CN113436442B - 一种利用多地磁传感器的车速估计方法 - Google Patents

一种利用多地磁传感器的车速估计方法 Download PDF

Info

Publication number
CN113436442B
CN113436442B CN202110725027.7A CN202110725027A CN113436442B CN 113436442 B CN113436442 B CN 113436442B CN 202110725027 A CN202110725027 A CN 202110725027A CN 113436442 B CN113436442 B CN 113436442B
Authority
CN
China
Prior art keywords
vehicle
data
detection module
vehicle detection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110725027.7A
Other languages
English (en)
Other versions
CN113436442A (zh
Inventor
李长乐
王刚
毛国强
惠一龙
陈栎旭
程庆伟
贺润森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110725027.7A priority Critical patent/CN113436442B/zh
Publication of CN113436442A publication Critical patent/CN113436442A/zh
Application granted granted Critical
Publication of CN113436442B publication Critical patent/CN113436442B/zh
Priority to US17/851,225 priority patent/US20220413005A1/en
Priority to AU2022204558A priority patent/AU2022204558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/56Devices characterised by the use of electric or magnetic means for comparing two speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种利用多地磁传感器的车速估计方法,主要解决现有单地磁、双地磁和多地磁场景中,车速估计精度低的问题。车辆检测模块(1)设有M个,且沿道路旁等间隔部署,用于检测车辆接近和离开检测点的过程,记录车辆接近检测点时的时间,并将时间数据发送给数据处理模块(2);为避免车辆检测模块没有检测到车辆而无法进行车速估计的情况,数据处理模块(2)利用车辆位置估计和速度估计标准差对所有车辆检测模块上传的时间数据进行数据关联的匹配,并将匹配好的时间数据和车辆检测模块的位置进行多次卡尔曼滤波迭代,得到精确的车辆速度。本发明提高了车速估计精度,可用于智能化交通管理。

Description

一种利用多地磁传感器的车速估计方法
技术领域
本发明属于智能交通技术领域,更进一步涉及一种车速估计的系统及方法,可用于智能化交通管理。
背景技术
智能交通系统在过去的几十年里发展迅速。智能运输系统的主要目的是提高运输系统的安全性、效率和成本效益。通过各种交通传感器,如激光雷达、微波传感器和地磁传感器等,交通监控为智能交通系统提供了有价值的交通流量信息。交通监控信息可被智能交通系统用来改善交通管理。
车速的细粒度监控在智能交通系统中起着重要的作用。针对交通数据采集,引入并研究了许多交通监控技术,如感应环路、基于视频的图像处理方法等。特别是城市地区环境复杂,交通状况的感知和估计需要准确的车速数据。车速估计方法多借由微波雷达、光学传感器、地磁传感器等,微波雷达安装和调试要求太高,不利于大规模部署,光学传感器对环境的要求很高,在天气恶劣如有雾霾时会影响速度估计效果,通过地磁传感器进行车速估计的相关论文和专利所采用的方法多为单地磁传感器场景下车辆长度除以车辆经过传感器的时间、双地磁传感器场景下两个传感器之间的距离除以车辆经过两个传感器的时间。如刘向东等人在公开号为CN108091144A专利申请中提出“基于单地磁检测器的车辆测速方法及装置”,该方法通过Y轴平滑波形曲线中波峰和波谷之间的时间长度和物理距离计算目标车辆的速度,但由于不同车辆磁性物质含量分布不均匀,其Y轴波峰和波谷的真实物理距离无法精确得到,所以车速估计精度较低。Saber Taghvaeeyan等人在论文“PortableRoadside Sensors for Vehicle Counting,Classification,and Speed Measurement”中提出了一种根据传感器间的距离来估计车辆速度的方法,该方法设定两传感器之间为一固定距离,车辆经过两传感器的时间通过计算车辆经过两个传感器磁信号的互相关函数得到,然后再由传感器间的距离除以时间即可得车辆速度,但由于环境噪声影响,车辆经过两个传感器的磁信号波动较大,互相关时间很难准确得到,所以车速估计精度也较低。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种利用多地磁传感器的车速估计方法,以提高测速准确度,促进公路的智能化发展。
为实现上述目的,本发明的技术方案如下:
1.一种利用多地磁传感器的车速估计方法,其特征在于,包括如下:
A)车辆检测模块(1)设有M个,且沿道路旁等间隔部署,行驶在道路上的车辆依次经过每个车辆检测模块(1);
B)数据处理模块(2)获取实时时间数据,并将其发送给每一个车辆检测模块,实现所有车辆检测模块的时间同步;
C)车辆检测模块实时检测磁场强度数据,以采样频率Fs对磁场强度数据进行采样,获得离散的磁场强度数据,并根据离散的磁场强度数据检测车辆接近和离开检测点的过程,记录车辆接近检测点时的时间数据,并将时间数据发送给数据处理模块;
D)数据处理模块对所有车辆检测模块上传的时间数据进行数据清洗,并利用车辆位置估计和速度估计标准差进行数据关联的匹配:
D1)遍历每一个时间数据,并对时间数据格式进行判断:
如果时间数据不符合正常时间格式,则直接删除该时间数据;
如果时间数据符合正常时间格式,则保留该时间数据,直到遍历完所有时间数据,执行D2);
D2)设定循环变量初始值k=1;
D3)按照下式由车辆接近第k个车辆检测模块的时间为车辆接近第k+1个车辆检测模块的时间开辟时间窗:
Figure BDA0003138266140000021
其中,tk为车辆接近第k个车辆检测模块的时间,Δxk为第k个车辆检测模块与第k+1个车辆检测模块的距离,
Figure BDA0003138266140000022
为车辆接近第k个车辆检测模块时的速度,σk,x和σk,v分别为车辆接近第k个车辆检测模块的位置估计及速度估计的标准差;
D4)根据上述时间窗内时间数据的个数对车辆接近第k+1个车辆检测模块的时间tk+1进行确定:
如果只有一个时间数据在该时间窗内,则将该时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果有多个时间数据在该时间窗内,则将该多个时间数据从小到大排列,取中间的时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果没有时间数据在该时间窗内,则将时间窗的中间值作为车辆接近第k+1个车辆检测模块的时间tk+1
D5)判断循环变量k与车辆检测模块总个数M的大小:
如果循环变量k小于车辆检测模块总个数,即k<M,则循环变量k值加1并返回D3);
如果循环变量k等于车辆检测模块总个数,即k=M,则迭代结束,得到车辆经过所有车辆检测模块的时间。
E)数据处理模块将匹配好的车辆接近所有车辆检测模块的时间数据和车辆检测模块的位置进行多次卡尔曼滤波迭代,得到精确的车辆速度:
E1)设定车辆接近第1个车辆检测模块的状态初始值
Figure BDA0003138266140000031
协方差矩阵的初始值
Figure BDA0003138266140000032
根据实际测试所需要的车辆速度精度设置最大迭代次数为N,设置循环变量初始值k=1,其中vmax为道路允许的最大车速;
E2)由车辆接近第k个车辆检测模块的状态预测车辆接近第k+1个车辆检测模块的状态:
Figure BDA0003138266140000033
其中,
Figure BDA0003138266140000034
为车辆接近第k个车辆检测模块的状态,
Figure BDA0003138266140000035
为车辆接近第k个车辆检测模块的估计位置,
Figure BDA0003138266140000036
为车辆接近第k个车辆检测模块的估计速度;
Figure BDA0003138266140000037
为车辆接近第k+1个车辆检测模块的状态预测,
Figure BDA0003138266140000038
为车辆接近第k+1个车辆检测模块的预测位置,
Figure BDA0003138266140000041
为车辆接近第k+1个车辆检测模块的预测速度;
Figure BDA0003138266140000042
为状态转移矩阵,Δtk=tk+1-tk为车辆接近第k个车辆检测模块与车辆接近第k+1个车辆检测模块的时间差;
E3)由E2)得到的状态预测结果和第k+1个车辆检测模块的真实位置,通过下式估计车辆接近第k+1个车辆检测模块的速度:
Figure BDA0003138266140000043
其中,
Figure BDA0003138266140000044
为车辆接近第k+1个车辆检测模块的状态,
Figure BDA0003138266140000045
为车辆接近第k+1个车辆检测模块的估计位置,
Figure BDA0003138266140000046
为车辆接近第k+1个车辆检测模块的估计速度;
Figure BDA0003138266140000047
为第k+1个车辆检测模块的真实位置ηk+1与车辆接近第k+1个车辆检测模块的预测位置
Figure BDA0003138266140000048
的距离差;Wk+1为卡尔曼滤波的增益,其计算公式如下:
Wk+1=Pk+1|k(hk)T(Sk+1)-1
其中,
Figure BDA0003138266140000049
为状态预测协方差矩阵,Pk|k为车辆接近第k个车辆检测模块的协方差矩阵,
Figure BDA00031382661400000410
为噪声协方差矩阵;hk=[10]为车辆检测模块提供的观测矩阵;Sk+1=hkPk+1|k(hk)T+Rk为车辆检测模块提供的测量协方差矩阵,Rk为车辆检测模块的观测噪声;
E4)按照下式对车辆接近第k+1个车辆检测模块的协方差矩阵进行更新:
Figure BDA00031382661400000411
其中,Pk+1|k+1为车辆接近第k+1个车辆检测模块的协方差矩阵;
E5)判断循环变量k与设定的最大迭代次数N的大小:
如果循环变量k小于设定的最大迭代次数,即k<N,则循环变量k值加1并返回E2);
如果循环变量k等于设定的最大迭代次数,即k=N,则迭代结束,得到车辆速度。
本发明与现有技术相比具有以下优点:
第一,本发明中利用数据处理模块获取实时时间数据,并发送给每个车辆检测模块,可实现所有车辆检测模块的时间同步;
第二,本发明由于将车辆检测模块设为多个,利用车辆位置估计和速度估计标准差对所有车辆检测模块上传的时间数据进行数据关联的匹配,可避免单地磁、双地磁和多地磁车速估计场景中,车辆检测模块没有检测到车辆而无法进行车速估计的情况;
第三,本发明由于对数据关联得到的时间数据和车辆检测模块的位置进行卡尔曼滤波,可实现道路上车辆连续的速度估计,并且随着卡尔曼滤波更新次数的增加,车速估计精度也越来越高。
附图说明
图1为本发明方法的实现流程图;
图2为本发明中多个车辆检测模块的部署方式图。
具体实施方式
下面结合附图对本发明的实施例做进一步的描述。
参照图1,对本实例一种利用多地磁传感器的车速估计方法,其实现步骤如下:
步骤1,根据实际需求部署多个车辆检测模块。
参考图2车辆检测模块设有M个,且沿道路旁等间隔部署,行驶在道路上的车辆依次经过每个车辆检测模块;每个车辆检测模块1包括地磁传感器子模块11、控制器子模块12和数据收发子模块13,该控制器子模块12与地磁传感器子模块11连接,与数据收发子模块13连接;地磁传感器子模块11实时检测磁场强度数据,并将磁场强度数据发送给控制器子模块12;控制器子模块12对地磁传感器子模块的磁场强度数据进行采集,并将车辆接近检测点的时间数据发送给数据收发子模块13;数据收发子模块13将该时间数据发送给数据处理模块2。
步骤2,对所有车辆检测模块进行时间同步。
数据处理模块获取实时时间数据,并将其发送给每一个车辆检测模块,实现所有车辆检测模块的时间同步;数据处理模块2包括数据收发子模块21、控制器子模块22和GPS子模块23,该控制器子模块22与数据收发子模块21连接,与GPS子模块23连接;该GPS子模块23用于获取实时时间数据,并发送给每个车辆检测模块1,实现所有车辆检测模块的时间同步;该数据收发子模块21用于接收车辆检测模块1上传的时间数据;
步骤3,车辆检测模块实时检测磁场强度数据,以采样频率Fs=100Hz~500Hz对磁场强度数据进行采样,获得离散的磁场强度数据,并根据离散的磁场强度数据检测车辆接近和离开检测点的过程,记录车辆接近检测点时的时间数据,并将时间数据发送给数据处理模块。
3.1)控制器子模块12根据实际测试的磁场强度数据设定阈值Th,并将其采样得到的离散的磁场强度数据与阈值Th进行比较,判断车辆接近检测点的过程:
如果离散的磁场强度数据高于阈值Th,则判断其后面是否有持续上升的K个数据均高于阈值Th:若是,则认为车辆已接近检测点,控制器子模块12记录该时间数据,执行3.2),若不是,则认为是干扰数据,不记录该时间数据;
如果离散的磁场强度数据低于阈值Th时,则认为车辆没有接近检测点,不进行处理;
3.2)控制器子模块12将上述离散的磁场强度数据再与设定的阈值Th比较,判断车辆离开检测点的过程:
如果离散的磁场强度数据低于阈值Th,则判断其后面是否有持续下降的L个数据均低于阈值Th:若是,则认为车辆已经离开检测点,控制器子模块12将时间数据发送给数据收发子模块13,数据收发子模块13再将该时间数据转发给数据处理模块2;若不是,则认为车辆还没有离开传感器检测范围;
如果离散的磁场强度数据高于阈值Th,则认为车辆还没有离开传感器检测范围,系统持续等待,直到磁场强度数据低于阈值Th;
所述K和L的值根据实际测试的磁场强度数据而定。
步骤4,数据处理模块对所有车辆检测模块上传的时间数据进行数据清洗,并利用车辆位置估计和速度估计标准差进行数据关联的匹配。
4.1)遍历每一个时间数据,并对时间数据格式进行判断:
如果时间数据不符合正常时间格式,则直接删除该时间数据;
如果时间数据符合正常时间格式,则保留该时间数据,直到遍历完所有时间数据,执行4.2);
4.2)设定循环变量初始值k=1;
4.3)按照下式由车辆接近第k个车辆检测模块的时间为车辆接近第k+1个车辆检测模块的时间开辟时间窗:
Figure BDA0003138266140000071
其中,tk为车辆接近第k个车辆检测模块的时间,Δxk为第k个车辆检测模块与第k+1个车辆检测模块的距离,
Figure BDA0003138266140000072
为车辆接近第k个车辆检测模块时的速度,σk,x和σk,v分别为车辆接近第k个车辆检测模块的位置估计及速度估计的标准差;
4.4)根据上述时间窗内时间数据的个数对车辆接近第k+1个车辆检测模块的时间tk+1进行确定:
如果只有一个时间数据在该时间窗内,则将该时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果有多个时间数据在该时间窗内,则将该多个时间数据从小到大排列,取中间的时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果没有时间数据在该时间窗内,则将时间窗的中间值作为车辆接近第k+1个车辆检测模块的时间tk+1
4.5)判断循环变量k与车辆检测模块总个数M的大小:
如果循环变量k小于车辆检测模块总个数,即k<M,则循环变量k值加1并返回4.3);
如果循环变量k等于车辆检测模块总个数,即k=M,则迭代结束,得到车辆经过所有车辆检测模块的时间;
步骤5,数据处理模块将匹配好的车辆接近所有车辆检测模块的时间数据和车辆检测模块的位置进行多次卡尔曼滤波迭代,得到精确的车辆速度。
5.1)设定车辆接近第1个车辆检测模块的状态初始值
Figure BDA0003138266140000073
协方差矩阵的初始值
Figure BDA0003138266140000074
根据实际测试所需要的车辆速度精度设置最大迭代次数为N,设置循环变量初始值k=1,其中vmax为道路允许的最大车速,本实例设但不限于N=7;
5.2)由车辆接近第k个车辆检测模块的状态预测车辆接近第k+1个车辆检测模块的状态:
Figure BDA0003138266140000081
其中,
Figure BDA0003138266140000082
为车辆接近第k个车辆检测模块的状态,
Figure BDA0003138266140000083
为车辆接近第k个车辆检测模块的估计位置,
Figure BDA0003138266140000084
为车辆接近第k个车辆检测模块的估计速度;
Figure BDA0003138266140000085
为车辆接近第k+1个车辆检测模块的状态预测,
Figure BDA0003138266140000086
为车辆接近第k+1个车辆检测模块的预测位置,
Figure BDA0003138266140000087
为第k+1个车辆检测模块的预测速度;
Figure BDA0003138266140000088
为状态转移矩阵,Δtk=tk+1-tk为车辆接近第k个车辆检测模块与车辆接近第k+1个车辆检测模块的时间差;
5.3)由5.2)得到的状态预测结果和第k+1个车辆检测模块的真实位置,通过下式估计车辆接近第k+1个车辆检测模块的速度:
Figure BDA0003138266140000089
其中,
Figure BDA00031382661400000810
为车辆接近第k+1个车辆检测模块的状态,
Figure BDA00031382661400000811
为车辆接近第k+1个车辆检测模块的估计位置,
Figure BDA00031382661400000812
为车辆接近第k+1个车辆检测模块的估计速度;
Figure BDA00031382661400000813
为第k+1个车辆检测模块的真实位置ηk+1与车辆接近第k+1个车辆检测模块的预测位置
Figure BDA00031382661400000814
的距离差;Wk+1为卡尔曼滤波的增益,其计算公式如下:
Wk+1=Pk+1|k(hk)T(Sk+1)-1
式中,
Figure BDA00031382661400000815
为状态预测协方差矩阵,Pk|k为车辆接近第k个车辆检测模块的协方差矩阵,
Figure BDA00031382661400000816
为噪声协方差矩阵;hk=[1 0]为车辆检测模块提供的观测矩阵;Sk+1=hkPk+1|k(hk)T+Rk为车辆检测模块提供的测量协方差矩阵,Rk为车辆检测模块的观测噪声;
5.4)按照下式对车辆接近第k+1个车辆检测模块的协方差矩阵进行更新:
Figure BDA0003138266140000091
其中,Pk+1|k+1为车辆接近第k+1个车辆检测模块的协方差矩阵;
5.5)判断循环变量k与设定的最大迭代次数N的大小:
如果循环变量k小于设定的最大迭代次数,即k<N,则循环变量k值加1并返回5.2);
如果循环变量k等于设定的最大迭代次数,即k=N,则迭代结束,得到车辆速度。
以上仅是本发明的一个具体实例,并不构成对本发明的任何限制,显然对于本领域的技术人员来说,均可在本发明的思想和精神下进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (5)

1.一种利用多地磁传感器的车速估计方法,其特征在于,包括如下:
A)车辆检测模块(1)设有M个,且沿道路旁等间隔部署,行驶在道路上的车辆依次经过每个车辆检测模块(1);
B)数据处理模块(2)获取实时时间数据,并将其发送给每一个车辆检测模块,实现所有车辆检测模块的时间同步;
C)车辆检测模块实时检测磁场强度数据,以采样频率Fs对磁场强度数据进行采样,获得离散的磁场强度数据,并根据离散的磁场强度数据检测车辆接近和离开检测点的过程,记录车辆接近检测点时的时间数据,并将时间数据发送给数据处理模块;
D)数据处理模块对所有车辆检测模块上传的时间数据进行数据清洗,并利用车辆位置估计和速度估计标准差进行数据关联的匹配:
D1)遍历每一个时间数据,并对时间数据格式进行判断:
如果时间数据不符合正常时间格式,则直接删除该时间数据;
如果时间数据符合正常时间格式,则保留该时间数据,直到遍历完所有时间数据,执行D2);
D2)设定循环变量初始值k=1;
D3)按照下式由车辆接近第k个车辆检测模块的时间为车辆接近第k+1个车辆检测模块的时间开辟时间窗:
Figure FDA0003138266130000011
其中,tk为车辆接近第k个车辆检测模块的时间,Δxk为第k个车辆检测模块与第k+1个车辆检测模块的距离,
Figure FDA0003138266130000012
为车辆接近第k个车辆检测模块时的速度,σk,x和σk,v分别为车辆接近第k个车辆检测模块的位置估计及速度估计的标准差;
D4)根据上述时间窗内时间数据的个数对车辆接近第k+1个车辆检测模块的时间tk+1进行确定:
如果只有一个时间数据在该时间窗内,则将该时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果有多个时间数据在该时间窗内,则将该多个时间数据从小到大排列,取中间的时间数据作为车辆接近第k+1个车辆检测模块的时间tk+1
如果没有时间数据在该时间窗内,则将时间窗的中间值作为车辆接近第k+1个车辆检测模块的时间tk+1
D5)判断循环变量k与车辆检测模块总个数M的大小:
如果循环变量k小于车辆检测模块总个数,即k<M,则循环变量k值加1并返回D3);
如果循环变量k等于车辆检测模块总个数,即k=M,则迭代结束,得到车辆经过所有车辆检测模块的时间;
E)数据处理模块将匹配好的车辆接近所有车辆检测模块的时间数据和车辆检测模块的位置进行多次卡尔曼滤波迭代,得到精确的车辆速度:
E1)设定车辆接近第1个车辆检测模块的状态初始值
Figure FDA0003138266130000021
协方差矩阵的初始值
Figure FDA0003138266130000022
根据实际测试所需要的车速精度设置最大迭代次数为N,设置循环变量初始值k=1,其中vmax为道路允许的最大车速;
E2)由车辆接近第k个车辆检测模块的状态预测车辆接近第k+1个车辆检测模块的状态:
Figure FDA0003138266130000023
其中,
Figure FDA0003138266130000024
为车辆接近第k个车辆检测模块的状态,
Figure FDA0003138266130000025
为车辆接近第k个车辆检测模块的估计位置,
Figure FDA0003138266130000026
为车辆接近第k个车辆检测模块的估计速度;
Figure FDA0003138266130000027
为车辆接近第k+1个车辆检测模块的状态预测,
Figure FDA0003138266130000028
为车辆接近第k+1个车辆检测模块的预测位置,
Figure FDA0003138266130000031
为车辆接近第k+1个车辆检测模块的预测速度;
Figure FDA0003138266130000032
为状态转移矩阵,Δtk=tk+1-tk为车辆接近第k个车辆检测模块与车辆接近第k+1个车辆检测模块的时间差;
E3)由E2)得到的状态预测结果和第k+1个车辆检测模块的真实位置,通过下式估计车辆接近第k+1个车辆检测模块的速度:
Figure FDA0003138266130000033
其中,
Figure FDA0003138266130000034
为车辆接近第k+1个车辆检测模块的状态,
Figure FDA0003138266130000035
为车辆接近第k+1个车辆检测模块的估计位置,
Figure FDA0003138266130000036
为车辆接近第k+1个车辆检测模块的估计速度;
Figure FDA0003138266130000037
为第k+1个车辆检测模块的真实位置ηk+1与车辆接近第k+1个车辆检测模块的预测位置
Figure FDA0003138266130000038
的距离差;Wk+1为卡尔曼滤波的增益,其计算公式如下:
Wk+1=Pk+1|k(hk)T(Sk+1)-1
其中,
Figure FDA0003138266130000039
为状态预测协方差矩阵,Pk|k为车辆接近第k个车辆检测模块的协方差矩阵,
Figure FDA00031382661300000310
为噪声协方差矩阵;hk=[10]为车辆检测模块提供的观测矩阵;Sk+1=hkPk+1|k(hk)T+Rk为车辆检测模块提供的测量协方差矩阵,Rk为车辆检测模块的观测噪声;
E4)按照下式对车辆接近第k+1个车辆检测模块的协方差矩阵进行更新:
Figure FDA00031382661300000311
其中,Pk+1|k+1为车辆接近第k+1个车辆检测模块的协方差矩阵;
E5)判断循环变量k与设定的最大迭代次数N的大小:
如果循环变量k小于设定的最大迭代次数,即k<N,则循环变量k值加1并返回E2);
如果循环变量k等于设定的最大迭代次数,即k=N,则迭代结束,得到车辆速度。
2.根据权利要求1所述的方法,其特征在于,A)中每个车辆检测模块(1)包括地磁传感器子模块(11)、控制器子模块(12)和数据收发子模块(13),该控制器子模块(12)与地磁传感器子模块(11)连接,与数据收发子模块(13)连接;地磁传感器子模块(11)实时检测磁场强度数据,并将磁场强度数据发送给控制器子模块(12);控制器子模块(12)对地磁传感器子模块的磁场强度数据进行采集,并将车辆接近检测点的时间数据发送给数据收发子模块(13);数据收发子模块(13)将该时间数据发送给数据处理模块(2)。
3.根据权利要求1所述的方法,其特征在于,B)中数据处理模块(2)包括数据收发子模块(21)、控制器子模块(22)和GPS子模块(23),该控制器子模块(22)与数据收发子模块(21)连接,与GPS子模块(23)连接;该GPS子模块(23)用于获取实时时间数据,并发送给每个车辆检测模块(1),实现所有车辆检测模块的时间同步;该数据收发子模块(21)用于接收车辆检测模块(1)上传的时间数据。
4.根据权利要求1所述的方法,其特征在于,C)中车辆检测模块对磁场强度数据进行采样的频率设为100Hz~500Hz,以获得离散的磁场强度数据。
5.根据权利要求1所述的方法,其特征在于,C)车辆检测模块根据离散的磁场强度数据检测车辆接近和离开检测点的过程,实现如下:
C1)根据实际测试的磁场强度数据设定阈值Th;
C2)车辆检测模块将其采样得到的离散的磁场强度数据与阈值Th进行比较,判断车辆接近检测点的过程:
如果离散的磁场强度数据高于阈值Th,则判断其后面是否有持续上升的K个数据均高于阈值Th:若是,则认为车辆已接近检测点,车辆检测模块记录该时间数据,执行C3),若不是,则认为是干扰数据,不记录该时间数据;
如果离散的磁场强度数据低于阈值Th时,则认为车辆没有接近检测点,不进行处理;
C3)车辆检测模块将上述的离散的磁场强度数据再与设定的阈值Th比较,判断车辆离开检测点的过程:
如果离散的磁场强度数据低于阈值Th,则判断其后面是否有持续下降的L个数据均低于阈值Th:若是,则认为车辆已经离开检测点;若不是,则认为车辆还没有离开传感器检测范围;
如果离散的磁场强度数据高于阈值Th,则认为车辆还没有离开传感器检测范围,系统持续等待,直到磁场强度数据低于阈值Th;
所述K和L的值根据实际测试的磁场强度数据而定。
CN202110725027.7A 2021-06-29 2021-06-29 一种利用多地磁传感器的车速估计方法 Active CN113436442B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110725027.7A CN113436442B (zh) 2021-06-29 2021-06-29 一种利用多地磁传感器的车速估计方法
US17/851,225 US20220413005A1 (en) 2021-06-29 2022-06-28 Method for vehicle speed estimation using multiple geomagnetic sensors
AU2022204558A AU2022204558B2 (en) 2021-06-29 2022-06-28 Method for vehicle speed estimation using multiple geomagnetic sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110725027.7A CN113436442B (zh) 2021-06-29 2021-06-29 一种利用多地磁传感器的车速估计方法

Publications (2)

Publication Number Publication Date
CN113436442A CN113436442A (zh) 2021-09-24
CN113436442B true CN113436442B (zh) 2022-04-08

Family

ID=77757501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110725027.7A Active CN113436442B (zh) 2021-06-29 2021-06-29 一种利用多地磁传感器的车速估计方法

Country Status (3)

Country Link
US (1) US20220413005A1 (zh)
CN (1) CN113436442B (zh)
AU (1) AU2022204558B2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609912B (zh) * 2022-03-18 2023-10-03 电子科技大学 基于伪线性最大相关熵卡尔曼滤波的仅测角目标追踪方法
CN115087092B (zh) * 2022-05-25 2024-02-27 电子科技大学 一种多传感器最大相关熵拓展信息滤波分层融合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555017A1 (en) * 2011-08-03 2013-02-06 Harman Becker Automotive Systems GmbH Vehicle navigation on the basis of satellite positioning data and vehicle sensor data
CN105096611A (zh) * 2015-08-17 2015-11-25 深圳市中科车港实业有限公司 一种道路车辆检测系统及方法
CN106571034A (zh) * 2016-11-02 2017-04-19 浙江大学 基于融合数据的城市快速路交通状态滚动预测方法
CN110796876A (zh) * 2019-10-22 2020-02-14 南京理工大学 基于卡尔曼滤波的路段车辆总数估计方法
CN111696367A (zh) * 2020-06-11 2020-09-22 西安电子科技大学 多地磁传感器测速系统及其测速方法
CN112183196A (zh) * 2020-08-20 2021-01-05 北京航空航天大学 一种基于kf/ufir自适应融合滤波器的交通路口车辆状态估计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253648A1 (en) * 2011-04-01 2012-10-04 Electronics And Telecommunications Research Institute Apparatus and method for generating traffic information
JP5742450B2 (ja) * 2011-05-10 2015-07-01 セイコーエプソン株式会社 位置算出方法及び位置算出装置
CN103730013B (zh) * 2013-09-27 2016-05-25 深圳市金溢科技股份有限公司 一种车道车速检测和数据融合方法及系统
JP6677533B2 (ja) * 2016-03-01 2020-04-08 クラリオン株式会社 車載装置、及び、推定方法
CN107861098B (zh) * 2017-11-10 2020-01-24 简极科技有限公司 一种智能球场定位系统及方法
CN108986482A (zh) * 2018-07-05 2018-12-11 南京理工大学 一种基于单轴地磁传感器的车辆检测方法
JP7285799B2 (ja) * 2020-03-16 2023-06-02 東京海上日動火災保険株式会社 事故分析装置、事故分析方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555017A1 (en) * 2011-08-03 2013-02-06 Harman Becker Automotive Systems GmbH Vehicle navigation on the basis of satellite positioning data and vehicle sensor data
CN105096611A (zh) * 2015-08-17 2015-11-25 深圳市中科车港实业有限公司 一种道路车辆检测系统及方法
CN106571034A (zh) * 2016-11-02 2017-04-19 浙江大学 基于融合数据的城市快速路交通状态滚动预测方法
CN110796876A (zh) * 2019-10-22 2020-02-14 南京理工大学 基于卡尔曼滤波的路段车辆总数估计方法
CN111696367A (zh) * 2020-06-11 2020-09-22 西安电子科技大学 多地磁传感器测速系统及其测速方法
CN112183196A (zh) * 2020-08-20 2021-01-05 北京航空航天大学 一种基于kf/ufir自适应融合滤波器的交通路口车辆状态估计方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A Novel Cost-Effective IoT-Based Traffic Flow;Guoqiang Mao;《2020 Internationalconference on communications in china》;20201109;全文 *
MagMonitor: Vehicle Speed Estimation and Vehicle;Yimeng Feng;《IEEE Transcations on intelligent transportation systems》;20200930;全文 *
基于磁传感器的车辆信息提取技术研究;黄浩楠;《中国优秀博硕士学位论文全文数据库(硕士)》;20210415;全文 *
多传感器信息融合的自动驾驶车辆定位与速度估计;彭文正等;《传感技术学报》;20200815(第08期);全文 *
机载雷达坐标转换及数据处理的建模与仿真;王刚;《电子科技》;20121231;全文 *

Also Published As

Publication number Publication date
AU2022204558B2 (en) 2023-04-27
CN113436442A (zh) 2021-09-24
AU2022204558A1 (en) 2023-01-19
US20220413005A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN110532896B (zh) 一种基于路侧毫米波雷达和机器视觉融合的道路车辆检测方法
CN100538763C (zh) 基于视频的混合交通流参数的检测方法
CN113436442B (zh) 一种利用多地磁传感器的车速估计方法
CN103324913A (zh) 一种基于形状特征和轨迹分析的行人事件检测方法
CN104200657A (zh) 一种基于视频和传感器的交通流量参数采集方法
Li et al. Some practical vehicle speed estimation methods by a single traffic magnetic sensor
US20210350699A1 (en) Method for Vehicle Classification Using Multiple Geomagnetic Sensors
CN109444872B (zh) 行人与车辆的区分方法、装置、计算机设备及存储介质
CN110310491B (zh) 一种短间距双节点地磁车速检测系统及检测方法
CN111047879A (zh) 一种车辆超速检测方法
Goodman Detection and classification for unattended ground sensors
Kawakatsu et al. Fully-neural approach to heavy vehicle detection on bridges using a single strain sensor
CN109612568A (zh) 一种振源移动干扰源识别方法
CN115629385A (zh) 基于毫米波雷达和相机关联的车辆排队长度实时检测方法
CN116008990A (zh) 一种基于雷达数据的高速公路车辆轨迹拼接方法
AU2020429374B2 (en) A multi-geomagnetic sensor speed measurement system and a speed measurement method using the multi-geomagnetic sensor speed measurement system
CN107065886A (zh) 基于云的汽车无人驾驶系统
CN103730011A (zh) 一种基于激光器的车型识别检测方法及系统
KR100274581B1 (ko) 차종 인식장치 및 방법
CN115236603B (zh) 隧道内基于时空关系的毫米波雷达量测异常轨迹处理方法
CN115019521B (zh) 一种确定车辆速度的方法和系统
KR100274579B1 (ko) 신경망 모형 기법을 통한 차종 인식방법
CN116256721B (zh) 通道场景模式判断方法、系统、电子设备及介质
Sai et al. Road Traffic Analysis Using 2D LIDAR
KR100248984B1 (ko) 정규화 기반의 차종 인식 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant