080.9A 2021-06-29 2021-06-29 Parallel pair cable with characteristic impedance capable of maintaining continuity Pending CN113450947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110726080.9A CN113450947A (en) 2021-06-29 2021-06-29 Parallel pair cable with characteristic impedance capable of maintaining continuity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110726080.9A CN113450947A (en) 2021-06-29 2021-06-29 Parallel pair cable with characteristic impedance capable of maintaining continuity

Publications (1)

Publication Number Publication Date
CN113450947A true CN113450947A (en) 2021-09-28

Family

ID=77813912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110726080.9A Pending CN113450947A (en) 2021-06-29 2021-06-29 Parallel pair cable with characteristic impedance capable of maintaining continuity

Country Status (1)

Country Link
CN (1) CN113450947A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202189618U (en) * 2011-07-19 2012-04-11 安徽宏源特种电缆集团有限公司 High performance extraordinary super category 5 cable
CN202662352U (en) * 2012-05-18 2013-01-09 安徽猎塔电缆集团有限公司 Flame-retardant instrument communication cable
CN108320840A (en) * 2017-07-25 2018-07-24 郑成 High-speed digital signal transmission cable
CN110875105A (en) * 2019-10-28 2020-03-10 成都国恒空间技术工程有限公司 Novel ten thousand million net twines of structure aviation
US20210098157A1 (en) * 2019-09-30 2021-04-01 Foxconn (Kunshan) Computer Connector Co., Ltd. Cable
CN215600107U (en) * 2021-06-29 2022-01-21 深圳九天数通科技有限公司 Parallel pair cable with characteristic impedance capable of maintaining continuity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202189618U (en) * 2011-07-19 2012-04-11 安徽宏源特种电缆集团有限公司 High performance extraordinary super category 5 cable
CN202662352U (en) * 2012-05-18 2013-01-09 安徽猎塔电缆集团有限公司 Flame-retardant instrument communication cable
CN108320840A (en) * 2017-07-25 2018-07-24 郑成 High-speed digital signal transmission cable
US20210098157A1 (en) * 2019-09-30 2021-04-01 Foxconn (Kunshan) Computer Connector Co., Ltd. Cable
CN110875105A (en) * 2019-10-28 2020-03-10 成都国恒空间技术工程有限公司 Novel ten thousand million net twines of structure aviation
CN215600107U (en) * 2021-06-29 2022-01-21 深圳九天数通科技有限公司 Parallel pair cable with characteristic impedance capable of maintaining continuity

Similar Documents

Publication Publication Date Title
CN202584914U (en) Differential signal cable
CN104051072B (en) The twisted-pair cable of shielding
CN103918038A (en) High-speed signal transmission cable
US6563052B2 (en) Electric installation cable
TWM612002U (en) Cable
TWM610653U (en) Cable
CN105788748B (en) Insulated electric conductor, coaxial cable and multicore cable
CN204464429U (en) The flexible stable phase coaxial radio frequency cable of a kind of low-loss
US11798710B2 (en) Cable having a pair of inner conductors and an inner insulating layer extrusion molded around the pair of inner conductors
CN215600107U (en) Parallel pair cable with characteristic impedance capable of maintaining continuity
CN107170525A (en) Differential transmission is with cable and multipair differential transmission cable
TW200837778A (en) A coaxial cable
US7361831B2 (en) Coaxial cable and multi-coaxial cable
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
CN112768146A (en) Double-shaft cable
CN113450947A (en) Parallel pair cable with characteristic impedance capable of maintaining continuity
CN202839056U (en) Multi-core cable assembly
CN214624544U (en) Flat multi-pair high-speed data transmission line
CN213366252U (en) Parallel twisted-pair cable
US20170372818A1 (en) Differential signal transmission cable and multi-core differential signal transmission cable
CN217113944U (en) Double-core high-speed cable pair
CN216412747U (en) Multilayer film-wound high-speed signal wire
CN218482381U (en) Novel coaxial line
CN221101713U (en) Multilayer lapped data cable
CN217982910U (en) Miniature differential signal high-speed data transmission cable

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination