CN113444439B - Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof - Google Patents

Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof Download PDF

Info

Publication number
CN113444439B
CN113444439B CN202011624178.5A CN202011624178A CN113444439B CN 113444439 B CN113444439 B CN 113444439B CN 202011624178 A CN202011624178 A CN 202011624178A CN 113444439 B CN113444439 B CN 113444439B
Authority
CN
China
Prior art keywords
polyurethane waterproof
weight
waterproof coating
component polyurethane
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011624178.5A
Other languages
Chinese (zh)
Other versions
CN113444439A (en
Inventor
亓帅
张小冬
孙德文
沈志明
卢立群
冉千平
刘加平
刘畅
李波
朱剑南
王中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Colourful New Building Material Industry Co ltd
Sobute New Materials Co Ltd
Southeast University
Jiangsu Research Institute of Building Science Co Ltd
Original Assignee
Jiangsu Colourful New Building Material Industry Co ltd
Sobute New Materials Co Ltd
Southeast University
Jiangsu Research Institute of Building Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Colourful New Building Material Industry Co ltd, Sobute New Materials Co Ltd, Southeast University, Jiangsu Research Institute of Building Science Co Ltd filed Critical Jiangsu Colourful New Building Material Industry Co ltd
Priority to CN202011624178.5A priority Critical patent/CN113444439B/en
Publication of CN113444439A publication Critical patent/CN113444439A/en
Application granted granted Critical
Publication of CN113444439B publication Critical patent/CN113444439B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/2885Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/289Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Abstract

The invention discloses an organosilicon-fluorine modified single-component polyurethane waterproof coating and a preparation method thereof. The polyurethane waterproof coating comprises the following components: isocyanate, hydroxyl-terminated polyether diol, hydroxyl-terminated polyether triol, an organosilane end-capping reagent, fluorocarbon alcohol, a plasticizer, a solvent, a pigment filler, a catalyst and a dispersing agent. The organic silicon-fluorine modified single-component polyurethane waterproof coating adopts specific organic silicon and organic fluorine modified materials to modify the polyurethane coating so as to achieve the purposes of strengthening and toughening; the polyurethane resin contains organosilane and fluorocarbon branched chains, so that the polyurethane resin can react with hydroxyl on the surface of a building substrate, and has good adhesive force, and meanwhile, the fluorocarbon branched chains can enable the polyurethane resin to have hydrophobic and oleophobic effects, so that the weather resistance is greatly improved.

Description

Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof
Technical Field
The invention belongs to the field of building waterproofing, and particularly relates to an organic silicon-fluorine modified single-component polyurethane waterproof coating and a preparation method thereof.
Background
The polyurethane waterproof paint is prepared with isocyanate group-containing prepolymer prepared through addition polymerization of isocyanate, polyether, etc. and through mixing with catalyst, anhydrous assistant, anhydrous stuffing, etc. The coating waterproof material is popularized and applied from the beginning of the 80 th of the 20 th century in China, is the most successful coating waterproof material used so far, and plays an important role in building waterproof application. The polyurethane waterproof coating is widely applied to projects such as tunnels, subways, high-speed rails, roofs, kitchens and toilets, and has a good waterproof effect. The polyurethane waterproof coating is divided into a single-component polyurethane waterproof coating and a multi-component polyurethane waterproof coating according to the composition and the curing mechanism of the polyurethane waterproof coating. As the multi-component polyurethane waterproof coating needs to be proportioned and mechanically stirred during field construction, foaming and inaccurate proportioning are introduced in the stirring process, and uneven stirring can affect the construction quality, so that waterproof quality accidents are caused at times; the single-component polyurethane waterproof coating is a single component, can be used immediately after being opened, does not need stirring, is reliable in construction, and is widely applied.
However, the traditional one-component polyurethane waterproof coating adopts aromatic isocyanate, and the curing mechanism is that a prepolymer containing-NCO end groups and moisture in a base layer or air are cured to form a film, and CO is released2Therefore, the traditional single-component polyurethane waterproof coating is easily interfered by the humidity of the construction environment in the construction process, the construction cannot be thick coated, and the cured coating film is easy to delaminate, not compact, bubble, pinhole and the like. In addition, the traditional single-component polyurethane has low strength, and if the single-component polyurethane is applied to an exposed type, the weather resistance cannot be ensured, and the construction performance is seriously influenced by cracking and the like caused by external force.
The patent CN 105238256B reports an allyl ether modified single-component polyurethane waterproof coating and a preparation method thereof, and the key point of the invention lies in that linolenic acid glyceride synthesized by linolenic acid and glycerol and trimethylolpropane diallyl ether (TMPDE) serving as a modifier are introduced, a reaction crosslinking mechanism of oxidizing alpha hydrogen on allyl ether to form peroxide free radicals by absorbing oxygen in air replaces a crosslinking mechanism of isocyanate, and the reaction crosslinking mechanism is different from the traditional curing mechanism, does not release carbon dioxide gas and is favorable for forming a compact polyurethane waterproof coating; the patent CN 106634547B discloses a single-component exposed acrylic modified polyurethane waterproof coating and a preparation method thereof, the method adopts a chemical bonding mode to introduce acrylic ester into a polyurethane prepolymer structure, and then the acrylic modified polyurethane waterproof coating is prepared through free radical polymerization, and the acrylic modified polyurethane waterproof coating has good waterproof performance, excellent weather resistance and high brightness, and is suitable for construction of an exposed base surface. Although the single-component polyurethane waterproof coating disclosed by the invention makes a certain progress in the aspect of comprehensive performance improvement, the effect is far from expectation, particularly the tensile strength and the tearing strength respectively reach only 4MPa and 20N/mm at most, and the difference between the mechanical performance indexes (the tensile strength is more than or equal to 4MPa, and the tearing strength is more than or equal to 20N/mm) of the national standard II type polyurethane waterproof coating is obvious.
Disclosure of Invention
In order to overcome the defects of the existing single-component polyurethane waterproof coating, the invention provides the organosilicon-fluorine modified single-component polyurethane waterproof coating which has high strength, compact coating film, reliable construction and excellent physical property and weather resistance, and the preparation method thereof.
In order to achieve the purpose, the invention adopts the following technical scheme.
The invention provides an organosilicon-fluorine modified single-component polyurethane waterproof coating which comprises the following components in parts by weight:
Figure BDA0002878923410000021
the weight average molecular weight of the hydroxyl-terminated polyether glycol is 1000-4000;
the weight average molecular weight of the hydroxyl-terminated polyether triol is 3000-5000;
the isocyanate is selected from any one of diphenylmethane diisocyanate (MDI), Toluene Diisocyanate (TDI), isophorone diisocyanate (IPDI) and Hexamethylene Diisocyanate (HDI).
The hydroxyl-terminated polyether diol and the hydroxyl-terminated polyether triol are independently selected from any one of PPG polyether polyol, POP polymer polyether polyol and PTMG polytetrahydrofuran polyol, and the hydroxyl value is preferably 40-180mg KOH/g.
The organosilane blocking agent is alkoxy silane with functional groups of amine group, mercapto group and carbamido group, wherein the alkoxy group is methoxy group, ethoxy group or propoxy group, and the organosilane blocking agent at least contains one hydrolyzable alkoxy group.
The organosilane blocking agent is preferably a silane coupling agent selected from any one of KH-550, Nanda-42, KH-602, KH-591, KH-592, KH-590, KH-582, KH-581 and KH-602.
The fluorocarbon alcohol is a straight-chain fluorinated alcohol having 2 to 6 carbon atoms and no fluorine group on the carbon atom directly connected with the hydroxyl group, and is selected from any one of trifluoroethanol, trifluoropropanol, tetrafluoropropanol, pentafluoropropanol, trifluorobutanol, tetrafluorobutanol, pentafluorobutanol, hexafluorobutanol, heptafluorobutanol, trifluoropentanol, tetrafluoropentanol, pentafluoropentanol, hexafluoropentanol, heptafluoropentanol, octafluoropentanol, nonafluoropentanol, trifluorohexanol, tetrafluorohexanol, pentafluorohexanol, hexafluorohexanol, heptafluorohexanol, octafluorohexanol, nonafluorohexanol, decafluorohexanol, and undecafluorohexanol.
The plasticizer is an organic ester compound or chlorinated paraffin, wherein the organic ester compound is preferably any one of dioctyl phthalate, dibutyl phthalate, diisononyl phthalate and citric acid ester.
The solvent is selected from any one of toluene, xylene, solvent naphtha, ethyl acetate and butyl acetate.
The pigment and filler of the invention is selected from one or a mixture of more of carbon black, titanium dioxide, iron oxide red, kaolin, cement, heavy calcium, superfine calcium powder, barium sulfate, magnesium oxide, calcium oxide, wollastonite, silica micropowder and talcum powder.
The catalyst is an organic metal catalyst and is selected from any one of dibutyltin dilaurate (T-12), stannous octoate and lead isooctanoate.
The dispersants of the present invention are those commonly used in the art for polyurethane products and are well known to those skilled in the art.
The invention also provides a preparation method of the organic silicon-fluorine modified single-component polyurethane waterproof coating, which comprises the following steps:
(1) adding hydroxyl-terminated polyether diol and hydroxyl-terminated polyether triol, a plasticizer and a pigment filler into a reaction vessel, stirring and heating to 100-120 ℃, and dehydrating for 2-3 hours under the vacuum degree of-0.08-0.1 MPa;
(2) reducing the temperature to 70-80 ℃, adding a dispersing agent and isocyanate, and reacting for 2-3 hours at the temperature of 75-85 ℃ under a stirring state;
(3) reducing the temperature to 50-60 ℃, adding an organosilane end-capping agent, heating to 70-80 ℃, reacting for 2-3 hours under a stirring state, then maintaining the temperature, adding fluorocarbon alcohol, and continuing stirring for 30-60 min;
(4) and (3) cooling to 50-60 ℃, adding a catalyst and a solvent, stirring for 30-60min, uniformly stirring, cooling to below 50 ℃, filling nitrogen for protection, and discharging to obtain the waterproof coating.
Compared with the prior art, the invention has the following advantages and beneficial effects:
(1) the fluorocarbon alcohol adopted in the invention belongs to a functional group with low surface activity, and has the properties of high hydrophobicity, chemical medium erosion resistance, ultraviolet aging resistance and the like. The organic silicon-fluorine modified single-component polyurethane waterproof coating adopts specific organic silicon and organic fluorine modified materials to modify the polyurethane coating so as to achieve the aim of strengthening and toughening, and can avoid the reaction of-NCO groups and moisture in the curing process without releasing CO2Gas to form compact polyurethane waterproof coating, even if the coating is thickly coated or coated on a wet base surface, bubbles or pinholes are not formed on the surface of the coating, the coating is smooth and attractive, and the dependence of construction on the environment is reduced.
(2) According to the invention, an organic silicon-fluorine functional group obtained by the cross-linking reaction of organic silicon (an organic silane end-capping agent) and organic fluorine (fluorocarbon alcohol) is connected to a resin matrix (isocyanate) through a chemical bonding effect, so that the problem that the organic silicon-fluorine is incompatible with the traditional polyurethane resin is effectively solved, the polyurethane resin contains organic silane and fluorocarbon branched chains, the polyurethane resin can react with hydroxyl on the surface of a building substrate, and therefore, the polyurethane resin has good adhesive force, meanwhile, the fluorocarbon branched chains can enable the polyurethane resin to have hydrophobic and oleophobic effects, and the weather resistance is greatly improved.
(3) The preparation method provided by the invention is simple and feasible, the raw materials are easy to obtain, the preparation method is suitable for industrial production, and the prepared organic silicon-fluorine modified single-component polyurethane waterproof coating has good application and development prospects.
Detailed description of the preferred embodiments
The present invention is described in detail below by way of examples, which are illustrative only and do not represent a limitation on the scope of the invention, and one skilled in the art can modify the reactants and reaction process conditions, etc. within the scope of the invention in light of the disclosure herein. All equivalent changes or modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.
Example 1
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
diphenylmethane diisocyanate (MDI) 12 portions of
Polyether glycol (molecular weight 1000, PPG type) 25 portions of
Polyether triol (molecular weight 3000, PPG type) 7.5 parts of
Organosilane blocking agent (containing amino group) KH-550 4 portions of
Trifluoroethanol 2 portions of
Dioctyl phthalate (DOP) 7 portions of
Xylene 12 portions of
Heavy calcium carbonate 29.9 parts
Carbon black 0.1 part
Dibutyltin dilaurate (T-12) 0.2 part
Dispersing agent 0.3 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 25 weight parts of hydroxyl polyether glycol, 7.5 weight parts of trihydric alcohol, 7 weight parts of dioctyl phthalate (DOP), 29.9 weight parts of heavy calcium and 0.1 weight part of carbon black into a reaction vessel, stirring and heating to 100 ℃, and dehydrating for 2 hours under the vacuum degree of-0.08 to-0.1 MPa;
(2) cooling to 70 ℃, adding 0.3 part by weight of dispersant and 12 parts by weight of diphenylmethane diisocyanate (MDI), and reacting for 2 hours under the stirring state at 75 ℃;
(3) cooling to 50 deg.C, adding organic silane end capping agent (containing amino group) KH-5504 weight parts, heating to 70 deg.C, stirring, reacting for 2 hr, maintaining the temperature, adding 2 weight parts of trifluoroethanol, and stirring for 30 min;
(4) cooling to 50 ℃, adding organic tin catalyst T-120.2 weight parts and dimethylbenzene 12 weight parts, stirring for 30min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Example 2
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
Figure BDA0002878923410000051
Figure BDA0002878923410000061
the technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 35 parts by weight of end hydroxyl polyether dihydric alcohol and 5 parts by weight of trihydric alcohol, 5 parts by weight of dioctyl phthalate (DOP), 15.9 parts by weight of heavy calcium and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.3 part by weight of dispersant and 14 parts by weight of Toluene Diisocyanate (TDI), and reacting for 3 hours at 85 ℃ under a stirring state;
(3) reducing the temperature to 60 ℃, adding-425 parts by weight of organosilane end-capping agent (containing amino group), heating to 80 ℃, reacting for 3 hours under a stirring state, then maintaining the temperature, adding 4 parts by weight of trifluoropropanol, and continuing stirring for 60 min;
(4) cooling to 60 ℃, adding organic tin catalyst T-120.2 weight parts and xylene 15.5 weight parts, stirring for 60min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Example 3
The raw material proportion of the modified polyurethane waterproof coating is as follows:
Figure BDA0002878923410000062
Figure BDA0002878923410000071
the technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 35 parts by weight of end hydroxyl polyether dihydric alcohol and 5.5 parts by weight of trihydric alcohol, 5 parts by weight of diisononyl phthalate (DLNP), 14.9 parts by weight of talcum powder and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.2 part by weight of dispersant and 18 parts by weight of isophorone diisocyanate (IPDI), and reacting for 3 hours at 85 ℃ under a stirring state;
(3) cooling to 60 deg.C, adding organic silane end capping agent (containing amino group) KH-6025 weight parts, heating to 80 deg.C, stirring, reacting for 3 hr, maintaining the temperature, adding pentafluorobutanol 6 weight parts, and stirring for 60 min;
(4) cooling to 60 ℃, adding 120.3 parts by weight of organic tin catalyst T and 10 parts by weight of solvent oil, stirring for 60min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Example 4
The raw material proportion of the imitation modified polyurethane waterproof coating is as follows:
hexamethylene Diisocyanate (HDI) 13 portions of
Polyether glycol (molecular weight 4000, PPG type) 40 portions of
Polyether triol (molecular weight 3000, PPG type) 10 portions of
Organosilane blocking agent (containing ureido) KH-591 3 portions of
Heptafluorohexanol 3 portions of
Chlorinated paraffin 5 portions of
Xylene 10.5 portions
Superfine calcium powder 14.9 portions of
Carbon black 0.1 part
Stannous octoate catalyst 0.4 part of
Dispersing agent 0.1 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 40 parts by weight of end hydroxyl polyether dihydric alcohol and 10 parts by weight of trihydric alcohol, 5 parts by weight of chlorinated paraffin, 14.9 parts by weight of superfine calcium powder and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.1 part by weight of dispersant and 13 parts by weight of Hexamethylene Diisocyanate (HDI), and reacting for 3 hours at 85 ℃ in a stirring state;
(3) cooling to 60 deg.C, adding KH-5913 weight parts of organosilane end-capping agent (containing ureido), heating to 80 deg.C, stirring, reacting for 3 hr, maintaining the temperature, adding 3 weight parts of heptafluorohexanol, and stirring for 60 min;
(4) cooling to 60 deg.C, adding stannous octoate catalyst 0.4 weight parts and xylene 10.5 weight parts, stirring for 60min, cooling to below 50 deg.C, introducing nitrogen for protection, and discharging.
Example 5
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
diphenylmethane diisocyanate (MDI) 20 portions of
Polyether glycol (molecular weight 2000, PPG type) 30 portions of
Polyether triol (molecular weight 3000, POP type) 10 portions of
Organosilane blocking agent (containing ureido) KH-592 5.5 parts of
Pentafluoropentanol 4 portions of
Dioctyl phthalate (DOP) 5 portions of
Acetic acid butyl ester 10 portions of
Barium sulfate 14.9 portions
Carbon black 0.1 part of
Lead isooctanoate catalyst 0.2 part of
Dispersing agent 0.3 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 30 parts by weight of hydroxyl polyether dihydric alcohol and 10 parts by weight of trihydric alcohol, 5 parts by weight of dioctyl phthalate (DOP), 14.9 parts by weight of barium sulfate and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.3 part by weight of dispersant and 20 parts by weight of diphenylmethane diisocyanate (MDI), and reacting for 3 hours at 85 ℃ under a stirring state;
(3) reducing the temperature to 60 ℃, adding KH-5925.5 weight parts of organosilane end-capping agent (containing ureido), heating to 80 ℃, reacting for 3 hours under a stirring state, then maintaining the temperature, adding 4 weight parts of penta-fluoropentanol, and continuously stirring for 60 minutes;
(4) cooling to 60 deg.C, adding lead isooctanoate catalyst 0.2 weight parts and butyl acetate 10 weight parts, stirring for 60min, cooling to below 50 deg.C, charging nitrogen for protection, and discharging.
Example 6
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
diphenylmethane diisocyanate (MDI) 17 portions of
Polyether glycol (molecular weight 1000, PTMG type) 25 portions of
Polyether triolQuantum 3000, PPG type) 13 portions of
Organosilane blocking agent (containing mercapto group) KH-590 5 portions of
Tetrafluorobutanol 5 portions of
Chlorinated paraffin 5 portions of
Solvent oil 10 portions of
Kaolin clay 19.4 parts of
Carbon black 0.1 part
Dibutyltin dilaurate (T-12) 0.2 part
Dispersing agent 0.3 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 25 weight parts of hydroxyl polyether diol and 13 weight parts of triol, 5 weight parts of chlorinated paraffin, 19.4 weight parts of kaolin and 0.1 weight part of carbon black into a reaction vessel, stirring and heating to 100 ℃, and dehydrating for 2 hours under the vacuum degree of-0.08 to-0.1 MPa;
(2) cooling to 70 ℃, adding 0.3 weight part of dispersant and 17 weight parts of diphenylmethane diisocyanate (MDI), and reacting for 2 hours under the stirring state at 75 ℃;
(3) cooling to 50 deg.C, adding organic silane blocking agent (containing mercapto group) KH-5905 weight parts, heating to 70 deg.C, stirring, reacting for 2 hr, maintaining the temperature, adding 5 weight parts of tetrafluorobutanol, and stirring for 30 min;
(4) cooling to 50 ℃, adding organic tin catalyst T-120.2 parts by weight and solvent oil 10 parts by weight, stirring for 30min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Example 7
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
Figure BDA0002878923410000091
Figure BDA0002878923410000101
the technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 29.5 parts by weight of hydroxyl polyether glycol, 12.5 parts by weight of triol, 5 parts by weight of dioctyl phthalate (DOP), 15.4 parts by weight of wollastonite and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.3 weight part of dispersant and 22 weight parts of Toluene Diisocyanate (TDI) into the mixture, and reacting for 3 hours at the temperature of 85 ℃ under the stirring state;
(3) cooling to 60 deg.C, adding KH-5823 weight parts of organosilane blocking agent (containing mercapto), heating to 80 deg.C, stirring, reacting for 3 hr, maintaining the temperature, adding 2 weight parts of octafluorohexanol, and stirring for 60 min;
(4) cooling to 60 ℃, adding organic tin catalyst T-120.2 weight parts and ethyl acetate 10 weight parts, stirring for 60min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Example 8
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
Figure BDA0002878923410000102
Figure BDA0002878923410000111
the technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 32.5 parts by weight of hydroxyl polyether dihydric alcohol, 6 parts by weight of trihydric alcohol, 5 parts by weight of citrate, 16.9 parts by weight of calcium oxide and 0.1 part by weight of iron oxide red into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.1 part by weight of dispersant and 14 parts by weight of Toluene Diisocyanate (TDI), and reacting for 3 hours at 85 ℃ under a stirring state;
(3) cooling to 60 deg.C, adding KH-5818 weight parts of organosilane blocking agent (containing mercapto), heating to 80 deg.C, stirring, reacting for 3 hr, maintaining the temperature, adding 7 weight parts of hexafluoropentanol, and stirring for 60 min;
(4) cooling to 60 deg.C, adding lead isooctoate catalyst 0.4 weight parts and xylene 10 weight parts, stirring for 60min, cooling to below 50 deg.C, introducing nitrogen for protection, and discharging.
Example 9
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
diphenylmethane diisocyanate (MDI) 14 portions of
Polyether glycolQuantum 3000, POP type) 32.5 portions
Polyether triol (molecular weight 3000, PTMG type) 6 portions of
Organosilane blocking agent (containing amine group) KH-602 8 portions of
Heptafluorohexanol 7 portions of
Citric acid esters 5 portions of
Xylene 10 portions of
Calcium oxide 16.9 portions of
Titanium white powder 0.1 part
Dibutyltin dilaurate (T-12) 0.4 portion of
Dispersing agent 0.1 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 32.5 parts by weight of hydroxyl polyether dihydric alcohol, 6 parts by weight of trihydric alcohol, 5 parts by weight of citrate, 16.9 parts by weight of calcium oxide and 0.1 part by weight of titanium dioxide into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.1 part by weight of dispersant and 14 parts by weight of diphenylmethane diisocyanate (MDI), and reacting for 3 hours under the stirring state at 85 ℃;
(3) cooling to 60 deg.C, adding KH-6028 weight parts of organosilane blocking agent (containing amino group), heating to 80 deg.C, stirring, reacting for 3 hr, maintaining the temperature, adding 7 weight parts of heptafluorohexanol, and stirring for 60 min;
(4) cooling to 60 deg.C, adding 0.4 weight part of dibutyltin dilaurate (T-12) and 10 weight parts of xylene, stirring for 60min, cooling to below 50 deg.C, introducing nitrogen for protection, and discharging.
Comparative example 1
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
hexamethylene Diisocyanate (HDI) 13 portions of
Polyether glycol (molecular weight 4000, PPG type) 40 portions of
Polyether triol (molecular weight 3000, PPG type) 10 portions of
Organosilane blocking agent (containing ureido) KH-591 0 portion of
Heptafluorohexanol 3 portions of
Chlorinated paraffin 5 portions of
Xylene 10.5 portions
Superfine calcium powder 14.9 portions
Carbon black 0.1 part
Stannous octoate catalyst 0.4 portion of
Dispersing agent 0.1 part of
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 40 parts by weight of end hydroxyl polyether dihydric alcohol and 10 parts by weight of trihydric alcohol, 5 parts by weight of chlorinated paraffin, 14.9 parts by weight of superfine calcium powder and 0.1 part by weight of carbon black into a reaction vessel, stirring and heating to 120 ℃, and dehydrating for 3 hours under the vacuum degree of-0.1 MPa;
(2) cooling to 80 ℃, adding 0.1 part by weight of dispersant and 13 parts by weight of Hexamethylene Diisocyanate (HDI), and reacting for 3 hours at 85 ℃ in a stirring state;
(3) then, adding 3 parts by weight of heptafluorohexanol while maintaining the stirring state at 80 ℃, and continuing stirring for 60 min;
(4) cooling to 60 deg.C, adding stannous octoate catalyst 0.4 weight parts and xylene 10.5 weight parts, stirring for 60min, cooling to below 50 deg.C, introducing nitrogen for protection, and discharging.
Comparative example 2
The modified polyurethane waterproof coating comprises the following raw materials in proportion:
diphenylmethane diisocyanate (MDI) 12 portions of
Polyether glycol (molecular weight 1000, PPG type) 25 portions of
Polyether triol (molecular weight 3000, PPG type) 7.5 parts of
Organosilane blocking agent (containing amino group) KH-550 4 portions of
Trifluoroethanol 0 portion of
Dioctyl phthalate (DOP) 7 portions of
Xylene 12 portions of
Heavy calcium carbonate 29.9 parts
Carbon black 0.1 part
Dibutyltin dilaurate (T-12) 0.2 part
DispersingAgent for treating cancer 0.3 part
The technical process of the modified polyurethane waterproof coating comprises the following steps:
(1) adding 25 weight parts of hydroxyl polyether glycol, 7.5 weight parts of trihydric alcohol, 7 weight parts of dioctyl phthalate (DOP), 29.9 weight parts of heavy calcium and 0.1 weight part of carbon black into a reaction vessel, stirring and heating to 100 ℃, and dehydrating for 2 hours under the vacuum degree of-0.08 to-0.1 MPa;
(2) cooling to 70 ℃, adding 0.3 part by weight of dispersant and 12 parts by weight of diphenylmethane diisocyanate (MDI), and reacting for 2 hours under the stirring state at 75 ℃;
(3) cooling to 50 ℃, adding an organosilane end-capping agent (containing amino) KH-5504 parts by weight, heating to 70 ℃, and reacting for 2.5 hours under a stirring state;
(4) cooling to 50 ℃, adding organic tin catalyst T-120.2 weight parts and dimethylbenzene 12 weight parts, stirring for 30min, cooling to below 50 ℃, charging nitrogen for protection, and discharging.
Comparative example 3
The polyurethane waterproof coating is purchased from a single-component polyurethane waterproof coating product DTPU-401 of Shanghai Dongda chemical Co. The performance test indexes of the samples of the examples and comparative examples of the present invention are as follows:
Figure BDA0002878923410000141
the mechanical properties of the organosilicon-fluorine modified single-component polyurethane waterproof coating obtained in the embodiments 1-9 meet the detection performance of a single-component polyurethane waterproof coating type II product in GB/T19250-2013 polyurethane waterproof coating. The coating is free from the interference of the humidity of the construction environment in the construction process, the cured coating is flat, compact and free of air bubbles, pinholes, delamination and other phenomena, the waterproof performance is excellent, the weather resistance is excellent, the coating is suitable for waterproofing of exposed parts of roofs, bridges, roads and the like, the decorative effect is good, and no finish paint is needed for protection. The mechanical properties of the comparative examples 1, 2 and 3 are far from the index requirements of the type II product of the single-component polyurethane waterproof coating in the GB/T19250-2013 polyurethane waterproof coating, and the defoaming effect per se is extremely poor and the weather resistance is insufficient.

Claims (10)

1. The organic silicon-fluorine modified single-component polyurethane waterproof coating is characterized by comprising the following components in parts by weight:
Figure FDA0002878923400000011
the weight average molecular weight of the hydroxyl-terminated polyether glycol is 1000-4000;
the weight average molecular weight of the hydroxyl-terminated polyether triol is 3000-5000;
the organosilane blocking agent is alkoxy silane with amino, sulfydryl and carbamido functional groups, wherein the alkoxy is methoxy, ethoxy or propoxy, and the organosilane blocking agent at least contains one hydrolyzable alkoxy group;
the fluorocarbon alcohol is a straight-chain fluoroalcohol with the carbon number of 2-6 and no fluorine group on the carbon atom directly connected with the hydroxyl;
the plasticizer is an organic ester compound or chlorinated paraffin;
the solvent is any one of toluene, xylene, solvent oil, ethyl acetate and butyl acetate.
2. The organosilicon-fluorine modified one-component polyurethane waterproof paint according to claim 1, wherein the isocyanate is selected from any one of diphenylmethane diisocyanate (MDI), Toluene Diisocyanate (TDI), isophorone diisocyanate (IPDI) and Hexamethylene Diisocyanate (HDI).
3. The silicone-fluorine modified one-component polyurethane waterproof paint as claimed in claim 1, wherein the hydroxyl-terminated polyether diol and the hydroxyl-terminated polyether triol are independently selected from any one of PPG polyether polyol, POP polymer polyether polyol and PTMG polytetrahydrofuran type polyol, and the hydroxyl value of each polyol is 40-180mg KOH/g.
4. The organosilicon-fluorine modified one-component polyurethane waterproof coating as claimed in claim 1, wherein the organosilane blocking agent is a silane coupling agent.
5. The organosilicon-fluorine modified one-component polyurethane waterproof coating of claim 4, wherein the silane coupling agent is selected from any one of KH-550, south Da-42, KH-602, KH-591, KH-592, KH-590, KH-582, KH-581 and KH-602.
6. The silicone-fluorine modified one-component polyurethane waterproof coating material according to claim 1, wherein the fluorocarbon alcohol is any one selected from trifluoroethanol, trifluoropropanol, tetrafluoropropanol, pentafluoropropanol, trifluorobutanol, tetrafluorobutanol, pentafluorobutanol, hexafluorobutanol, heptafluorobutanol, trifluoropentanol, tetrafluoropentanol, pentafluoropentanol, hexafluoropentanol, heptafluoropentanol, octafluoropentanol, nonafluoropentanol, trifluorohexanol, tetrafluorohexanol, pentafluorohexanol, hexafluorohexanol, heptafluorohexanol, octafluorohexanol, nonafluorohexanol, decafluorohexanol, and undecafluorohexanol.
7. The organosilicon-fluorine modified one-component polyurethane waterproof coating of claim 1, wherein the organic ester compound is selected from any one of dioctyl phthalate, dibutyl phthalate, diisononyl phthalate and citric acid ester.
8. The organosilicon-fluorine modified single-component polyurethane waterproof paint of claim 1, wherein the pigment and filler is selected from one or more of carbon black, titanium dioxide, iron oxide red, kaolin, cement, heavy calcium, ultrafine calcium powder, barium sulfate, magnesium oxide, calcium oxide, wollastonite, silicon micropowder and talcum powder.
9. The silicone-fluorine modified one-component polyurethane waterproof paint as claimed in claim 1, wherein the catalyst is an organic metal catalyst selected from any one of dibutyltin dilaurate (T-12), stannous octoate and lead isooctanoate.
10. The preparation method of the organic silicon-fluorine modified single-component polyurethane waterproof coating material as claimed in any one of claims 1 to 9, characterized by comprising the following steps:
(1) adding hydroxyl-terminated polyether diol and hydroxyl-terminated polyether triol, a plasticizer and a pigment filler into a reaction vessel, stirring and heating to 100-120 ℃, and dehydrating for 2-3 hours under the vacuum degree of-0.08-0.1 MPa;
(2) reducing the temperature to 70-80 ℃, adding a dispersing agent and isocyanate, and reacting for 2-3 hours at the temperature of 75-85 ℃ under a stirring state;
(3) reducing the temperature to 50-60 ℃, adding an organosilane end-capping agent, heating to 70-80 ℃, reacting for 2-3 hours under a stirring state, then maintaining the temperature, adding fluorocarbon alcohol, and continuing stirring for 30-60 min;
(4) and (3) cooling to 50-60 ℃, adding a catalyst and a solvent, stirring for 30-60min, uniformly stirring, cooling to below 50 ℃, filling nitrogen for protection, and discharging to obtain the waterproof coating.
CN202011624178.5A 2020-12-31 2020-12-31 Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof Active CN113444439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011624178.5A CN113444439B (en) 2020-12-31 2020-12-31 Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011624178.5A CN113444439B (en) 2020-12-31 2020-12-31 Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113444439A CN113444439A (en) 2021-09-28
CN113444439B true CN113444439B (en) 2022-06-14

Family

ID=77808730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011624178.5A Active CN113444439B (en) 2020-12-31 2020-12-31 Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113444439B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907809B (en) * 2022-05-13 2023-08-22 福建奥翔体育塑胶科技股份有限公司 Moisture-curing single-component polyurethane adhesive with good weather resistance, and preparation method and application thereof
CN115181495B (en) * 2022-07-07 2023-07-18 江苏苏博特新材料股份有限公司 Super-amphiphobic super-weather-resistant organic silicon protective coating and preparation method thereof
CN116970339B (en) * 2023-09-21 2023-12-29 山东一诺威新材料有限公司 Single-component self-cleaning polyurethane waterproof paint and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535993A (en) * 2003-04-11 2004-10-13 中国科学院化学研究所 Block hydrophobic/oleophobic polyether type polyurethane copolymer, its preparation method and application
DE10331483A1 (en) * 2003-07-11 2005-02-10 Construction Research & Technology Gmbh Fluoromodified one- or two-component polyurethane resins, process for their preparation and their use
CN102702465B (en) * 2012-06-09 2014-04-02 东华大学 Preparation method for silicofluoride-contained polyurethane water repellent finishing agent
CN103952071B (en) * 2014-05-04 2016-05-04 段小宁 A kind of fast light method with waterproof polyurethane coating and adhesive of environment-friendly type of preparing
CN104194608A (en) * 2014-09-11 2014-12-10 北京东方雨虹防水技术股份有限公司 Organosilane modified single-component polyurethane waterproof coating and preparation method thereof
CN107118327A (en) * 2017-06-16 2017-09-01 陕西科技大学 A kind of fluorine alcohol end-sealed type super branched polyurethane of color inhibition and preparation method thereof

Also Published As

Publication number Publication date
CN113444439A (en) 2021-09-28

Similar Documents

Publication Publication Date Title
CN113444439B (en) Organic silicon-fluorine modified single-component polyurethane waterproof coating and preparation method thereof
CN110684457B (en) Single-component polyurethane waterproof coating and preparation method thereof
CN109251711B (en) Preparation method of silane modified polyether sealant
CN112608444B (en) Polyurethane resin, MS sealant and preparation method
CN110791165A (en) Single-component anti-sagging exposed modified polyurethane waterproof coating and preparation method thereof
CN110862797A (en) Silane-terminated polyether sealant and preparation method thereof
CN112980312A (en) Two-component polyurethane waterproof coating and preparation method thereof
TW202112890A (en) Polyether polycarbonate diol and method for producing same
CN113462293A (en) Silane modified resin waterproof coating and preparation method thereof
CN111087914A (en) Single-component polyurethane waterproof coating for pasting waterproof coiled material for high-speed railway concrete bridge deck waterproofing and preparation method thereof
CN114181605B (en) Single-component water-based polyurethane waterproof coating and preparation method thereof
CN108949090A (en) A kind of solvent-free dual-component polyurethane sealant and preparation method thereof
CN105238256A (en) Allyl ether modified single-component polyurethane waterproof paint and preparation method thereof
CN114907809B (en) Moisture-curing single-component polyurethane adhesive with good weather resistance, and preparation method and application thereof
CN116606415A (en) Comb-type silane end-capped polyurethane polymer resin, and preparation method and application thereof
CN114574089B (en) Single-component polyurethane waterproof coating capable of being formed by one-step construction and application thereof
CN114292574B (en) Single-component polyurethane waterproof paint and preparation method thereof
CN115595057A (en) Anti-aging single-component polyurethane waterproof coating
KR20190084613A (en) The reactive floor coating material composition and preparation method thereof
CN111057461B (en) Preparation method of single-component water-curing polyurethane waterproof coating
CN114015345A (en) Anti-sagging polyurethane waterproof coating of water curing system and preparation method thereof
CN111892869A (en) Two-component polyurethane floor coating composition and preparation method thereof
CN110951381B (en) High-weather-resistance exposed single-component polyurethane waterproof coating and preparation method thereof
CN110655856A (en) Plastic track primer and preparation method thereof
CN111961197B (en) Amino acid modified silane terminated polyether and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant