CN113447815A - 一种基于实值esprit的电机故障在线检测方法及系统 - Google Patents

一种基于实值esprit的电机故障在线检测方法及系统 Download PDF

Info

Publication number
CN113447815A
CN113447815A CN202110774876.1A CN202110774876A CN113447815A CN 113447815 A CN113447815 A CN 113447815A CN 202110774876 A CN202110774876 A CN 202110774876A CN 113447815 A CN113447815 A CN 113447815A
Authority
CN
China
Prior art keywords
matrix
real
motor
esprit
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110774876.1A
Other languages
English (en)
Other versions
CN113447815B (zh
Inventor
高静雅
李善亮
夏跃坤
戴继生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110774876.1A priority Critical patent/CN113447815B/zh
Publication of CN113447815A publication Critical patent/CN113447815A/zh
Application granted granted Critical
Publication of CN113447815B publication Critical patent/CN113447815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Protection Of Generators And Motors (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

本发明公开了一种基于实值ESPRIT的电机故障在线检测方法及系统,属于电机故障检测技术领域,包括步骤1:采集电机定子电流数据i(n)。步骤2:利用Hilbert变换构造解析信号y(n)。步骤3:获取电流信号矩阵Y。步骤4:定义实值化矩阵QM,构造实值信号矩阵Y。步骤5:计算信号子空间的Us,利用Us构造矩阵H。步骤6:奇异值分解H,并根据求得的特征值估计信号频率。步骤7:判断电机是否发生故障。本发明与现有方法相比,可以显著降低计算量,更快发现电机故障,具有高可靠性和高灵敏性等优点。

Description

一种基于实值ESPRIT的电机故障在线检测方法及系统
技术领域
本发明属于电机诊断技术领域,涉及一种能够在线检测电动机故障的方法,具体地说是一种基于实值ESPRIT(real-valued estimation of signal parameters viarotational invariance techniques)的电机故障在线检测方法及系统。
背景技术
近年来,异步电动机在各个工业领域的广泛应用,已成为现代工业生产中重要的劳动保障和节能手段。为了保障电机健康、稳定运行,尽可能减少维修成本和停机时间,电机故障诊断具有重要意义。故障诊断可以通过观察电机的振动、电流、磁场等多项指标来实现。其中,基于定子电流的方法不需要特定的数据采集设备和额外的传感器,并且在电机运行期间更容易采集到信号。大量研究表明,当异步电动机发生故障时,定子电流频谱中会出现额外的频率分量,这些分量可以作为电机故障检测的指标。因此,定子电流频谱分析方法以其简单易行、成本低廉、可靠性高等优点受到了广泛关注。其中最经典的定子电流频谱分析方法是FFT(fast Fourier transform),但该方法强烈依赖FFT的分辨率。分辨率与时间成反比,而较长的测量时间会导致电流的变化,从而影响故障诊断结果。为了在短时间内获得高分辨率,子空间的方法被提出。例如在Trachi,et al."Induction Machines FaultDetection Based on Subspace Spectral Estimation."IEEE Transactions onIndustrial Electronics中提出了基于ESPRIT的电机故障诊断方法,但是该方法在实际应用过程中存在计算量过大的问题。
发明内容
针对现有方法的不足,利用短时间的电流信号,本发明提出一种基于实值ESPRIT的电机故障在线检测方法。
用于实现本发明的技术解决方案包括如下步骤:
步骤1:采集电机定子电流数据i(n)。
步骤2:利用Hilbert变换构造解析信号y(n)。
步骤3:获取电流信号矩阵Y。
步骤4:定义实值化矩阵QM,构造实值信号矩阵Y
步骤5:计算信号子空间的Us,利用Us构造矩阵H。
步骤6:奇异值分解H,并根据求得的特征值估计信号频率。
步骤7:判断电机是否发生故障。
本发明还提出了实现上述一种基于实值ESPRIT的电机故障在线检测方法的检测系统,包括信号采集器和信息处理器;所述信号采集器用于采集电机定子电流,所述信息处理器内部集成上述步骤1-7的算法,在接收到电机定子电流后,根据集成的算法判断电机是否出现故障。
本发明的有益效果:
本发明与现有方法相比,可以显著降低计算量,更快发现电机故障,具有高可靠性和高灵敏性等优点。
附图说明
图1是本发明实施流程图。
图2(a)和图2(b)分别是相同条件下,一般ESPRIT与基于实值ESPRIT方法的电机故障频率检测图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明实施的步骤如下:
(1)采集N个时间点的电机定子电流
Figure BDA0003153504550000021
其中:
Figure BDA0003153504550000022
n=0,1,...,N-1,
Figure BDA0003153504550000023
L表示谐波个数,Fs表示采样频率,
Figure BDA0003153504550000024
ak,fk和φk分别表示第k个谐波的振幅、频率和初相位,
Figure BDA0003153504550000025
w(n)表示噪声。
(2)构造解析信号y(n)=i(n)+jHT[i(n)],其中:HT[·]表示Hilbert变换,j表示虚数单位。
(3)设定窗口长度为M,重新排列解析信号,获得M×G维的电流信号矩阵Y=[y(0),y(1),...,y(G-1)],其中:
Figure BDA0003153504550000031
G=N-M+1,
Figure BDA0003153504550000032
y(g)=[y(g),y(g+1),...,y(g+M-1)]T,g=0,1,2,...,G-1,
Figure BDA0003153504550000033
(·)T表示矩阵的转置。
(4)定义实值化矩阵:
Figure BDA0003153504550000034
分别取出QMY矩阵的实数部分和虚数部分,构造实值信号矩阵Y=[Re(QMY) Im(QMY)],其中:
Figure BDA0003153504550000035
IM/2和I(M-1)/2分别表示维度为
Figure BDA0003153504550000036
Figure BDA0003153504550000037
的单位矩阵,
Figure BDA0003153504550000038
JM/2和J(M-1)/2分别表示维度为
Figure BDA0003153504550000039
Figure BDA00031535045500000310
副对角线元素都为1,其余元素都为0的矩阵,
Figure BDA00031535045500000311
0((M-1)/2)×1和01×((M-1)/2)分别表示维度为
Figure BDA00031535045500000312
Figure BDA00031535045500000313
的零矩阵,
Figure BDA00031535045500000314
Re(·),Im(·)分别表示矩阵的实数部分和虚数部分。
(5)对Y进行奇异值分解
Figure BDA00031535045500000315
利用信号子空间矩阵Us构造矩阵
Figure BDA00031535045500000316
其中:
Figure BDA00031535045500000317
Λs为L个大奇异值构成的对角矩阵,Us是与Λs对应的左奇异向量构成的矩阵,Vs是与Λs对应的右奇异向量构成的矩阵,Λw为2G-L个小奇异值构成的对角矩阵,Uw是与Λw对应的左奇异向量构成的矩阵,Vw是与Λw对应的右奇异向量构成的矩阵,所述大奇异值和小奇异值的定义:奇异值分解之后,对角矩阵里的奇异值按照由大到小排序,前L个为大奇异值,其余为小奇异值;
Figure BDA0003153504550000041
Kf=[IM-1 0(M-1)×1],Kb=[0(M-1)×1 IM-1],IM-1表示M-1维的单位矩阵,0(M-1)×1表示(M-1)×1维的零矩阵,
Figure BDA0003153504550000042
(·)H表示矩阵的共轭转置。
(6)H的奇异值分解记为H=TΣPT,并将P划分为四个维度为L×L的子矩阵:
Figure BDA0003153504550000043
计算Ψ=-P12P22 -1的特征值λl,得到估计的信号频率
Figure BDA0003153504550000044
其中:
Figure BDA0003153504550000045
Σ是由奇异值构成的对角矩阵,T是左奇异向量矩阵,P是右奇异向量矩阵,
Figure BDA0003153504550000046
arctan(·)表示反正切函数。
(7)查询估计频率中是否包括故障频率,若包括则判断电机出现故障,反之判断电机未出现故障。
上述电流信号采集由检测系统的信号采集器(比如电流传感器)实现,步骤(2)-(7)由检测系统的信息处理器(比如单片机)集成的算法实现。
实验条件
实验电机是额定功率3kW、额定电压380V、额定电流6.8A的鼠笼电机,在25%负载情况下,带有3根转子断条故障。本发明选取N=1000个样本点,窗口长度M=700,采样频率为Fs=1kHz,谐波个数L=20,进行电机故障检测,仿真结果如图2所示。
实验分析
根据表1可知:发生故障时,其定子电流频谱图中会出现(1±2s)f的故障频率分量,其中s为电机转差率,f为供电频率,本实验故障特征频率理论值为48.7Hz与51.3Hz。
表1是电机测试状态和对应的故障特征理论值
Figure BDA0003153504550000047
Figure BDA0003153504550000051
根据图2可以看出:基于一般ESPRIT和实值的ESPRIT方法分别对1000个数据进行了频谱分析,实验结果与理论值基本一致,供电侧电流频率f=50Hz两侧出现边频带。但一般ESPRIT方法检测出来是48.9Hz和51.49Hz,而本发明估计的电机故障频率为48.78Hz和51.29Hz,其准确性能明显优于现有方法。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技术所创的等效方式或变更均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,包括如下步骤:
步骤1:采集电机定子电流数据i(n);
步骤2:根据Hilbert变换,使用电机定子电流数据i(n)构造解析信号y(n);
步骤3:根据解析信号y(n)构造电流信号矩阵Y;
步骤4:定义实值化矩阵QM,构造实值信号矩阵Y
步骤5:计算电流信号子空间的Us,利用Us构造矩阵H;
步骤6:奇异值分解H,并根据求得的特征值估计电流信号频率;
步骤7:根据估计的电流信号频率判断电机是否发生故障。
2.根据权利要求1所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤1的实现包括:
采集N个时间点的电机定子电流
Figure FDA0003153504540000011
其中:
Figure FDA0003153504540000012
n=0,1,...,N-1,
Figure FDA0003153504540000013
L表示谐波个数,Fs表示采样频率,
Figure FDA0003153504540000014
ak,fk和φk分别表示第k个谐波的振幅、频率和初相位,
Figure FDA0003153504540000015
w(n)表示噪声。
3.根据权利要求1所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤2的y(n)的表达式为:y(n)=i(n)+jHT[i(n)],其中:HT[·]表示Hilbert变换,j表示虚数单位。
4.根据权利要求1所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤3的实现包括如下:
设定窗口长度为M,重新排列解析信号y(n),获得M×G维的电流信号矩阵Y=[y(0),y(1),...,y(G-1)],其中:
Figure FDA0003153504540000016
G=N-M+1,
Figure FDA0003153504540000017
y(g)=[y(g),y(g+1),...,y(g+M-1)]T,g=0,1,2,...,G-1,
(·)T表示矩阵的转置。
5.根据权利要求4所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤4的实现包括如下:
定义实值化矩阵:
Figure FDA0003153504540000021
分别取出QMY矩阵的实数部分和虚数部分,构造实值信号矩阵
Y=[Re(QMY) Im(QMY)],
其中:IM/2和I(M-1)/2分别表示维度为
Figure FDA0003153504540000022
Figure FDA0003153504540000023
的单位矩阵,JM/2和J(M-1)/2分别表示维度为
Figure FDA0003153504540000024
Figure FDA0003153504540000025
副对角线元素都为1,其余元素都为0的矩阵,0((M-1)/2)×1和01×((M-1)/2)分别表示维度为
Figure FDA0003153504540000026
Figure FDA0003153504540000027
的零矩阵,Re(·),Im(·)分别表示矩阵的实数部分和虚数部分。
6.根据权利要求5所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤5的实现包括如下:
Y进行奇异值分解
Figure FDA0003153504540000028
利用信号子空间矩阵Us构造矩阵
Figure FDA0003153504540000029
其中:
Figure FDA00031535045400000210
Λs为L个大奇异值构成的对角矩阵,Us是与Λs对应的左奇异向量构成的矩阵,Vs是与Λs对应的右奇异向量构成的矩阵,Λw为2G-L个小奇异值构成的对角矩阵,Uw是与Λw对应的左奇异向量构成的矩阵,Vw是与Λw对应的右奇异向量构成的矩阵,
Figure FDA0003153504540000031
Kf=[IM-1 0(M-1)×1],Kb=[0(M-1)×1 IM-1],IM-1表示M-1维的单位矩阵,0(M-1)×1表示(M-1)×1维的零矩阵,
Figure FDA0003153504540000032
(·)H表示矩阵的共轭转置。
7.根据权利要求5所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤6的实现包括如下:
H的奇异值分解记为H=TΣPT,并将P划分为四个维度为L×L的子矩阵:
Figure FDA0003153504540000033
计算Ψ=-P12P22 -1的特征值λl,得到估计的信号频率
Figure FDA0003153504540000034
l=1,2,...,L,其中:
Figure FDA0003153504540000035
Σ是由奇异值构成的对角矩阵,T是左奇异向量矩阵,P是右奇异向量矩阵,arctan(·)表示反正切函数。
8.根据权利要求5所述的一种基于实值ESPRIT的电机故障在线检测方法,其特征在于,所述步骤7的实现包括如下:
查询估计频率中是否包括故障频率,若包括则判断电机出现故障,反之判断电机未出现故障。
9.一种基于实值ESPRIT的电机故障在线检测系统,其特征在于,包括信号采集器和信息处理器;所述信号采集器用于采集电机定子电流,所述信息处理器内部集成权利要求1-8的算法,在接收到电机定子电流后,根据集成的算法判断电机是否出现故障。
CN202110774876.1A 2021-07-08 2021-07-08 一种基于实值esprit的电机故障在线检测方法及系统 Active CN113447815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110774876.1A CN113447815B (zh) 2021-07-08 2021-07-08 一种基于实值esprit的电机故障在线检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110774876.1A CN113447815B (zh) 2021-07-08 2021-07-08 一种基于实值esprit的电机故障在线检测方法及系统

Publications (2)

Publication Number Publication Date
CN113447815A true CN113447815A (zh) 2021-09-28
CN113447815B CN113447815B (zh) 2022-08-23

Family

ID=77815478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110774876.1A Active CN113447815B (zh) 2021-07-08 2021-07-08 一种基于实值esprit的电机故障在线检测方法及系统

Country Status (1)

Country Link
CN (1) CN113447815B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518506A (zh) * 2021-11-05 2022-05-20 昆明理工大学 一种直流输电线路故障检测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279341A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit与psa的笼型异步电动机转子断条故障检测方法
CN102279343A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit-saa的笼型异步电动机转子断条故障在线检测方法
CN102944842A (zh) * 2012-11-30 2013-02-27 华北电力大学(保定) 一种笼型异步电动机转子断条故障检测方法
KR101348635B1 (ko) * 2012-07-04 2014-01-08 한국전기연구원 유도전동기 회전자의 고장 진단 장치 및 방법
KR101416626B1 (ko) * 2013-06-17 2014-08-06 한국전기연구원 유도전동기 고장 진단 장치 및 이를 이용한 진단 방법
US20160266207A1 (en) * 2015-03-10 2016-09-15 Mitsubishi Electric Research Laboratories, Inc. Fault Detection in Induction Motors Based on Current Signature Analysis
CN111337893A (zh) * 2019-12-19 2020-06-26 江苏大学 一种基于实值稀疏贝叶斯学习的离格doa估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279341A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit与psa的笼型异步电动机转子断条故障检测方法
CN102279343A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit-saa的笼型异步电动机转子断条故障在线检测方法
KR101348635B1 (ko) * 2012-07-04 2014-01-08 한국전기연구원 유도전동기 회전자의 고장 진단 장치 및 방법
CN102944842A (zh) * 2012-11-30 2013-02-27 华北电力大学(保定) 一种笼型异步电动机转子断条故障检测方法
KR101416626B1 (ko) * 2013-06-17 2014-08-06 한국전기연구원 유도전동기 고장 진단 장치 및 이를 이용한 진단 방법
US20160266207A1 (en) * 2015-03-10 2016-09-15 Mitsubishi Electric Research Laboratories, Inc. Fault Detection in Induction Motors Based on Current Signature Analysis
CN111337893A (zh) * 2019-12-19 2020-06-26 江苏大学 一种基于实值稀疏贝叶斯学习的离格doa估计方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
YOUNESS TRACHI 等: "Induction Machines Fault Detection Based on Subspace Spectral Estimation", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》, vol. 63, no. 9, 31 December 2016 (2016-12-31), pages 1 - 11 *
刘志刚 等: "实值循环ESPRIT算法", 《通信学报》, vol. 27, no. 5, 31 May 2006 (2006-05-31), pages 47 - 51 *
司伟建等: "基于非圆信号特征的实值张量ESPRIT算法", 《系统工程与电子技术》, vol. 38, no. 09, 30 September 2016 (2016-09-30), pages 1975 - 1980 *
孙丽玲等: "基于旋转不变信号参数估计技术与模式搜索算法的异步电动机转子故障检测新方法", 《机械工程学报》, vol. 48, no. 13, 31 July 2012 (2012-07-31), pages 89 - 95 *
杨洁 等: "实值空间的ESPRIT算法及其实现", 《西安邮电学院学报》, vol. 13, no. 1, 31 January 2008 (2008-01-31), pages 52 - 56 *
白旭: "基于ESPRIT的异步电动机转子断条故障检测方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》, 15 March 2015 (2015-03-15), pages 042 - 166 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518506A (zh) * 2021-11-05 2022-05-20 昆明理工大学 一种直流输电线路故障检测方法及系统
CN114518506B (zh) * 2021-11-05 2022-07-22 昆明理工大学 一种直流输电线路故障检测方法及系统

Also Published As

Publication number Publication date
CN113447815B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Bessous et al. Diagnosis of bearing defects in induction motors using discrete wavelet transform
Puche-Panadero et al. Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip
Ayhan et al. Multiple signature processing-based fault detection schemes for broken rotor bar in induction motors
Benbouzid et al. Induction motor asymmetrical faults detection using advanced signal processing techniques
Aydin et al. A new method for early fault detection and diagnosis of broken rotor bars
Garcia-Calva et al. Non-uniform time resampling for diagnosing broken rotor bars in inverter-fed induction motors
WO2014067742A1 (en) A method for detecting a fault condition in an electrical machine
Kechida et al. Discrete wavelet transform for stator fault detection in induction motors
CN113391235B (zh) 一种同步发电机转子动态匝间短路故障检测系统及方法
Zhao et al. Detection of interturn short-circuit faults in DFIGs based on external leakage flux sensing and the VMD-RCMDE analytical method
CN113447815B (zh) 一种基于实值esprit的电机故障在线检测方法及系统
Pietrzak et al. Stator Winding Fault Detection of Permanent Magnet Synchronous Motors Based on the Short-Time Fourier Transform
Asad et al. Harmonic spectrum analysis of induction motor with broken rotor bar fault
Desheng et al. Time-frequency analysis based on BLDC motor fault detection using Hermite S-method
Yazici et al. An adaptive, on-line, statistical method for detection of broken bars in motors using stator current and torque estimation
Puche-Panadero et al. Detection of broken rotor bar fault in induction machine fed by frequency converter
Halder et al. Stator inter-turn fault diagnosis in permanent magnet synchronous motor
Pineda-Sanchez et al. Diagnosis of induction machines under transient conditions through the Instantaneous Frequency of the fault components
Arabacı et al. Detection of induction motor broken rotor bar faults under no load condition by using support vector machines
Cabanas et al. A new methodology for applying the FFT to induction motor on-line diagnosis
Koura et al. Improved Diagnosis of Induction Motor's Rotor Faults using the Papoulis Window
Di Tommaso et al. Double squirrel cage induction motors a new approach to detect rotor bar failures
Amirat et al. Modal Decomposition for Bearing Fault Detection
Henao et al. A new mathematical procedure for the computation of the equivalent inverse sequence impedance in working induction motors
Aydin et al. A new real-time fuzzy logic based diagnosis of stator faults for inverter-fed induction motor under low speeds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant