CN113446127A - 一种内燃机余热回收有机朗肯循环系统及其余热回收方法 - Google Patents

一种内燃机余热回收有机朗肯循环系统及其余热回收方法 Download PDF

Info

Publication number
CN113446127A
CN113446127A CN202110882802.XA CN202110882802A CN113446127A CN 113446127 A CN113446127 A CN 113446127A CN 202110882802 A CN202110882802 A CN 202110882802A CN 113446127 A CN113446127 A CN 113446127A
Authority
CN
China
Prior art keywords
evaporator
working medium
gas
waste heat
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110882802.XA
Other languages
English (en)
Inventor
王恩华
张文
孟凡骁
彭宁建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110882802.XA priority Critical patent/CN113446127A/zh
Publication of CN113446127A publication Critical patent/CN113446127A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本发明提供了一种内燃机余热回收有机朗肯循环系统,涉及有机朗肯循环余热发电技术领域。该系统包括发动机、第一工质泵、第一蒸发器、气液分离器、第一膨胀机、第一发电机、第二工质泵、第二蒸发器、第二膨胀机、第二发电机、冷凝器和储液罐,发动机的出口分别连接第一蒸发器的热端入口和第二蒸发器的热端入口;第一工质泵、第一蒸发器、气液分离器、第一膨胀机、第一发电机、冷凝器和储液罐依次连接构成第一级有机朗肯循环;第一工质泵、第一蒸发器、气液分离器、第二工质泵、第二蒸发器、第二膨胀机、第二发电机、冷凝器和储液罐依次连接构成第二级有机朗肯循环。本发明结构简单紧凑,实现了对能量的梯级利用,提高了内燃机整机的热效率。

Description

一种内燃机余热回收有机朗肯循环系统及其余热回收方法
技术领域
本发明涉及有机朗肯循环余热发电技术领域,具体涉及一种内燃机余热回收有机朗肯循环系统及其余热回收方法。
背景技术
公开号CN108561241A的专利中,公开了采用双压透平,温度较高的内燃机排气首先通过导热水循环和第一级蒸发器,加热经过内燃机冷却水预热之后的有机工质成高温高压状态,进入双压透平膨胀做功;经过一次换热之后温度较低的内燃机排气以及第一级蒸发器出口导热水的余热,再通过第二级蒸发器进行回收,加热经过内燃机冷却水预热之后的另外一股有机工质,驱动双压透平做功。该发明利用了内燃机排气余热以及冷却水余热,降低系统的不可逆损失,提高循环能源利用率。
公开号CN112282962A的专利中,公开了采用高沸点和低沸点的不同工质组成非共沸混合物作为循环工质,可吸收内燃机缸体排出的增压空气热量、高温膨胀机后乏汽热量、内燃机缸体及缸体内燃气热量,然后进入闪蒸罐,形成含低沸点温度工质的气相部分和含高沸点温度工质的液相部分,气相部分进入低温膨胀机做功,液相部分被高压工质泵送入排气换热器中与内燃机缸体的排气交换热量后变为高温高压的蒸汽,然后蒸汽进入高温膨胀机推动高温膨胀机做功,高温膨胀机的后乏汽热量在回热器中进行热交换后与低温膨胀机的后乏汽汇合,最后进入冷凝器凝结散热后,进入储液罐中完成循环。
现有技术中存在以下技术问题:(1)没有充分利用内燃机的余热能量,只利用了排气或者冷却水中的部分能量,没有实现能量梯级利用。(2)没有发挥混合工质的优势,单一工质对不同热源的匹配较差。(3)结构较为复杂,没有设计紧凑的结构。
因此,亟需提供一种内燃机余热回收有机朗肯循环系统及其余热回收方法,以解决现有技术中存在的上述技术问题。
发明内容
本发明的目的在于提供一种内燃机余热回收有机朗肯循环系统及其余热回收方法,结构简单紧凑,实现了对能量的梯级利用,回收了更多余热能量,提高了内燃机整机的热效率。
为实现上述目的,提供以下技术方案:
本发明提供了一种内燃机余热回收有机朗肯循环系统,包括发动机、第一工质泵、第一蒸发器、气液分离器、第一膨胀机、第一发电机、第二工质泵、第二蒸发器、第二膨胀机、第二发电机、冷凝器和储液罐,发动机的出口分别连接第一蒸发器的热端入口和第二蒸发器的热端入口;第一工质泵、第一蒸发器、气液分离器、第一膨胀机、第一发电机、冷凝器和储液罐依次连接构成第一级有机朗肯循环;第一工质泵、第一蒸发器、气液分离器、第二工质泵、第二蒸发器、第二膨胀机、第二发电机、冷凝器和储液罐依次连接构成第二级有机朗肯循环。
进一步地,发动机的水套通过管道连接到第一蒸发器的热端入口,第一蒸发器的热端出口接回汽车水箱;发动机排气通过管道连接到第二蒸发器的热端入口,第二蒸发器的热端出口直接排到大气。
进一步地,第一工质泵的泵入口通过管路连接储液罐的出口、泵出口通过管道连接第一蒸发器的冷端入口,第一蒸发器的冷端出口通过管路连接气液分离器入口。
进一步地,气液分离器分离的气体部分通过上方管路传输到第一膨胀机的气体入口,第一膨胀机的气体出口通过管路连接到冷凝器的热源入口;气液分离器分离的液体部分通过下方管路传输到第二工质泵,第二工质泵通过管路与第二蒸发器的冷端入口连接,第二蒸发器的冷端出口与第二膨胀机的气体入口连接,第二膨胀机的气体出口通过管路连接到冷凝器的热源入口,冷凝器的热源出口与储液罐入口通过管路连接。
进一步地,冷凝器还包括冷源入口和冷源出口,冷源入口和冷源出口的设置方向与热源入口和热源出口的设置方向相反。
进一步地,第一发电机与第一膨胀机同轴连接。
进一步地,第二发电机与第二膨胀机同轴连接。
进一步地,所述内燃机余热回收有机朗肯循环系统还包括多个流量传感器,多个流量传感器至少设置在第一工质泵的出口与第一蒸发器之间的管路上以及第二工质泵的出口与第二蒸发器之间的管路上。
本发明还提供了一种如上述任一项技术方案所述的内燃机余热回收有机朗肯循环系统的余热回收方法,所述方法包括:
运行时,第一工质泵工作,将储液罐中的非共沸工质泵入第一蒸发器中的冷端入口,在第一蒸发器中与发动机的水套中的冷却水进行热交换后,第一蒸发器的热端出口出去的冷却水流回发动机的冷却水循环系统,第一蒸发器冷端出口出去的工质进入气液分离器;气液分离器将气相和液相工质分离,含较多低沸点组分的混合工质作为饱和气态,进入第一膨胀机膨胀做功,并带动第一发电机发电;含较多高沸点组分的混合工质则作为液态,由第二工质泵泵入到第二蒸发器的冷端入口,而第二蒸发器的热端入口接收发动机的排气,沸点较高的工质与发动机排气在第二蒸发器内充分换热后,第二蒸发器的热端出口的排气排入大气中、冷端出口的工质则成为气态,进入第二膨胀机膨胀做功,带动第二发电机发电;第一膨胀机和第二膨胀机出来的乏气汇合进入冷凝器的热源入口,由冷凝器的冷源入口进来的冷却水冷凝成为液态,再输送到储液罐中,完成循环。
进一步地,内燃机余热回收有机朗肯循环系统运行前,储液罐中储存非共沸工质。
与现有技术相比,本发明提供的内燃机余热回收有机朗肯循环系统及其余热回收方法,具有以下优点:(1)本发明实现了对能量的梯级利用,针对内燃机冷却水套和排气余热能进行回收利用,回收了更多余热能量,提高了内燃机整机的热效率。(2)本发明设计的结构更为紧凑,减少了因为整车重量增加而导致的发动机负荷以及在实车上布置系统的难度。(3)本发明充分发挥了非共沸混合工质的优势,分别针对冷却水和排气余热两种温度不同的热源进行了匹配,其性能表现优于纯工质,能够提高有机朗肯循环系统的循环效率和输出。
提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的重要特征或必要特征,也无意限制本公开的范围。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了本发明实施例的内燃机余热回收有机朗肯循环系统的结构示意图。
附图标记:
1-发动机;2-第一工质泵;3-第一蒸发器;4-气液分离器;5-第一膨胀机;6-第一发电机;7-第二工质泵;8-第二蒸发器;9-第二膨胀机;10-第二发电机;11-冷凝器;12-储液罐。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如图1所示,本实施例提供了一种内燃机余热回收有机朗肯循环系统,包括发动机1、第一工质泵2、第一蒸发器3、气液分离器4、第一膨胀机5、第一发电机6、第二工质泵7、第二蒸发器8、第二膨胀机9、第二发电机10、冷凝器11和储液罐12,发动机1的出口分别连接第一蒸发器3的热端入口和第二蒸发器8的热端入口;第一工质泵2、第一蒸发器3、气液分离器4、第一膨胀机5、第一发电机6、冷凝器11和储液罐12依次连接构成第一级有机朗肯循环;第一工质泵2、第一蒸发器3、气液分离器4、第二工质泵7、第二蒸发器8、第二膨胀机9、第二发电机10、冷凝器11和储液罐12依次连接构成第二级有机朗肯循环。
具体地,发动机1的水套通过管道连接到第一蒸发器3的热端入口,第一蒸发器3的热端出口接回汽车水箱;发动机1排气通过管道连接到第二蒸发器8的热端入口,第二蒸发器8的热端出口直接排到大气。
进一步地,第一工质泵2的泵入口通过管路连接储液罐12的出口、泵出口通过管道连接第一蒸发器3的冷端入口,第一蒸发器3的冷端出口通过管路连接气液分离器4入口。具体地,气液分离器4分离的气体部分通过其上方管路传输到第一膨胀机5的气体入口,第一膨胀机5的气体出口通过管路连接到冷凝器11的热源入口;气液分离器4分离的液体部分通过其下方管路传输到第二工质泵7,第二工质泵7通过管路与第二蒸发器8的冷端入口连接,第二蒸发器8的冷端出口与第二膨胀机9的气体入口连接,第二膨胀机9的气体出口通过管路连接到冷凝器11的热源入口,冷凝器11的热源出口与储液罐12入口通过管路连接。
进一步地,冷凝器11还包括冷源入口和冷源出口,冷源入口和冷源出口的设置方向与热源入口和热源出口的设置方向相反。
优选地,本实施例的第一发电机6与第一膨胀机5同轴连接,第二发电机10与第二膨胀机9同轴连接。
可选地,为能够测量工质的流量,以便更好地控制系统的稳定性及安全性,所述内燃机余热回收有机朗肯循环系统还包括多个流量传感器,多个流量传感器至少设置在第一工质泵2的出口与第一蒸发器3之间的管路上以及第二工质泵7的出口与第二蒸发器8之间的管路上。
本实施例的内燃机余热回收有机朗肯循环系统的工作原理如下:
整套有机朗肯循环采用非共沸工质(R134a/R1233zd,1,1,1,2-四氟乙烷/反式-1-氯-3,3,3-三氟丙烯),混合工质储存于储液罐12中,之后经过第一工质泵2加压输送到第一蒸发器3,与内燃机水套中的冷却液进行充分热交换。混合工质中的R134a由于沸点较低,蒸发为气体的混合工质含较高浓度的R134a;而R1233zd的沸点高于水套中的温度,因此大部分仍将保持液态。随后气液混合态的工质进入气液分离器4,含较多R134a的气相混合工质输送至第一膨胀机5膨胀做功,带动第一发电机6发电;含较多R1233zd的液相混合工质R1233zd则通过第二工质泵7再度加压,输送至第二蒸发器8,与内燃机排气进行充分热交换成为饱和气态。该气相混合工质输送至第二膨胀机9膨胀做功,带动第二发电机10发电。做功后的两种工质再混合进入冷凝器11冷却为液态回流到储液罐12中,完成一次循环。
本实施例还提供了一种如上述内燃机余热回收有机朗肯循环系统的余热回收方法,该方法包括:
运行前,储液罐12中储存非共沸工质(R134a/R1233zd),两种工质在相同压力下沸点不同,以匹配冷却水套和排气的温度。运行时,第一工质泵2工作,将储液罐12中的非共沸工质泵入第一蒸发器3中的冷端入口,热端入口与发动机1的水套连接,在第一蒸发器3中非共沸工质与发动机1的水套中的冷却水进行热交换后,第一蒸发器3的热端出口出去的冷却水流回发动机1的冷却水循环系统,第一蒸发器3冷端出口出去的工质进入气液分离器4;气液分离器4将气相和液相工质分离,含低沸点组分较多的混合工质作为饱和气态,进入第一膨胀机5膨胀做功,并带动第一发电机6发电;含高沸点组分较多的混合工质则作为液态,由第二工质泵7泵入到第二蒸发器8的冷端入口,而第二蒸发器8的热端入口接收发动机1的排气,沸点较高的工质与发动机1排气在第二蒸发器8内充分换热后,第二蒸发器8的热端出口的排气排入大气中、冷端出口的工质则成为气态,进入第二膨胀机9膨胀做功,带动第二发电机10发电;第一膨胀机5和第二膨胀机9出来的乏气汇合进入冷凝器11的热源入口,由冷凝器11的冷源入口进来的冷却水冷凝成为液态,再输送到储液罐12中,完成循环。
本实施例提供的内燃机余热回收有机朗肯循环系统及其余热回收方法,具有以下优点:(1)实现了对能量的梯级利用,针对内燃机冷却水套和排气余热能进行回收利用,回收了更多余热能量,提高了内燃机整机的热效率。(2)本实施例设计的结构更为紧凑,减少了因为整车重量增加而导致的发动机1负荷以及在实车上布置系统的难度。(3)本实施例充分发挥了非共沸混合工质的优势,分别针对冷却水和排气余热两种温度不同的热源进行了匹配,其性能表现优于纯工质,能够提高有机朗肯循环系统的循环效率和输出。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

1.一种内燃机余热回收有机朗肯循环系统,其特征在于,包括发动机(1)、第一工质泵(2)、第一蒸发器(3)、气液分离器(4)、第一膨胀机(5)、第一发电机(6)、第二工质泵(7)、第二蒸发器(8)、第二膨胀机(9)、第二发电机(10)、冷凝器(11)和储液罐(12),发动机(1)的出口分别连接第一蒸发器(3)的热端入口和第二蒸发器(8)的热端入口;第一工质泵(2)、第一蒸发器(3)、气液分离器(4)、第一膨胀机(5)、第一发电机(6)、冷凝器(11)和储液罐(12)依次连接构成第一级有机朗肯循环;第一工质泵(2)、第一蒸发器(3)、气液分离器(4)、第二工质泵(7)、第二蒸发器(8)、第二膨胀机(9)、第二发电机(10)、冷凝器(11)和储液罐(12)依次连接构成第二级有机朗肯循环。
2.根据权利要求1所述的内燃机余热回收有机朗肯循环系统,其特征在于,发动机(1)的水套通过管道连接到第一蒸发器(3)的热端入口,第一蒸发器(3)的热端出口接回汽车水箱;发动机(1)排气通过管道连接到第二蒸发器(8)的热端入口,第二蒸发器(8)的热端出口直接排到大气。
3.根据权利要求2所述的内燃机余热回收有机朗肯循环系统,其特征在于,第一工质泵(2)的泵入口通过管路连接储液罐(12)的出口、泵出口通过管道连接第一蒸发器(3)的冷端入口,第一蒸发器(3)的冷端出口通过管路连接气液分离器(4)入口。
4.根据权利要求3所述的内燃机余热回收有机朗肯循环系统,其特征在于,气液分离器(4)分离的气体部分通过上方管路传输到第一膨胀机(5)的气体入口,第一膨胀机(5)的气体出口通过管路连接到冷凝器(11)的热源入口;气液分离器(4)分离的液体部分通过下方管路传输到第二工质泵(7),第二工质泵(7)通过管路与第二蒸发器(8)的冷端入口连接,第二蒸发器(8)的冷端出口与第二膨胀机(9)的气体入口连接,第二膨胀机(9)的气体出口通过管路连接到冷凝器(11)的热源入口,冷凝器(11)的热源出口与储液罐(12)入口通过管路连接。
5.根据权利要求4所述的内燃机余热回收有机朗肯循环系统,其特征在于,冷凝器(11)还包括冷源入口和冷源出口,冷源入口和冷源出口的设置方向与热源入口和热源出口的设置方向相反。
6.根据权利要求4所述的内燃机余热回收有机朗肯循环系统,其特征在于,第一发电机(6)与第一膨胀机(5)同轴连接。
7.根据权利要求4所述的内燃机余热回收有机朗肯循环系统,其特征在于,第二发电机(10)与第二膨胀机(9)同轴连接。
8.根据权利要求4所述的内燃机余热回收有机朗肯循环系统,其特征在于,还包括多个流量传感器,多个流量传感器至少设置在第一工质泵(2)的出口与第一蒸发器(3)之间的管路上以及第二工质泵(7)的出口与第二蒸发器(8)之间的管路上。
9.一种如权利要求1-8任一项所述的内燃机余热回收有机朗肯循环系统的余热回收方法,其特征在于,所述方法包括:
运行时,第一工质泵(2)工作,将储液罐(12)中的非共沸工质泵入第一蒸发器(3)中的冷端入口,在第一蒸发器(3)中与发动机(1)的水套中的冷却水进行热交换后,第一蒸发器(3)的热端出口出去的冷却水流回发动机(1)的冷却水循环系统,第一蒸发器(3)冷端出口出去的工质进入气液分离器(4);气液分离器(4)将气相和液相工质分离,沸点较低的混合工质作为饱和气态,进入第一膨胀机(5)膨胀做功,并带动第一发电机(6)发电;沸点较高的混合工质则作为液态,由第二工质泵(7)泵入到第二蒸发器(8)的冷端入口,而第二蒸发器(8)的热端入口接收发动机(1)的排气,沸点较高的混合工质与发动机(1)排气在第二蒸发器(8)内充分换热后,第二蒸发器(8)的热端出口的排气排入大气中、冷端出口的工质则成为气态,进入第二膨胀机(9)膨胀做功,带动第二发电机(10)发电;第一膨胀机(5)和第二膨胀机(9)出来的乏气汇合进入冷凝器(11)的热源入口,由冷凝器(11)的冷源入口进来的冷却水冷凝成为液态,再输送到储液罐(12)中,完成循环。
10.根据权利要求9所述的内燃机余热回收有机朗肯循环系统的余热回收方法,其特征在于,内燃机余热回收有机朗肯循环系统运行前,储液罐(12)中储存非共沸工质。
CN202110882802.XA 2021-08-02 2021-08-02 一种内燃机余热回收有机朗肯循环系统及其余热回收方法 Pending CN113446127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110882802.XA CN113446127A (zh) 2021-08-02 2021-08-02 一种内燃机余热回收有机朗肯循环系统及其余热回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110882802.XA CN113446127A (zh) 2021-08-02 2021-08-02 一种内燃机余热回收有机朗肯循环系统及其余热回收方法

Publications (1)

Publication Number Publication Date
CN113446127A true CN113446127A (zh) 2021-09-28

Family

ID=77818057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110882802.XA Pending CN113446127A (zh) 2021-08-02 2021-08-02 一种内燃机余热回收有机朗肯循环系统及其余热回收方法

Country Status (1)

Country Link
CN (1) CN113446127A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114352368A (zh) * 2022-01-07 2022-04-15 北京石油化工学院 基于温差发电与有机朗肯循环的输油站锅炉烟气余热回收系统
CN114645752A (zh) * 2022-03-18 2022-06-21 北京理工大学 一种耦合有机朗肯循环余热回收利用系统的三元催化系统热老化改善方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211681A (ja) * 2006-02-09 2007-08-23 Sanden Corp 動力回収システム
CN101408115A (zh) * 2008-11-11 2009-04-15 西安交通大学 一种适用于车用发动机余热回收的热力循环系统
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN105156165A (zh) * 2015-07-08 2015-12-16 清华大学 内燃机两级有机朗肯循环余热回收系统
CN108425713A (zh) * 2018-05-18 2018-08-21 江苏大学 一种基于气液分离与双级蒸发的有机朗肯循环发电系统
CN108561241A (zh) * 2018-01-10 2018-09-21 西安交通大学 一种基于内燃机余热利用的发电系统
CN110206698A (zh) * 2019-05-09 2019-09-06 华电电力科学研究院有限公司 一种内燃机烟气及缸套水余热利用有机朗肯循环系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211681A (ja) * 2006-02-09 2007-08-23 Sanden Corp 動力回収システム
CN101408115A (zh) * 2008-11-11 2009-04-15 西安交通大学 一种适用于车用发动机余热回收的热力循环系统
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN105156165A (zh) * 2015-07-08 2015-12-16 清华大学 内燃机两级有机朗肯循环余热回收系统
CN108561241A (zh) * 2018-01-10 2018-09-21 西安交通大学 一种基于内燃机余热利用的发电系统
CN108425713A (zh) * 2018-05-18 2018-08-21 江苏大学 一种基于气液分离与双级蒸发的有机朗肯循环发电系统
CN110206698A (zh) * 2019-05-09 2019-09-06 华电电力科学研究院有限公司 一种内燃机烟气及缸套水余热利用有机朗肯循环系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114352368A (zh) * 2022-01-07 2022-04-15 北京石油化工学院 基于温差发电与有机朗肯循环的输油站锅炉烟气余热回收系统
CN114352368B (zh) * 2022-01-07 2023-08-29 北京石油化工学院 基于温差发电与有机朗肯循环的输油站锅炉烟气余热回收系统
CN114645752A (zh) * 2022-03-18 2022-06-21 北京理工大学 一种耦合有机朗肯循环余热回收利用系统的三元催化系统热老化改善方法

Similar Documents

Publication Publication Date Title
RU2551458C2 (ru) Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации
CN105003351B (zh) 对气体机余热能进行梯级回收的多能量形式输出的能源塔
US6009711A (en) Apparatus and method for producing power using geothermal fluid
Zhi et al. Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1, 3, 3, 3-tetrafluoropropene (R1234ze (E)) for low grade waste heat recovery
CN101449029B (zh) 从热源产生电力的方法和系统
Tahani et al. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle
CN103726949B (zh) 双压力双回路多级膨胀的内燃机余热回收系统
CN103161607A (zh) 一种基于内燃机余热利用的联合发电系统
CN1303378C (zh) 吸收式循环与有机物朗肯循环的联合循环装置
CN111022137B (zh) 基于有机朗肯循环和有机闪蒸循环的余热回收系统及方法
Zhi et al. Thermodynamic analysis of a novel transcritical-subcritical parallel organic Rankine cycle system for engine waste heat recovery
CN113446127A (zh) 一种内燃机余热回收有机朗肯循环系统及其余热回收方法
Zhu et al. Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle
CN102410109A (zh) 一种发动机余热能量回收方法和装置
CN109736963A (zh) 一种船舶发动机的余热利用系统及方法
CN112554983A (zh) 一种耦合卡琳娜循环的液态二氧化碳储能系统及方法
CN201810420U (zh) 一种发动机余热能量回收装置
US6052997A (en) Reheat cycle for a sub-ambient turbine system
JP2018021485A (ja) 多段ランキンサイクルシステム、内燃機関、及び多段ランキンサイクルシステムの運転方法
CN215566144U (zh) 一种联合循环发电系统
CN209875221U (zh) 采用喷射泵和分离器提高中低温热源发电能力的系统
JP2001248409A (ja) 排熱回収システム
CN210832157U (zh) 一种回收烟气余热燃煤机组供热系统
WO2021171312A1 (en) Two stage regenerative organic rankine cycle (orc) heat recovery based power generation system
KR101477741B1 (ko) 엔진 폐열 회수 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210928