CN113449736A - 一种基于深度学习的摄影测量点云语义分割方法 - Google Patents
一种基于深度学习的摄影测量点云语义分割方法 Download PDFInfo
- Publication number
- CN113449736A CN113449736A CN202110805197.6A CN202110805197A CN113449736A CN 113449736 A CN113449736 A CN 113449736A CN 202110805197 A CN202110805197 A CN 202110805197A CN 113449736 A CN113449736 A CN 113449736A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- point
- feature
- information
- semantic segmentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000011218 segmentation Effects 0.000 title claims abstract description 35
- 238000013135 deep learning Methods 0.000 title claims abstract description 10
- 238000012549 training Methods 0.000 claims abstract description 21
- 230000006870 function Effects 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 12
- 238000011176 pooling Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 9
- 238000003062 neural network model Methods 0.000 claims description 8
- 230000004931 aggregating effect Effects 0.000 claims description 7
- 238000000513 principal component analysis Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims description 4
- 238000004220 aggregation Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012876 topography Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 238000011478 gradient descent method Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24147—Distances to closest patterns, e.g. nearest neighbour classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110046145 | 2021-01-14 | ||
CN2021100461455 | 2021-01-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113449736A true CN113449736A (zh) | 2021-09-28 |
CN113449736B CN113449736B (zh) | 2022-09-23 |
Family
ID=77816403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110805197.6A Active CN113449736B (zh) | 2021-01-14 | 2021-07-16 | 一种基于深度学习的摄影测量点云语义分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113449736B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113870272A (zh) * | 2021-10-12 | 2021-12-31 | 中国联合网络通信集团有限公司 | 一种点云分割方法、装置及计算机可读存储介质 |
CN114092580A (zh) * | 2021-11-03 | 2022-02-25 | 华东交通大学 | 一种基于深度学习的三维点云数据压缩方法与系统 |
CN114310872A (zh) * | 2021-11-29 | 2022-04-12 | 杭州电子科技大学 | 一种基于dgg点云分割网络的机械臂自动打菜方法 |
CN114693932A (zh) * | 2022-04-06 | 2022-07-01 | 南京航空航天大学 | 一种大型飞机大部件点云语义分割方法 |
CN115239954A (zh) * | 2022-06-21 | 2022-10-25 | 上海人工智能创新中心 | 一种用于点云全景分割的系统及方法 |
CN116071661A (zh) * | 2023-04-06 | 2023-05-05 | 厦门大学 | 一种基于激光点云的城市道路场景语义分割方法 |
CN118429650A (zh) * | 2024-07-04 | 2024-08-02 | 吉林大学 | 基于多层注意力机制的汽车零件点云多尺度分割方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109410307A (zh) * | 2018-10-16 | 2019-03-01 | 大连理工大学 | 一种场景点云语义分割方法 |
US10621779B1 (en) * | 2017-05-25 | 2020-04-14 | Fastvdo Llc | Artificial intelligence based generation and analysis of 3D models |
CN112070054A (zh) * | 2020-09-17 | 2020-12-11 | 福州大学 | 基于图结构与注意力机制的车载激光点云标线分类方法 |
-
2021
- 2021-07-16 CN CN202110805197.6A patent/CN113449736B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10621779B1 (en) * | 2017-05-25 | 2020-04-14 | Fastvdo Llc | Artificial intelligence based generation and analysis of 3D models |
CN109410307A (zh) * | 2018-10-16 | 2019-03-01 | 大连理工大学 | 一种场景点云语义分割方法 |
CN112070054A (zh) * | 2020-09-17 | 2020-12-11 | 福州大学 | 基于图结构与注意力机制的车载激光点云标线分类方法 |
Non-Patent Citations (1)
Title |
---|
顾军华等: "基于点云数据的分割方法综述", 《燕山大学学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113870272A (zh) * | 2021-10-12 | 2021-12-31 | 中国联合网络通信集团有限公司 | 一种点云分割方法、装置及计算机可读存储介质 |
CN114092580A (zh) * | 2021-11-03 | 2022-02-25 | 华东交通大学 | 一种基于深度学习的三维点云数据压缩方法与系统 |
CN114092580B (zh) * | 2021-11-03 | 2022-10-21 | 华东交通大学 | 一种基于深度学习的三维点云数据压缩方法与系统 |
CN114310872A (zh) * | 2021-11-29 | 2022-04-12 | 杭州电子科技大学 | 一种基于dgg点云分割网络的机械臂自动打菜方法 |
CN114310872B (zh) * | 2021-11-29 | 2023-08-22 | 杭州电子科技大学 | 一种基于dgg点云分割网络的机械臂自动打菜方法 |
CN114693932A (zh) * | 2022-04-06 | 2022-07-01 | 南京航空航天大学 | 一种大型飞机大部件点云语义分割方法 |
CN115239954A (zh) * | 2022-06-21 | 2022-10-25 | 上海人工智能创新中心 | 一种用于点云全景分割的系统及方法 |
CN116071661A (zh) * | 2023-04-06 | 2023-05-05 | 厦门大学 | 一种基于激光点云的城市道路场景语义分割方法 |
CN116071661B (zh) * | 2023-04-06 | 2023-06-23 | 厦门大学 | 一种基于激光点云的城市道路场景语义分割方法 |
CN118429650A (zh) * | 2024-07-04 | 2024-08-02 | 吉林大学 | 基于多层注意力机制的汽车零件点云多尺度分割方法 |
CN118429650B (zh) * | 2024-07-04 | 2024-08-30 | 吉林大学 | 基于多层注意力机制的汽车零件点云多尺度分割方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113449736B (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113449736B (zh) | 一种基于深度学习的摄影测量点云语义分割方法 | |
Huang et al. | Point cloud labeling using 3d convolutional neural network | |
Li et al. | A survey on semantic segmentation | |
Chen et al. | Object detection in remote sensing images based on deep transfer learning | |
CN112257637A (zh) | 一种融合点云和多视图的车载激光点云多目标识别方法 | |
Ji et al. | Few-shot scene classification of optical remote sensing images leveraging calibrated pretext tasks | |
JP7464236B2 (ja) | 複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法 | |
US20200160501A1 (en) | Coordinate estimation on n-spheres with spherical regression | |
Pierdicca et al. | GeoAI: a review of artificial intelligence approaches for the interpretation of complex geomatics data | |
CN113537180B (zh) | 树障的识别方法、装置、计算机设备和存储介质 | |
CN114120115A (zh) | 一种融合点特征和网格特征的点云目标检测方法 | |
Li et al. | An aerial image segmentation approach based on enhanced multi-scale convolutional neural network | |
CN116206306A (zh) | 一种类间表征对比驱动的图卷积点云语义标注方法 | |
CN116129234A (zh) | 一种基于注意力的4d毫米波雷达与视觉的融合方法 | |
CN116740516A (zh) | 基于多尺度融合特征提取的目标检测方法及系统 | |
Li et al. | Real-time tracking algorithm for aerial vehicles using improved convolutional neural network and transfer learning | |
CN112465836B (zh) | 基于轮廓信息的热红外语义分割无监督领域自适应方法 | |
Chen et al. | Point-attention Net: a graph attention convolution network for point cloudsegmentation | |
Lu et al. | Monocular semantic occupancy grid mapping with convolutional variational auto-encoders | |
Zhang et al. | Bicanet: Lidar point cloud classification network based on coordinate attention and blueprint separation involution neural network | |
Wang et al. | A category-contrastive guided-graph convolutional network approach for the semantic segmentation of point clouds | |
Li et al. | An enhanced squeezenet based network for real-time road-object segmentation | |
Zhongyang et al. | Classification of LiDAR point cloud based on multiscale features and pointnet | |
CN115019053A (zh) | 一种用于点云分类分割的动态图语义特征提取方法 | |
Li et al. | [Retracted] PointLAE: A Point Cloud Semantic Segmentation Neural Network via Multifeature Aggregation for Large‐Scale Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240819 Address after: 5th Floor, No. 926 Changhongsuo East Street, Fuxi Street, Deqing County, Huzhou City, Zhejiang Province, China 313200 Patentee after: Moganshan Research Institute of Deqing Zhejiang University of Technology Country or region after: China Address before: The city Zhaohui six districts Chao Wang Road Hangzhou City, Zhejiang province 310014 18 Patentee before: JIANG University OF TECHNOLOGY Country or region before: China |
|
TR01 | Transfer of patent right |