CN113442145B - 欠约束下的最优位姿确定方法、装置、存储介质及机械臂 - Google Patents

欠约束下的最优位姿确定方法、装置、存储介质及机械臂 Download PDF

Info

Publication number
CN113442145B
CN113442145B CN202111018096.0A CN202111018096A CN113442145B CN 113442145 B CN113442145 B CN 113442145B CN 202111018096 A CN202111018096 A CN 202111018096A CN 113442145 B CN113442145 B CN 113442145B
Authority
CN
China
Prior art keywords
pose
axis
target
basic
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111018096.0A
Other languages
English (en)
Other versions
CN113442145A (zh
Inventor
宫明波
要文杰
陈露
谢永召
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baihui Weikang Technology Co Ltd
Original Assignee
Beijing Baihui Weikang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baihui Weikang Technology Co Ltd filed Critical Beijing Baihui Weikang Technology Co Ltd
Priority to CN202111018096.0A priority Critical patent/CN113442145B/zh
Publication of CN113442145A publication Critical patent/CN113442145A/zh
Application granted granted Critical
Publication of CN113442145B publication Critical patent/CN113442145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor

Abstract

一种欠约束下的最优位姿确定方法、装置、存储介质及机械臂,主要包括根据机械臂的当前位姿和随机生成的目标位姿,获得机械臂的基础位姿;根据基础位姿和目标位姿,确定交点;根据交点、基础位姿,获得机械臂的调整参数;并基于调整参数确定机械臂的最优位姿。据此,本申请可在欠约束条件下快速且准确地确定机械臂的最优位姿,并可充分利用机械臂的臂展,以获得最大的工作半径,从而有利于机械臂更好地完成各种复杂操作。

Description

欠约束下的最优位姿确定方法、装置、存储介质及机械臂
技术领域
本发明实施例涉及机械臂位姿控制技术,尤其涉及一种欠约束下的最优位姿确定方法、装置、可读存储介质及机械臂。
背景技术
在目前的机器人领域,为了使机器人能够正常运作并完成相应的工作,常常需要根据目标位姿和当前位姿求得运动学逆解,据以提供机器人的机械臂以特定的姿态到达目标附近的特定位置,从而完成后续的工作。
然而,由于机械臂的目标姿态往往是无法完全确定的、是欠约束的,所以机械臂从当前位姿到达目标位姿之间的解将由于自转角度等多种因素,而存在多解关系。不同的求解结果对于机械臂臂展的利用程度各不相同,甚至可能存在机械臂无法到达目标位姿的情况,因此,如何在欠约束的情况下优化求解姿态,对于机械臂能否到达目标位置、能否获得良好的机械臂空间姿态以及能否获得最大化的机械臂工作空间等问题起到至关重要的作用,也足以影响机械臂整体性能。
对于在复杂工况下进行高精度操作的机器人而言,由于工作环境和工作任务的特殊性,其需要尽可能利用机械臂的臂展,借以获得较好的空间姿态。
在现有的机械臂姿态优化方法中,通过手动调整机械臂的自转角度,从而获得最优姿态的方式是较为常见的,然而,此方式主要是利用人眼及人脑中的先验知识对所获得的结果进行判断,并通过手工调整的方式针对机械臂的位姿进行优化调整。
然而,由于人脑对基础姿态与最优姿态之间的差距判断存在局限性,无法准确地描述两个姿态间的差距,导致方需要进行多次尝试求解,故此方法极大地降低了机械臂的定位效率,且最终所确定的姿态无法确保能够最大化利用机械臂的臂展。
再者,目前采用的另外一种方法是通过在基础姿态的基础上遍历解空间的方法以获得较优位姿,然而,此方法虽然减少了人工对于整个求解过程的参与,但是极大的增加了机械臂求解次数,因此,此方法同样存在效率较低,以及根据其遍历解空间的精度不同而存在误差的问题,对于后续的作业及定位工作造成很大的影响。
有鉴于此,如何在欠约束的条件下提供一种快速准确的机械臂最优位姿确定技术,即为本申请待解决的技术课题。
发明内容
有鉴于此,本发明实施例所解决的技术问题之一在于提供一种欠约束下的最优位姿确定方法、装置、存储介质及机械臂,可在欠约束条件下快速且准确地确定机械臂的最优位姿。
根据本发明的第一方面,提供一种欠约束下的最优位姿确定方法,其包括根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿;根据所述基础位姿和所述目标位姿,确定交点;以及根据所述交点、所述基础位姿,获得调节参数,并基于所述调节参数和所述基础位姿,确定所述机械臂的最优位姿。
可选地,所述根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿包括:根据预设目标特征确定目标轴,并根据所述目标轴随机生成中间坐标系;基于随机生成的所述中间坐标系,确定所述目标位姿;以及根据所述当前位姿和所述目标位姿,确定所述基础位姿。
可选地,所述方法还包括:根据所述基础位姿和所述目标位姿,获得所述基础位姿的基础轴和所述目标位姿的目标轴为共面相交或异面相交的分析结果。
可选地,所述根据所述基础位姿和所述目标位姿,确定交点包括:响应所述基础轴和所述目标轴之间为共面相交的所述分析结果,基于所述中间坐标系,获得所述基础轴的第一轴线方程和所述目标轴的第二轴线方程;以及根据所述第一轴线方程和所述第二轴线方程,获得所述交点的位置信息;其中,所述第一轴线方程和所述第二轴线方程分别表示为:
Figure 595968DEST_PATH_IMAGE001
Figure 434611DEST_PATH_IMAGE002
其中,所述
Figure 590786DEST_PATH_IMAGE003
表示所述基础轴,所述
Figure 387841DEST_PATH_IMAGE004
表示所述基础轴的方向向量,所述
Figure 590152DEST_PATH_IMAGE005
表示所述基础轴上的任意一点的位置,所述
Figure 498065DEST_PATH_IMAGE006
表示所述目标轴,所述
Figure 508746DEST_PATH_IMAGE007
表示所述目标轴的方向向量,所述
Figure 476702DEST_PATH_IMAGE008
表示所述目标轴上的任意一点的位置;所述
Figure 572834DEST_PATH_IMAGE009
表示所述基础轴或所述目标轴所在直线上的任意一点的位置。
可选地,所述基础轴的方向与处于所述基础位姿下的所述机械臂的所述第六轴的轴线相互平行。
可选地,所述根据所述基础位姿和所述目标位姿,确定交点包括:响应所述基础轴和所述目标轴之间为异面相交的所述分析结果,根据所述基础轴、所述目标轴、所述基础轴和所述目标轴的公垂线,获得所述交点的位置信息。
可选地,所述根据所述基础轴、所述目标轴、所述基础轴和所述目标轴的公垂线,获得所述交点包括:根据所述中间坐标系,确定所述基础轴上任意两个基础点对应的两个基础点坐标和所述目标轴上任意两个目标点对应的两个目标点坐标;根据所述两个基础点坐标、所述两个目标点坐标,定义所述基础轴的基础垂足坐标、所述目标轴的目标垂足坐标、所述公垂线;根据所述两个基础点坐标、所述基础垂足坐标、所述两个目标点坐标、所述目标垂足坐标、以及所述公垂线同时垂直于所述基础轴和所述目标轴的原理,确定第一换算公式和第二换算公式;以及根据所述第一换算公式和所述第二换算公式,获得所述交点的位置信息;所述基础轴和所述目标轴各自的轴线方程分别表示为:
Figure 753280DEST_PATH_IMAGE001
Figure 884047DEST_PATH_IMAGE002
其中,所述
Figure 22904DEST_PATH_IMAGE010
表示所述基础轴,所述
Figure 340753DEST_PATH_IMAGE011
表示所述基础轴的方向向量,所述
Figure 856048DEST_PATH_IMAGE012
表示所述基础轴上的任意一点的位置,所述
Figure 434797DEST_PATH_IMAGE013
表示所述目标轴,所述
Figure 744556DEST_PATH_IMAGE014
表示所述目标轴的方向向量,所述
Figure 549701DEST_PATH_IMAGE008
表示所述目标轴上的任意一点的位置;所述
Figure 603107DEST_PATH_IMAGE015
表示所述基础轴或所述目标轴所在直线上的任意一点的位置;
所述两个基础点坐标分别表示为:
Figure 911729DEST_PATH_IMAGE016
Figure 392389DEST_PATH_IMAGE017
;所述两个目标点坐标分别表示为:
Figure 950409DEST_PATH_IMAGE018
Figure 541927DEST_PATH_IMAGE019
;所述基础垂足坐标表示为:
Figure 501793DEST_PATH_IMAGE020
;所述目标垂足坐标表示为:
Figure 245365DEST_PATH_IMAGE021
;所述第一换算公式和所述第二换算公式分别表示为:
Figure 25102DEST_PATH_IMAGE022
Figure 420311DEST_PATH_IMAGE023
其中,所述
Figure 234683DEST_PATH_IMAGE024
Figure 525988DEST_PATH_IMAGE025
分别为待求解的中间参数,其可基于所述第一换算公式和所述第二换算公式推导求得。
可选地,所述根据所述交点、所述基础位姿,获得调节参数包括:根据所述机械臂的所述基础位姿,定义所述机械臂的所述最优位姿;根据所述机械臂的第六轴的轴向、所述交点、所述机械臂的基座,确定所述第六轴在预设平面内的第一投影线以及所述交点至所述基座之间的连线在所述预设平面内的第二投影线;以及根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得所述机械臂绕所述目标轴旋转的自转角度。
可选地,所述根据所述机械臂的所述基础位姿,定义所述机械臂的所述最优位姿包括:根据所述机械臂的所述基础位姿,定义基础姿态矩阵;根据所述机械臂围绕所述目标轴的旋转,定义旋转矩阵;根据位于所述机械臂末端的工具空间位置,定义转换矩阵;以及根据所述基础姿态矩阵、所述旋转矩阵、所述转换矩阵,定义所述最优位姿;
所述基础姿态矩阵表示为:
Figure 793021DEST_PATH_IMAGE026
所述旋转矩阵表示为:
Figure 991921DEST_PATH_IMAGE027
所述转换矩阵表示为:
Figure 660800DEST_PATH_IMAGE028
所述最优位姿的姿态矩阵表示为:
Figure 654163DEST_PATH_IMAGE029
其中,所述
Figure 1968DEST_PATH_IMAGE030
表示所述机械臂绕所述目标轴旋转的自转角度。
可选地,所述预设平面与所述机械臂的基座的水平面相互平行。
可选地,所述根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得所述自转角度包括:根据所述最优位姿,获得所述第一投影线,并根据所述交点的预定义坐标,获得所述第二投影线;根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得第三换算公式;根据所述第三换算公式,确定第一参数、第二参数和第三参数;以及根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得所述自转角度;所述第一投影线表示为:
Figure 4559DEST_PATH_IMAGE031
所述交点的预定义坐标表示为:
Figure 527945DEST_PATH_IMAGE032
;所述第二投影线表示为:
Figure 692210DEST_PATH_IMAGE033
;所述第三换算公式表示为:
Figure 933835DEST_PATH_IMAGE034
;所述预设第四换算公式表示为:
Figure 943379DEST_PATH_IMAGE035
;其中,所述
Figure 321271DEST_PATH_IMAGE036
表示所述第一参数,所述
Figure 922017DEST_PATH_IMAGE038
表示所述第二参数,所述
Figure 385359DEST_PATH_IMAGE039
表示所述第三参数。
可选地,所述根据所述第三换算公式,确定第一参数、第二参数和第三参数包括:若所述第三换算公式中的所述
Figure 323228DEST_PATH_IMAGE040
为非零,将第一参数、第二参数、第三参数分别确定为:
Figure 555626DEST_PATH_IMAGE041
若所述第三换算公式中的所述
Figure 327273DEST_PATH_IMAGE040
为零,将所述第一参数、所述第二参数、所述第三参数分别确定为:
Figure 277912DEST_PATH_IMAGE042
可选地,所述方法还包括:若根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得两个候选自转角度,将所述基础轴在所述预设平面内的投影与所述交点至所述基座的连线在所述预设平面内的投影点积为正的一个所述候选自转角度确定为所述自转角度。
可选地,所述方法还包括:基于所述自转角度控制所述机械臂围绕所述目标轴旋转,以使所述机械臂由所述基础位姿调整至所述最优位姿;其中,所述基础位姿与所述最优位姿可为相同或者不同。
根据本发明的第二方面,提供一种存储介质,所述存储介质上存储有计算机指令,所述计算机指令在被处理器执行时,使所述处理器执行上述第一方面所述的方法。
根据本发明的第三方面,提供一种欠约束下的最优位姿确定装置,其包括基础位姿计算模块,其根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿;交点计算模块,其根据所述基础位姿和所述目标位姿,确定交点;最优位姿确定模块,其根据所述交点、所述基础位姿,获得调节参数,并基于所述调节参数和所述基础位姿,确定所述机械臂的最优位姿。
根据本发明的第四方面,提供一种机械臂,所述机械臂可根据上述第三方面的欠约束下的最优位姿确定装置所确定的所述最优位姿进行调整。
由以上技术方案可见,本发明实施例提供的欠约束下的最优位姿确定方法、装置、存储介质及机械臂,可根据由当前位姿和目标位置所获得的基础位姿,确定基础位姿和目标位姿之间的交点,并基于交点和基础位姿,获得自转角度,再根据所求得的自转角度确定机械臂的最优姿态。据此,本申请不仅可在欠约束的条件下提供机械臂快速、准确地调整至最优姿态,且可充分利用机械臂的臂展,以获得最大化的工作半径,从而有利于机械臂更好地完成复杂操作。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比值绘制的。附图中:
图1示出了本发明第一实施例的欠约束下的最优位姿确定方法的流程示意图。
图2示出了本发明第二实施例的欠约束下的最优位姿确定方法的流程示意图。
图3示出了本发明第三实施例的欠约束下的最优位姿确定方法的流程示意图。
图4示出了本发明第四实施例的欠约束下的最优位姿确定方法的流程示意图。
图5示出了本发明第五实施例的欠约束下的最优位姿确定方法的流程示意图。
图6示出了处于最优位姿的机械臂的状态示意图。
图7示出了本申请第七实施例的欠约束下的最优位姿确定装置的架构示意图。
图8示出了本申请第八实施例的机械臂的结构示意图。
具体实施方式
为了使本领域的人员更好地理解本发明实施例中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。
诚如前述背景技术部分所述,由于目前机械臂的最优位姿主要是通过手动调整方式来实现,存在着机械臂调整操作效率低下,且在最优位姿下无法确保机械臂臂展得到充分利用等问题。
有鉴于此,本申请提出一种欠约束下的最优位姿确定方法、装置、存储介质和机械臂,可在欠约束的条件下快速且准确的确定机械臂的最优位姿。下面将结合本发明各实施例附图进一步说明本发明各实施例的具体实现。
第一实施例
图1示出了本发明第一实施例的欠约束下的最优位姿确定方法的流程示意图。如图所示,本实施例的欠约束下的最优位姿确定方法主要包括以下步骤:
步骤S102, 根据机械臂的当前位姿和随机生成的目标位姿,获得机械臂的基础位姿。
于本实施例中,机械臂包括六轴机械臂(参考图6)。
可选地,可通过机械臂的控制箱,获得机械臂的当前位姿。
可选地,可根据预设目标特征构建随机的目标位姿。
步骤S104,根据基础位姿和目标位姿,确定交点。
于本实施例中,可根据基础位姿的基础轴和目标位姿的目标轴,确定交点。
可选地,可根据机械臂的基础位姿,获得机械臂末端的位置信息以及方向信息(亦可称之为法兰方向信息)。
如图6所示,于本实施例中,基础轴的方向与处于基础位姿下的机械臂的第六轴的轴线相互平行(或重合)。
步骤S106,根据交点、基础位姿,获得调节参数,并基于调节参数和基础位姿确定机械臂的最优位姿。
于本实施例中,当机械臂处于最优位姿时,机械臂的第六轴的轴线在预设平面内的第一投影线和交点至基座的连线在预设平面内的第二投影线相互平行(参考图6)。
于本实施例中,预设平面(即如图6所示的XOY平面)与机械臂的基座的水平面相互平行。
具体地,由于根据预设目标特征所生成的目标位姿是随机的,欠约束的,使得基础位姿不一定与最优位姿重合,因此需要对基础位姿进一步优化调整。对于六轴机械臂而言,若在最优位姿下,机械臂的第六轴的轴线在预设平面(即与机械臂的基座平面平行的XOY平面)内的投影与交点至基座的连线在预设平面(即XOY平面)内的投影保持平行时,可使得在定位过程中能够尽可能地利用第六轴的长度,从而可最大化地利用机械臂的臂展以实现最大化的工作半径。
可选地,可根据交点和基础位姿,获得机械臂绕目标轴旋转的自转角度。
可选地,可基于所求得的自转角度控制机械臂围绕目标轴旋转,以使机械臂由基础位姿调整至最优位姿。
可选地,基础位姿与最优位姿可为相同(即,当自转角度为零)或者不同(即自转角度为非零)。
综上所述,本申请实施例的欠约束下的最优位姿确定方法,通过求解机械臂的基础位姿与目标位姿的交点,并根据交点获得基础位姿与最优位姿之间的调整参数(即自转角度),确定机械臂的最优位姿,借此,本申请可在欠约束的条件下,快速准确地确定机械臂的最优位姿,不仅可避免人工调整机械臂导致的人为操作误差、并可降低对操作人员的操作门槛,且可在保证精度的同时有效提高处理效率。
第二实施例
图2示出了本申请第二实施例的欠约束下的最优位姿确定方法的流程示意图。本实施例为上述步骤S102的具体实施方案,如图所示,本实施例主要包括以下步骤:
步骤S202,根据预设目标特征确定目标轴,并根据目标轴随机生成中间坐标系。
具体地,可根据预设目标特征确定目标轴,再将所确定的目标轴上的一点作为中间坐标系的原点,并将目标轴作为中间坐标系的X轴,而后,根据坐标系之间的垂直关系随机生成一个与X轴相垂直的向量以作为中间坐标系的Y轴,再根据直角坐标系坐标轴间的叉乘关系,获得中间坐标系的Z轴,从而完成中间坐标系的建立。
步骤S204,基于随机生成的中间坐标系,确定目标位姿。
于本实施例中,可根据当前随机生成的中间坐标系,确定目标位姿。
可选地,目标位姿的目标位姿信息可通过矩阵形式呈现。
需说明的是,于本实施例中,由于中间坐标系中仅X轴为确定轴,而Y轴、Z轴均为随机生成,因此,根据随机生成的中间坐标系的不同,目标位姿的目标位姿信息亦可能不同。
可选地,可通过机械臂函数接口获取机械臂的当前位姿的当前位姿信息。于本实施例中,当前位姿的当前位姿信息亦可通过矩阵形式呈现。
步骤S206,根据当前位姿和目标位姿,确定基础位姿。
于本实施例中,由于中间坐标系为随机生成,基于随机生成的中间坐标系所获得的目标位姿可有所不同,而基于不同目标位姿所确定的基础位姿亦可能不同。
综上所述,本实施例根据预设目标特征建立随机的中间坐标系,以实现在欠约束的条件下,快速准确地确定机械臂的最优位姿。
第三实施例
图3示出了本申请第三实施例的欠约束下的最优位姿确定方法的流程示意图。本实施例主要示出了上述步骤S104的具体实施方案。
于本实施例中,由于机械臂在空间中可以绕已知直线(例如目标位姿的目标轴)进行自转,其中,根据自转角度的不同,所获得各求解结果对应的各目标姿态亦不相同,然而,由于这些不同目标姿态均位于沿机械臂的第六轴的轴线(即机械臂末端端面法兰坐标系的Z轴)绕已知直线旋转所形成的空间锥面上(其中,空间锥面的锥度可根据机械臂末端工具的不同而不同),因此,空间锥面的顶点(即交点)可作为所有目标姿态下都经过的空间点,具有稳定不变的特点,可以很好的表示所有目标姿态,因此,可将空间锥面的顶点(即交点)作为用于获取最优姿态的目标参考点。
如图所示,本实施例主要包括以下步骤:
接续上述步骤S204,继续执行步骤S302,判断基础位姿的基础轴和目标位姿的目标轴两者是否为共面相交,若是,则进行步骤S310,若否,则进行步骤S320。
步骤S310,基于中间坐标系,获得基础轴的第一轴线方程和目标轴的第二轴线方程。
于本实施例中,第一轴线方程和第二轴线方程分别表示为:
Figure 629259DEST_PATH_IMAGE043
Figure 981743DEST_PATH_IMAGE044
其中,
Figure 924291DEST_PATH_IMAGE045
表示基础轴(即处于基础位姿下的机械臂的第六轴的轴线),
Figure 362225DEST_PATH_IMAGE046
表示基础轴的方向向量,
Figure 48422DEST_PATH_IMAGE047
表示基础轴上的任意一点的坐标位置,
Figure 848887DEST_PATH_IMAGE048
表示目标轴,
Figure 962337DEST_PATH_IMAGE049
表示目标轴的方向向量,
Figure 887568DEST_PATH_IMAGE050
表示目标轴上的任意一点的坐标位置;所述
Figure 111876DEST_PATH_IMAGE051
表示所述基础轴或所述目标轴所在直线上的任意一点的位置。
其中,上述第一轴线方程中的
Figure 438952DEST_PATH_IMAGE052
和第二轴线方程中的
Figure 926565DEST_PATH_IMAGE053
均为待求解的中间参数,用于求解方程式(参考步骤S312的详细描述)。
步骤S312,根据第一轴线方程和第二轴线方程,获得交点的位置信息。
具体地,根据上述第一轴线方程,使用
Figure 339092DEST_PATH_IMAGE052
表示
Figure 367090DEST_PATH_IMAGE054
Figure 548673DEST_PATH_IMAGE055
Figure 98865DEST_PATH_IMAGE056
,可推导获得下列方程式1:
Figure 733109DEST_PATH_IMAGE057
将上述方程式1代入第二轴线方程,可推导获得下列方程式2:
Figure 299220DEST_PATH_IMAGE058
根据上述方程式2可推导获得方程式3:
Figure 600888DEST_PATH_IMAGE059
将方程式3代入第一轴线方程,亦即,将
Figure 227041DEST_PATH_IMAGE052
代入
Figure 817423DEST_PATH_IMAGE060
,可获得交点的位置信息。
步骤S320,根据基础轴、目标轴、基础轴和目标轴的公垂线,获得交点的位置信息。
具体地,当判断基础位姿的基础轴和目标位姿的目标轴为异面相交时,可根据基础轴和目标轴的公垂线,来确定基础位姿和目标位姿之间的交点(具体参考下面的第四实施例)。
第四实施例
图4示出了本申请第四实施例的欠约束下的最优位姿确定方法的流程示意图。本实施例主要示出了上述步骤S320的具体实施方案。
于本实施例中,由于机械臂末端工具存在误差,以及末端工具与机械臂末端配合紧密性等问题,导致机械臂的第六轴的轴线(基础轴)与目标轴二者往往是异面相交的关系,在此情况下,可根据两条轴线的公垂线在机械臂的基础轴上的垂足作为交点,以使所获得的最优位姿可更好的描述机械臂的姿态。
如图所示,本实施例的方法主要包括以下步骤:
步骤S402,根据中间坐标系,确定基础轴上任意两个基础点对应的两个基础点坐标和目标轴上任意两个目标点对应的两个目标点坐标。
于本实施例中,基础轴
Figure 187224DEST_PATH_IMAGE061
上的两个基础点对应的两个基础点坐标可分别表示为:
Figure 343399DEST_PATH_IMAGE062
Figure 140454DEST_PATH_IMAGE063
,目标轴
Figure 749290DEST_PATH_IMAGE064
上的两个目标点对应的两个目标点坐标可分别表示为:
Figure 250678DEST_PATH_IMAGE065
Figure 261359DEST_PATH_IMAGE066
步骤S404,根据两个基础点坐标、两个目标点坐标,定义基础轴的基础垂足坐标、目标轴的目标垂足坐标、公垂线。
于本实施例中,针对基础轴
Figure 229315DEST_PATH_IMAGE061
,定义
Figure 325447DEST_PATH_IMAGE067
,则基础轴
Figure 505893DEST_PATH_IMAGE061
的基础垂足坐标
Figure 371081DEST_PATH_IMAGE068
可定义为:
Figure 509938DEST_PATH_IMAGE069
同理,针对目标轴
Figure 93366DEST_PATH_IMAGE070
,定义
Figure 608661DEST_PATH_IMAGE071
目标轴
Figure 921831DEST_PATH_IMAGE064
的目标垂足坐标
Figure 231589DEST_PATH_IMAGE072
可定义为:
Figure 302314DEST_PATH_IMAGE073
其中,上述的基础垂足坐标中的
Figure 355720DEST_PATH_IMAGE074
和目标垂足坐标中的
Figure 664342DEST_PATH_IMAGE025
均为待求解的中间参数,用于求解方程式(参考步骤S404至步骤S406的具体描述)。
具体地,可根据上述定义的基础垂足坐标
Figure 145002DEST_PATH_IMAGE075
和目标垂足坐标
Figure 703022DEST_PATH_IMAGE072
,将基础轴和目标轴的公垂线定义为:
Figure 294540DEST_PATH_IMAGE076
步骤S406,根据两个基础点坐标、基础垂足坐标、两个目标点坐标、目标垂足坐标、以及公垂线同时垂直于基础轴和目标轴的原理,确定第一换算公式和第二换算公式。
具体地,由于公垂线
Figure 988827DEST_PATH_IMAGE077
同时垂直于
Figure 499443DEST_PATH_IMAGE078
(即基础轴
Figure 279180DEST_PATH_IMAGE061
)和
Figure 674389DEST_PATH_IMAGE079
(即目标轴
Figure 488761DEST_PATH_IMAGE064
),根据空间矢量点积特性,可以获得第一换算公式和第二换算公式,其分别表示为:
Figure 311224DEST_PATH_IMAGE080
Figure 47099DEST_PATH_IMAGE081
步骤S408, 根据第一换算公式和第二换算公式,获得交点的位置信息。
具体地,根据上述第一换算公式和第二换算公式,可推导获得下列方程式4:
Figure 245999DEST_PATH_IMAGE082
Figure 914878DEST_PATH_IMAGE083
求解上述方程式4,可获得下列方程式5:
Figure 908241DEST_PATH_IMAGE084
将方程式5中的
Figure 754581DEST_PATH_IMAGE085
Figure 491593DEST_PATH_IMAGE086
分别代入
Figure 14978DEST_PATH_IMAGE069
Figure 444823DEST_PATH_IMAGE073
,即可获得基础垂足坐标与目标垂足坐标,并将基础轴(即机械臂的第六轴的轴线)的基础垂足坐标确定为交点的位置信息。
综上所述,借由本申请的第三实施例和第四实施例,可分别获得基础轴和目标轴二者为共面相交以及异面相交下的交点,所求得的交点能够表示所有目标位姿,具有稳定不变的特点,可确保在欠约束条件下所确定的最优位姿具有较高的准确性。
第五实施例
图5示出了本申请第五实施例的欠约束下的最优位姿确定方法的流程示意图。本实施例示出了上述步骤S106的具体实施方案。如图所示,本实施例主要包括以下步骤:
步骤S502,根据机械臂的基础位姿,定义机械臂的最优位姿。
于本实施例中,可首先定义基础姿态矩阵、旋转矩阵和转换矩阵。
具体地,可根据机械臂的基础位姿,定义如下的基础姿态矩阵:
Figure 686448DEST_PATH_IMAGE026
其中,上述基础姿态矩阵中的各参数用于表示其所在基础位姿中的位置,例如,
Figure 430413DEST_PATH_IMAGE087
表示在基础位姿中的第一行第一列的位置,
Figure 73884DEST_PATH_IMAGE088
表示在基础位姿中的第一行第二列的位置,并以此类推。
根据机械臂围绕目标轴的旋转,定义旋转矩阵,于本实施例中,假设将目标轴作为X轴,可定义如下的旋转矩阵:
Figure 409051DEST_PATH_IMAGE027
需说明的是,在其他实施例中,亦可将目标轴确定为Y轴或Z轴,来定义其相应的旋转矩阵,而并不以上述所示旋转矩阵为限。
其中,
Figure 137972DEST_PATH_IMAGE030
表示机械臂绕目标轴的自转角度;
根据位于机械臂末端的工具空间位置,即,机械臂末端的工具的空间姿态(例如,机械臂末端工具针尖到机械臂末端的空间位置),定义如下转换矩阵:
Figure 216787DEST_PATH_IMAGE028
其中,上述转换矩阵用于表示机械臂末端到机械臂末端工具的转换关系,其中,转换矩阵中的第一列表示末端工具在机械臂坐标系下的X轴,第二列表示末端工具在机械臂坐标系下的Y轴,第三列表示末端工具在机械臂坐标系下的Z轴。
而后,可根据所定义的基础姿态矩阵、旋转矩阵、转换矩阵,获得最优位姿的姿态矩阵,其表示如下:
Figure 308239DEST_PATH_IMAGE089
步骤S504, 根据机械臂的第六轴、交点、机械臂的基座,确定第六轴的轴线在预设平面内的第一投影线以及交点至基座之间的连线在预设平面内的第二投影线。
于本实施例中,预设平面与机械臂的基座的水平面相互平行,亦即,图6所示的XOY平面。
于本实施例中,根据上述最优位姿,可将机械臂的第六轴在预设平面内的第一投影线定义为:
Figure 79886DEST_PATH_IMAGE031
于本实施例中,可根据交点的预定义位置信息,获得第二投影线。
具体地,假设交点的预定义位置信息为
Figure 30525DEST_PATH_IMAGE032
,则可将交点至基座之间的连线在预设平面内的第二投影线定义为:
Figure 913030DEST_PATH_IMAGE090
步骤S506, 根据第一投影线和第二投影线在最优位姿下相互平行的预设定义,获得第三换算公式。
于本实施例中,第三换算公式表示为:
Figure 734356DEST_PATH_IMAGE091
步骤S508, 根据第三换算公式,确定第一参数、第二参数和第三参数。
于一实施例中,若第三换算公式中的
Figure 676904DEST_PATH_IMAGE040
为非零,则将第一参数
Figure 114838DEST_PATH_IMAGE036
、第二参数
Figure 535455DEST_PATH_IMAGE092
、第三参数
Figure 8025DEST_PATH_IMAGE039
分别确定为:
Figure 714950DEST_PATH_IMAGE093
于另一实施例中,若第三换算公式中的
Figure 640181DEST_PATH_IMAGE040
为零,则将第一参数
Figure 864489DEST_PATH_IMAGE036
、第二参数
Figure 925986DEST_PATH_IMAGE092
、第三参数
Figure 679178DEST_PATH_IMAGE039
分别确定为:
Figure 91705DEST_PATH_IMAGE042
步骤S510, 根据第一参数、第二参数、第三参数和预设第四换算公式,获得机械臂绕目标轴旋转的自转角度。
于本实施例中,预设第四换算公式可表示为:
Figure 119704DEST_PATH_IMAGE094
具体地,根据上述预设第四换算公式,可以求得自转角度
Figure 301286DEST_PATH_IMAGE030
Figure 490959DEST_PATH_IMAGE095
于一实施例中,若根据上述预设第四换算公式,获得两个候选自选角度,则将基础轴在预设平面(例如XOY平面)内的投影与交点至基座的连线在预设平面内的投影点积为正的一个候选自转角度确定为自转角度
Figure 984257DEST_PATH_IMAGE030
于另一实施例中,若根据上述预设第四换算公式,仅获得一个候选自选角度,则直接将此候选自选角度确定为自转角度
Figure 550368DEST_PATH_IMAGE030
步骤S512,基于自转角度,将机械臂由基础位姿调整至最优位姿。
于本实施例中,可根据步骤S510中所求得的自转角度
Figure 852036DEST_PATH_IMAGE030
控制机械臂围绕目标轴执行相应旋转,以使机械臂由基础位姿调整至最优位姿。
综上所述,本实施例的欠约束下的最优位姿确定方法,可基于机械臂的第六轴的轴线在预设平面内的第一投影线以及交点至机械臂的基座之间的连线在预设平面内的第二投影线相互平行的定义,求解得到机械臂绕目标轴旋转的自转角度,据以确定机械臂的最优位姿。据此,本申请可充分利用机械臂臂展,以获得最大化的工作半径,从而有利于机械臂更好地完成高精度的复杂操作。
第六实施例
本申请第六实施例提供一种存储介质,所述存储介质上存储有计算机指令,所述计算机指令在被处理器执行时,使所述处理器执行上述第一实施例至第五实施例所述的方法。
于本实施例中,所述存储介质是指计算机可读存储介质。
第七实施例
图7示出了本申请第七实施例的欠约束下的最优位姿确定装置的架构示意图。如图所示,本实施例的最优位姿确定装置700主要包括基础位姿计算模块702、交点计算模块704、最优位姿确定模块706。
基础位姿计算模块702根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿。
可选地,基础位姿计算模块702还包括根据预设目标特征确定目标轴,并根据所述目标轴随机生成中间坐标系;基于随机生成的所述中间坐标系,确定所述目标位姿;以及根据所述当前位姿和所述目标位姿,确定所述基础位姿。
交点计算模块704根据所述基础位姿和所述目标位姿,确定交点。
可选地,交点计算模块704还用于根据所述基础位姿和所述目标位姿,获得所述基础位姿的基础轴和所述目标位姿的目标轴为共面相交或异面相交的分析结果。
可选地,交点计算模块704还用于响应于所述基础轴和所述目标轴之间为共面相交的所述分析结果,基于所述中间坐标系,获得所述基础轴的第一轴线方程和所述目标轴的第二轴线方程;以及根据所述第一轴线方程和所述第二轴线方程,获得所述交点的位置信息。
可选地,所述基础轴的方向与处于所述基础位姿下的所述机械臂的所述第六轴的轴线相互平行。
可选地,交点计算模块704还用于响应于所述基础轴和所述目标轴之间为异面相交的所述分析结果,根据所述基础轴、所述目标轴、所述基础轴和所述目标轴的公垂线,获得所述交点的位置信息。
可选地,交点计算模块704还用于根据所述中间坐标系,确定所述基础轴上任意两个基础点对应的两个基础点坐标和所述目标轴上任意两个目标点对应的两个目标点坐标;根据所述两个基础点坐标定义、所述两个目标点坐标,获得所述基础轴的基础垂足坐标、所述目标轴的目标垂足坐标、所述公垂线;根据所述两个基础点坐标、所述基础垂足坐标、所述两个目标点坐标、所述目标垂足坐标、以及所述公垂线同时垂直于所述基础轴和所述目标轴的原理,确定第一换算公式和第二换算公式;以及根据所述第一换算公式和所述第二换算公式,获得所述交点的位置信息。
可选地,根据所述基础位姿和所述目标位姿确定的所述交点与基于所述预设目标特征所随机生成的多个所述目标位姿对应的各所述目标轴的交点相吻合。
最优位姿确定模块706根据所述交点、所述基础位姿,获得调节参数,并基于所述调节参数和所述基础位姿,确定所述机械臂的最优位姿。
可选地,最优位姿确定模块706还用于根据所述机械臂的所述基础位姿,定义所述机械臂的所述最优位姿;根据所述机械臂的第六轴、所述交点、所述机械臂的基座,确定所述第六轴的轴线在预设平面内的第一投影线以及所述交点至所述基座之间的连线在所述预设平面内的第二投影线;以及根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得所述机械臂绕所述目标轴旋转的自转角度。
可选地,最优位姿确定模块706还用于根据所述机械臂的所述基础位姿,定义基础姿态矩阵;根据所述机械臂围绕所述目标轴的旋转作动,定义旋转矩阵;根据位于所述机械臂末端的工具空间位置,定义转换矩阵;以及根据所述基础姿态矩阵、所述旋转矩阵、所述转换矩阵,定义所述最优位姿。
可选地,所述预设平面与所述机械臂的基座的水平面相互平行。
可选地,最优位姿确定模块706还用于根据所述最优位姿,获得所述第一投影线,并根据所述交点的预定义位置信息,获得所述第二投影线;根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得第三换算公式;根据所述第三换算公式,确定第一参数、第二参数和第三参数;以及根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得所述自转角度。
可选地,最优位姿确定模块706还用于若根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得两个候选自转角度,将所述基础轴在所述预设平面内的投影与所述交点至所述基座的连线在所述预设平面内的投影点积为正的一个所述候选自转角度确定为所述自转角度。
可选地,最优位姿确定装置700还包括基于所述自转角度控制所述机械臂围绕所述目标轴旋转,以使所述机械臂由所述基础位姿调整至所述最优位姿;其中,所述基础位姿与所述最优位姿可为相同或者不同。
此外,本发明实施例的最优位姿确定装置700还可用于实现前述各欠约束下的最优位姿确定方法实施例中的其他步骤,并具有相应的方法步骤实施例的有益效果,在此不再赘述。
第八实施例
本发明第八实施例提供了一种机械臂800(请参阅图8),其中,机械臂800可根据上述第七实施例所述的最优位姿确定装置700所确定的所述最优位姿进行调整。
综上所述,本发明实施例提供的欠约束下的最优位姿确定方法、装置、存储介质和机械臂,可根据预设目标特征随机生成目标位姿,并根据机械臂的当前位姿和基础位姿,获得交点(求解机械臂从当前位姿到欠约束的目标位姿的多个解所形成的空间锥面的锥顶),再根据交点和基础位姿,求得基础位姿与最优位姿之间的调节参数(即自转角度),进而确定机械臂的最优位姿。因此,本申请可在欠约束的条件下,快速且准确地确定机械臂的最优位姿,全程无需人工干预,不仅可以有效避免人为操作引起的误差,亦可降低对操作人员的操作门槛,可在保证精度的同时大大提高处理效率。
再者,由于在最优位姿下,机械臂的第六轴的轴线在预设平面内的第一投影线和交点至基座的连线在预设平面内的第二投影线相互平行,因此,本申请可充分利用机械臂臂展,以获得最大的工作半径,从而有利于支持机械臂更好的完成复杂工作。
需要指出,根据实施的需要,可将本发明实施例中描述的各个部件/步骤拆分为更多部件/步骤,也可将两个或多个部件/步骤或者部件/步骤的部分操作组合成新的部件/步骤,以实现本发明实施例的目的。
上述根据本发明实施例的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当所述软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的判题方法。此外,当通用计算机访问用于实现在此示出的欠约束下的最优位姿确定方法的代码时,代码的执行将通用计算机转换为用于执行在此示出的欠约束下的最优位姿确定方法的专用计算机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
以上实施方式仅用于说明本发明实施例,而并非对本发明实施例的限制,有关技术领域的普通技术人员,在不脱离本发明实施例的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明实施例的范畴,本发明实施例的专利保护范围应由权利要求限定。

Claims (17)

1.一种欠约束下的最优位姿确定方法,其特征在于,包括:
根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿;
根据所述基础位姿和所述目标位姿,确定交点;以及
根据所述机械臂的所述基础位姿,定义所述机械臂的最优位姿,并根据所述机械臂的第六轴、所述交点、所述机械臂的基座,确定所述第六轴的轴线在预设平面内的第一投影线以及所述交点至所述基座之间的连线在所述预设平面内的第二投影线,且根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得调节参数,并基于所述调节参数和所述基础位姿,确定所述机械臂的所述最优位姿。
2.根据权利要求1所述的欠约束下的最优位姿确定方法,其特征在于,所述根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿包括:
根据预设目标特征确定目标轴,并根据所述目标轴随机生成中间坐标系;
基于随机生成的所述中间坐标系,确定所述目标位姿;以及
根据所述当前位姿和所述目标位姿,确定所述基础位姿。
3.根据权利要求2所述的欠约束下的最优位姿确定方法,其特征在于,所述方法还包括:
根据所述基础位姿和所述目标位姿,获得所述基础位姿的基础轴和所述目标位姿的目标轴为共面相交或异面相交的分析结果。
4.根据权利要求3所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述基础位姿和所述目标位姿,确定交点包括:
响应所述基础轴和所述目标轴之间为共面相交的所述分析结果,基于所述中间坐标系,获得所述基础轴的第一轴线方程和所述目标轴的第二轴线方程;以及
根据所述第一轴线方程和所述第二轴线方程,获得所述交点的位置信息;其中,
所述第一轴线方程和所述第二轴线方程分别表示为:
Figure 448821DEST_PATH_IMAGE001
Figure 374052DEST_PATH_IMAGE002
其中,所述
Figure 598360DEST_PATH_IMAGE003
表示所述基础轴,所述
Figure 597540DEST_PATH_IMAGE004
表示所述基础轴的方向向量,所述
Figure 881891DEST_PATH_IMAGE005
表示所述基础轴上的任意一点的位置,所述
Figure 294418DEST_PATH_IMAGE006
表示所述目标轴,所述
Figure 322417DEST_PATH_IMAGE007
表示所述目标轴的方向向量,所述
Figure 503999DEST_PATH_IMAGE008
表示所述目标轴上的任意一点的位置;所述
Figure 129890DEST_PATH_IMAGE009
表示所述基础轴或所述目标轴所在直线上的任意一点的位置。
5.根据权利要求4所述的欠约束下的最优位姿确定方法,其特征在于,所述基础轴的方向与处于所述基础位姿下的所述机械臂的第六轴的轴线相互平行。
6.根据权利要求3所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述基础位姿和所述目标位姿,确定交点包括:
响应所述基础轴和所述目标轴之间为异面相交的所述分析结果,根据所述基础轴、所述目标轴、所述基础轴和所述目标轴的公垂线,获得所述交点的位置信息。
7.根据权利要求6所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述基础轴、所述目标轴、所述基础轴和所述目标轴的公垂线,获得所述交点包括:
根据所述中间坐标系,确定所述基础轴上任意两个基础点对应的两个基础点坐标和所述目标轴上任意两个目标点对应的两个目标点坐标;
根据所述两个基础点坐标、所述两个目标点坐标,定义所述基础轴的基础垂足坐标、所述目标轴的目标垂足坐标、所述公垂线;
根据所述两个基础点坐标、所述基础垂足坐标、所述两个目标点坐标、所述目标垂足坐标、以及所述公垂线同时垂直于所述基础轴和所述目标轴的原理,确定第一换算公式和第二换算公式;以及
根据所述第一换算公式和所述第二换算公式,获得所述交点的位置信息;
所述基础轴和所述目标轴各自的轴线方程分别表示为:
Figure 29713DEST_PATH_IMAGE001
Figure 595824DEST_PATH_IMAGE010
其中,所述
Figure 897492DEST_PATH_IMAGE003
表示所述基础轴,所述
Figure 258066DEST_PATH_IMAGE004
表示所述基础轴的方向向量,所述
Figure 582868DEST_PATH_IMAGE005
表示所述基础轴上的任意一点的位置,所述
Figure 952670DEST_PATH_IMAGE006
表示所述目标轴,所述
Figure 843265DEST_PATH_IMAGE007
表示所述目标轴的方向向量,所述
Figure 640320DEST_PATH_IMAGE008
表示所述目标轴上的任意一点的位置;
所述
Figure 249156DEST_PATH_IMAGE011
表示所述基础轴或所述目标轴所在直线上的任意一点的位置;
所述两个基础点坐标分别表示为:
Figure 360332DEST_PATH_IMAGE012
Figure 371013DEST_PATH_IMAGE013
所述两个目标点坐标分别表示为:
Figure 338969DEST_PATH_IMAGE014
Figure 435101DEST_PATH_IMAGE015
所述基础垂足坐标表示为:
Figure 146705DEST_PATH_IMAGE016
所述目标垂足坐标表示为:
Figure 949576DEST_PATH_IMAGE017
所述第一换算公式和所述第二换算公式分别表示为:
Figure 88433DEST_PATH_IMAGE018
Figure 671861DEST_PATH_IMAGE019
其中,所述
Figure 921577DEST_PATH_IMAGE020
Figure 906851DEST_PATH_IMAGE021
分别为待求解的中间参数,其可基于所述第一换算公式和所述第二换算公式推导求得。
8.根据权利要求4或6所述的欠约束下的最优位姿确定方法,其特征在于,所述调节参数包括所述机械臂绕所述目标轴旋转的自转角度。
9.根据权利要求8所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述机械臂的所述基础位姿,定义所述机械臂的所述最优位姿包括:
根据所述机械臂的所述基础位姿,定义基础姿态矩阵;
根据所述机械臂围绕所述目标轴的旋转,定义旋转矩阵;
根据位于所述机械臂末端的工具空间位置,定义转换矩阵;以及
根据所述基础姿态矩阵、所述旋转矩阵、所述转换矩阵,定义所述最优位姿;
所述基础姿态矩阵表示为:
Figure 216609DEST_PATH_IMAGE022
所述旋转矩阵表示为:
Figure 726481DEST_PATH_IMAGE023
所述转换矩阵表示为:
Figure 779888DEST_PATH_IMAGE024
所述最优位姿的姿态矩阵表示为:
Figure 619668DEST_PATH_IMAGE025
其中,所述
Figure 100328DEST_PATH_IMAGE026
表示所述机械臂绕所述目标轴旋转的自转角度。
10.根据权利要求9所述的欠约束下的最优位姿确定方法,其特征在于,所述预设平面与所述机械臂的基座的水平面相互平行。
11.根据权利要求10所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得所述机械臂绕所述目标轴旋转的自转角度包括:
根据所述最优位姿,获得所述第一投影线,并根据所述交点的预定义位置信息,获得所述第二投影线;
根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得第三换算公式;
根据所述第三换算公式,确定第一参数、第二参数和第三参数;以及
根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得所述自转角度;
所述第一投影线表示为:
Figure 392769DEST_PATH_IMAGE027
所述交点的预定义位置信息表示为:
Figure 187550DEST_PATH_IMAGE028
所述第二投影线表示为:
Figure 881836DEST_PATH_IMAGE029
所述第三换算公式表示为:
Figure 533397DEST_PATH_IMAGE030
所述预设第四换算公式表示为:
Figure 578714DEST_PATH_IMAGE031
其中,所述
Figure 973923DEST_PATH_IMAGE032
表示所述第一参数,所述
Figure 460399DEST_PATH_IMAGE033
表示所述第二参数,所述
Figure 548441DEST_PATH_IMAGE034
表示所述第三参数。
12.根据权利要求11所述的欠约束下的最优位姿确定方法,其特征在于,所述根据所述第三换算公式,确定第一参数、第二参数和第三参数包括:
若所述第三换算公式中的所述
Figure 815474DEST_PATH_IMAGE035
为非零,将第一参数、第二参数、第三参数分别确定为:
Figure 14374DEST_PATH_IMAGE036
若所述第三换算公式中的所述
Figure 417674DEST_PATH_IMAGE037
为零,将所述第一参数、所述第二参数、所述第三参数分别确定为:
Figure 614300DEST_PATH_IMAGE038
13.根据权利要求11所述的欠约束下的最优位姿确定方法,其特征在于,所述方法还包括:
若根据所述第一参数、所述第二参数、所述第三参数和预设第四换算公式,获得两个候选自转角度,将所述基础轴在所述预设平面内的投影与所述交点至所述基座的连线在所述预设平面内的投影点积为正的一个所述候选自转角度确定为所述自转角度。
14.根据权利要求9所述的欠约束下的最优位姿确定方法,其特征在于,所述方法还包括:
基于所述自转角度控制所述机械臂围绕所述目标轴旋转,以使所述机械臂由所述基础位姿调整至所述最优位姿;
其中,所述基础位姿与所述最优位姿可为相同或者不同。
15.一种存储介质,其特征在于,所述存储介质上存储有计算机指令,所述计算机指令在被处理器执行时,使所述处理器执行权利要求1至14中任一项所述的方法。
16.一种欠约束下的最优位姿确定装置,其特征在于,包括:
基础位姿计算模块,其根据机械臂的当前位姿和随机生成的目标位姿,获得所述机械臂的基础位姿;
交点计算模块,其根据所述基础位姿和所述目标位姿,确定交点;以及
最优位姿确定模块,其根据所述机械臂的所述基础位姿,定义所述机械臂的最优位姿,并根据所述机械臂的第六轴、所述交点、所述机械臂的基座,确定所述第六轴的轴线在预设平面内的第一投影线以及所述交点至所述基座之间的连线在所述预设平面内的第二投影线,且根据所述第一投影线和所述第二投影线在所述最优位姿下相互平行的预设定义,获得调节参数,并基于所述调节参数和所述基础位姿,确定所述机械臂的所述最优位姿。
17.一种机械臂,其特征在于,所述机械臂可根据权利要求16所述的欠约束下的最优位姿确定装置所确定的所述最优位姿进行调整。
CN202111018096.0A 2021-09-01 2021-09-01 欠约束下的最优位姿确定方法、装置、存储介质及机械臂 Active CN113442145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111018096.0A CN113442145B (zh) 2021-09-01 2021-09-01 欠约束下的最优位姿确定方法、装置、存储介质及机械臂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111018096.0A CN113442145B (zh) 2021-09-01 2021-09-01 欠约束下的最优位姿确定方法、装置、存储介质及机械臂

Publications (2)

Publication Number Publication Date
CN113442145A CN113442145A (zh) 2021-09-28
CN113442145B true CN113442145B (zh) 2021-11-19

Family

ID=77819304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111018096.0A Active CN113442145B (zh) 2021-09-01 2021-09-01 欠约束下的最优位姿确定方法、装置、存储介质及机械臂

Country Status (1)

Country Link
CN (1) CN113442145B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095108A1 (zh) * 2017-11-14 2019-05-23 深圳先进技术研究院 机器人的模仿学习方法、装置、机器人及存储介质
CN108972557B (zh) * 2018-08-16 2020-09-01 中国科学院自动化研究所 微零件位姿自动对准装置及其方法
CN110279470A (zh) * 2019-06-14 2019-09-27 北京罗森博特科技有限公司 动态调节装置、动态调节系统及其使用方法
CN110559082B (zh) * 2019-09-10 2020-07-31 深圳市精锋医疗科技有限公司 手术机器人及其机械臂的控制方法、控制装置
CN111702762B (zh) * 2020-06-23 2021-11-30 南京航空航天大学 一种工业机器人作业姿态优化方法
CN112917479B (zh) * 2021-02-01 2024-04-02 配天机器人技术有限公司 五轴机器人的近似位姿计算方法、装置和存储介质
CN113288358B (zh) * 2021-05-21 2022-11-15 中国医学科学院生物医学工程研究所 位姿信息确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113442145A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP5850962B2 (ja) ビジュアルフィードバックを利用したロボットシステム
US10695910B2 (en) Automatic calibration method for robot system
JP4191080B2 (ja) 計測装置
CN113001535B (zh) 机器人工件坐标系自动校正系统与方法
WO2016079967A1 (en) Robot and robot system
JP6885856B2 (ja) ロボットシステムおよびキャリブレーション方法
CN112109084A (zh) 基于机器人关节角度补偿的末端位置补偿方法及其应用
KR101842286B1 (ko) 로봇의 자동 캘리브레이션 방법
CN113442144B (zh) 欠约束下的最优位姿确定方法、装置、存储介质及机械臂
CN113799130B (zh) 一种人机协作装配中的机器人位姿标定方法
CN107442973B (zh) 基于机器视觉的焊道定位方法及装置
CN109909999B (zh) 一种获取机器人tcp坐标的方法和装置
CN113442145B (zh) 欠约束下的最优位姿确定方法、装置、存储介质及机械臂
Yang et al. A fast calibration of laser vision robotic welding systems using automatic path planning
CN115446836B (zh) 一种基于多种图像特征信息混合的视觉伺服方法
TWI762371B (zh) 機械手臂與輪廓感測器座標系相對關係之自動校正方法與系統
US11577400B2 (en) Method and apparatus for managing robot system
CN110640723B (zh) 基于机器人末端指点示教的障碍物标定方法
CN110060330B (zh) 一种基于点云图像的三维建模方法、装置和机器人
JP2022031083A (ja) 情報処理方法、情報処理システム、プログラム
CN111157004B (zh) 法兰朝下四轴机器人的工具标定方法
JP2022042103A (ja) 物体認識装置、物体認識方法及びプログラム
CN115187672A (zh) 几何误差标定方法、装置、多轴运动系统及存储介质
CN114800520A (zh) 高精度的手眼标定方法
JP5782538B2 (ja) ツール取付け部に対するツール基準点位置の計測方法、ツール取付け部に対するツール基準点位置の計測装置、およびその計測装置を備えるロボット

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 100191 Room 501, floor 5, building 9, No. 35 Huayuan North Road, Haidian District, Beijing

Patentee after: Beijing Baihui Weikang Technology Co.,Ltd.

Address before: 100191 Room 608, 6 / F, building 9, 35 Huayuan North Road, Haidian District, Beijing

Patentee before: Beijing Baihui Wei Kang Technology Co.,Ltd.