CN113430184B - Transaminase and application thereof in preparation of sitagliptin - Google Patents

Transaminase and application thereof in preparation of sitagliptin Download PDF

Info

Publication number
CN113430184B
CN113430184B CN202110729828.0A CN202110729828A CN113430184B CN 113430184 B CN113430184 B CN 113430184B CN 202110729828 A CN202110729828 A CN 202110729828A CN 113430184 B CN113430184 B CN 113430184B
Authority
CN
China
Prior art keywords
ala
gly
val
arg
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110729828.0A
Other languages
Chinese (zh)
Other versions
CN113430184A (en
Inventor
周硕
赖敦岳
劳淑华
叶涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Enzymatic Biotechnology Co ltd
Original Assignee
Taizhou Enzymatic Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Enzymatic Biotechnology Co ltd filed Critical Taizhou Enzymatic Biotechnology Co ltd
Priority to CN202110729828.0A priority Critical patent/CN113430184B/en
Publication of CN113430184A publication Critical patent/CN113430184A/en
Application granted granted Critical
Publication of CN113430184B publication Critical patent/CN113430184B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)

Abstract

The application discloses a transaminase and an application thereof in preparation of sitagliptin, wherein the amino acid sequence of the transaminase is shown as SEQ ID NO: 1 or a sequence similar to the sequence shown in SEQ ID NO: 1 at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar. The transaminase can asymmetrically catalyze sitagliptin precursor ketone (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazine-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butyl-2-ketone to generate sitagliptin intermediate (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazine-7-yl ] -4- (2,4, 5-trifluorophenyl) butyl-1-ketone, the enzyme activity of the transaminase can reach 1100U/g, when the enzyme catalysis reaction is carried out for 2 hours, 50 mu L of transaminase liquid can lead the substrate conversion rate to reach 55 percent, and compared with the prior transaminase catalyzing the same reaction, the transaminase has the advantages of high activity, ideal stability and good tolerance to organic solvents.

Description

Transaminase and application thereof in preparation of sitagliptin
Technical Field
The application relates to the field of enzyme engineering and biological pharmacy, in particular to transaminase and application thereof in preparation of sitagliptin.
Background
Sitagliptin (Sitagliptin) is an effective drug for treating type II diabetes mellitus, is all called (3R) -3-amino-1- [3- (trifluoromethyl) -5, 6-dihydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7 (8H) -yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, is a dipeptidyl peptidase-4 (DPP-4) inhibitor, controls blood glucose levels mainly by protecting endogenous incretins and enhancing the action thereof, and has better safety and tolerance.
In the prior art, methods for preparing sitagliptin mainly comprise a chemical synthesis method and a biological synthesis method, wherein the chemical synthesis method has the defects of multiple process steps, expensive reagents (such as metal catalysts) and the like, and part of the reagents (such as metal catalysts and the like) have toxic and harmful effects on the environment and human bodies although the process is mature. The biosynthesis method is to prepare sitagliptin by using an enzyme as a catalyst, and most of enzymes used in the biosynthesis method at present are Transaminases (TAs), particularly omega-Transaminase. The transaminase can carry out a catalytic reaction for asymmetrically transamination sitagliptin precursor ketone to form a sitagliptin intermediate, but wild-type transaminase existing in nature mostly has no catalytic activity or low catalytic activity on the catalytic reaction, so that the wild-type transaminase is necessary to be directionally modified to improve the conversion rate and the product yield of the catalytic reaction, for example, Codexis modifies omega-transaminase derived from Arthrobacter sp, and the obtained transaminase mutant has high catalytic activity on sitagliptin precursor ketone 1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -1, 3-butanedione.
However, the existing biosynthesis methods still have many disadvantages, such as: (1) because the prior transaminase is low in activity, a large amount of enzyme liquid needs to be added into a reaction system, so that a large amount of free protein remains in the reaction system after the reaction is finished, and the separation and purification of products are not facilitated; (2) the stability of free transaminase is poor, and the requirements on storage environment and transportation operation of the transaminase are high; (3) transaminase has poor resistance to organic solvents and is difficult to use for long-term reactions in reaction solutions containing organic solvents. Therefore, there is a need to develop a novel transaminase for the preparation of sitagliptin.
Disclosure of Invention
The application provides transaminase and application thereof in preparation of sitagliptin, so as to solve the problems in the prior art that the sitagliptin is prepared by a biosynthesis method.
In a first aspect, the present application provides a transaminase enzyme having an amino acid sequence set forth in SEQ ID NO: 1 or a sequence similar to the sequence shown in SEQ ID NO: 1 at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar.
Further, the amino acid sequence of said transaminase is represented by SEQ ID NO: 1 by one or more point mutations.
Further, the amino acid in which the point mutation occurs includes SEQ ID NO: 1, one or more of amino acid T at position 34, amino acid H at position 77, amino acid F at position 80, amino acid Y at position 153, amino acid I at position 155, amino acid L at position 158, amino acid P at position 163, amino acid S at position 181, amino acid A at position 183, amino acid V at position 185, amino acid V at position 199, amino acid S at position 218, amino acid T at position 237, amino acid R at position 259, amino acid D at position 260, amino acid R at position 276, amino acid G at position 277, amino acid V at position 293, amino acid W at position 309, amino acid M at position 321, and amino acid D at position 322.
Further, the point mutations are generated in a manner of T34A, H77N, F80A, Y153T, I155V, L158Q, P163F, S181T, a183R, V185R, V199I, S218C, T237V, R259E, D260S, R276Y, G277D, V293F, W309V, M321N, or D322V.
In some embodiments of the present application, the transaminase has an amino acid sequence of SEQ ID NO: 3. SEQ ID NO: 5. SEQ ID NO: 7. SEQ ID NO: 9. SEQ ID NO: 11. SEQ ID NO: 13. SEQ ID NO: 15. SEQ ID NO: 17. SEQ ID NO: 19. SEQ ID NO: 21. SEQ ID NO: 23. SEQ ID NO: 25. SEQ ID NO: 27. SEQ ID NO: 29. SEQ ID NO: 31. SEQ ID NO: 33. SEQ ID NO: 35. SEQ ID NO: 37. SEQ ID NO: 39. SEQ ID NO: 41 or SEQ ID NO: 43.
As an alternative embodiment, the point mutations are generated in any one of the combinations shown below:
(1) T34A and F80A;
(2) T34A, H77N and F80A;
(3) T34A, F80A and Y153T;
(4) Y153T, P163F, S181T and V185S;
(5) H77N, I155V, S181T and V185S;
(6) T34A, F80A, L158Q, P163F, S181T, a183R, and V185S;
(7) P163F, S181T, a183R and V185S;
(8) S181T, T237V, and R259E;
(9) V185S, a183R, S181T, T237V and R259E;
(10) F80A, L158Q, P163F, S181T, a183R, V185S, and S218C;
(11) T34A, H77N, F80A and D260S;
(12) F80A, L158Q, P163F, S181T, R276Y and G277D;
(13) T34A, H77N, F80A, D260S, V293F, W306V, and M321N; or
(14) T34A, F80A, L158Q, P163F, S181T, a183R, V185S, M321N and D322V.
In some embodiments of the present application, the transaminase has an amino acid sequence of SEQ ID NO: 45. SEQ ID NO: 47. SEQ ID NO: 49. SEQ ID NO: 51. SEQ ID NO: 53. SEQ ID NO: 55. SEQ ID NO: 57. SEQ ID NO: 59. SEQ ID NO: 61. SEQ ID NO: 63. SEQ ID NO: 65. SEQ ID NO: 67. SEQ ID NO: 69 or SEQ ID NO: 71.
In a second aspect, the present application provides a nucleic acid molecule comprising a nucleotide sequence encoding any one of the transaminases of the first aspect, the nucleotide sequence being any one of:
(a) the nucleotide sequence is shown as SEQ ID NO: 2 is shown in the specification;
(b) the nucleotide sequence is similar to the nucleotide sequence shown in SEQ ID NO: 2 is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar; or
(c) The nucleotide sequence is obtained by codon optimization of the nucleotide sequence in (a) or (b).
In some embodiments of the present application, the nucleotide sequence is as set forth in SEQ ID NO: 46. SEQ ID NO: 48. SEQ ID NO: 50. SEQ ID NO: 52. SEQ ID NO: 54. SEQ ID NO: 56. SEQ ID NO: 58. SEQ ID NO: 60. SEQ ID NO: 62. SEQ ID NO: 64. SEQ ID NO: 66. SEQ ID NO: 68. SEQ ID NO: 70 or SEQ ID NO: 72.
In some embodiments of the present application, the nucleotide sequence is as set forth in SEQ ID NO: 4. SEQ ID NO: 6. SEQ ID NO: 8. SEQ ID NO: 10. SEQ ID NO: 12. SEQ ID NO: 14. SEQ ID NO: 16. SEQ ID NO: 18. SEQ ID NO: 20. SEQ ID NO: 22. SEQ ID NO: 24. SEQ ID NO: 26. SEQ ID NO: 28. SEQ ID NO: 30. SEQ ID NO: 32. SEQ ID NO: 34. SEQ ID NO: 36. SEQ ID NO: 38. SEQ ID NO: 40. SEQ ID NO: 42 or SEQ ID NO: 44, or a nucleotide sequence as set forth in seq id no.
In a third aspect, the present application provides a recombinant expression vector comprising a vector, which may be, for example, a plasmid, and a nucleic acid molecule as described in any one of the second aspects.
In a fourth aspect, the present application provides a transformant comprising an expression system, and a nucleic acid molecule as described in any one of the second aspects or a recombinant expression vector as described in the third aspect. The expression system may be eukaryotic or prokaryotic.
In a fifth aspect, the present application provides an enzyme preparation comprising any one of the transaminases of the first aspect, as will be understood by those skilled in the art, the enzyme preparation may further comprise food or pharmaceutically acceptable adjuvants and/or adjuvants for the purpose of excipient, protecting the active components of the enzyme, improving the stability of the enzyme, and the like.
In a sixth aspect, the present application provides the use of a transaminase according to any one of the first aspects or a nucleic acid molecule according to any one of the second aspects, or a recombinant expression vector as described in the third aspect, or a transformant as described in the fourth aspect, or an enzyme preparation as described in the fifth aspect, in the preparation of sitagliptin, which transaminase or the enzyme preparation, or a transaminase produced via at least one of the nucleic acid molecule, the recombinant expression vector and the transformant, is combined with the substrate sitagliptin precursor ketone (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one is subjected to enzymatic reaction to generate sitagliptin intermediate (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one.
The application provides a transaminase and application thereof in preparation of sitagliptin, wherein the transaminase or an enzyme preparation containing the transaminase can asymmetrically catalyze sitagliptin precursor ketone (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one to generate sitagliptin intermediate (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, the enzyme activity of the transaminase can reach 1100U/g, and when the enzyme catalysis reaction is carried out for 2 hours, 50 mu L of transaminase liquid can lead the substrate conversion rate to reach 55 percent. Compared with the existing transaminase catalyzing the same reaction, the transaminase has the advantages of high activity, ideal stability and good tolerance to organic solvents, and the application of the transaminase in the preparation process of sitagliptin can be beneficial to separation and purification of products.
Drawings
The technical solutions and advantages of the present application will become apparent from the following detailed description of specific embodiments of the present application when taken in conjunction with the accompanying drawings.
FIG. 1 is an agarose gel electrophoresis pattern of the PCR product of example 1.
FIG. 2 is an HPLC chromatogram of a standard of (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, which is the reaction product of example 4.
FIG. 3 is an HPLC plot of the base compound in the reaction system at the initial reaction in example 4.
FIG. 4 is an HPLC chromatogram of the reaction system of example 4 comprising the transaminase numbered 1 after 2h of reaction, in which A1 is the reaction substrate peak and B1 is the reaction product peak.
FIG. 5 is an HPLC chromatogram of the reaction system of example 4 comprising the transaminase number 17 after 2h of reaction, in which A3 is the reaction substrate peak and B3 is the reaction product peak.
FIG. 6 is an HPLC chromatogram of the reaction system of example 4 comprising the transaminase number 36 for 2h, in which A4 is the reaction substrate peak and B4 is the reaction product peak.
Detailed Description
The embodiment of the application provides transaminase and application thereof in preparation of sitagliptin, wherein the amino acid sequence of the transaminase is shown as SEQ ID NO: 1 or a sequence similar to the sequence shown in SEQ ID NO: 1 at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar. The transaminase can asymmetrically catalyze sitagliptin precursor ketone (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one to generate sitagliptin intermediate (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, and the reaction formula is shown as (1):
Figure BDA0003139638830000051
experimental procedures without specific conditions noted in the examples below, molecular cloning is generally performed according to conventional conditions such as Sambrook et al: the conditions described in the Laboratory Manual (New York: Cold Spring Harbor Laboratory Press,1989), or according to the manufacturer's recommendations.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In addition, any methods and materials similar or equivalent to those described herein can be used in the present application. The preferred embodiments and materials described herein are exemplary only, and are not intended to limit the scope of the present application.
Unless otherwise indicated, reagents and materials referred to herein are either commercially available or can be prepared by one of ordinary skill in the art on the basis of common general knowledge.
Definition and description:
as used herein, "similarity" refers to the correlation between two amino acid sequences or two nucleotide sequences. In the present examples, a sequence similarity of 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% is understood to have at least 80% similarity, where the numerical values for similarity are integers; it is also further understood that 80.1%, 81.2%, 82.3%, 83.4%, 84.5%, 85.6%, 86.7%, 87.8%, 88.9%, 89.8%, 90.3%, 91.7%, 92.2%, 93.5%, 94.8%, 95.9%, 96.6%, 97.5%, 98.4% or 99.9% sequence similarity, but less than 100% sequence similarity, corresponds to fractional numbers of similarity.
As used herein, amino acids are represented by the single or three letter codes and have the following meanings: a: ala (alanine); r: arg (arginine); n: asn (asparagine); d: asp (aspartic acid); c: cys (cysteine); q: gln (glutamine); e: glu (glutamic acid); g: gly (glycine); h: his (histidine); i: ile (isoleucine); l: leu (leucine); k: lys (lysine); m: met (methionine); f: phe (phenylalanine); p: pro (proline); s: ser (serine); t: thr (threonine); w: trp (tryptophan); y: tyr (tyrosine); v: val (valine).
As used herein, "point mutation" refers to a substitution, deletion or insertion of an amino acid at a specific site. In the examples of the present application, the mode of point mutation is substitution of amino acids at specific positions. For the point mutation mode of amino acid substitution, the nomenclature is: original amino acids, sites of original amino acids, substituted amino acids, such as: T34A represents the amino acid sequence set forth in SEQ ID NO: 1 by substituting the original threonine with alanine at position 34, as shown in seq id no: V185R represents the sequence set forth in SEQ ID NO: 1 by substituting arginine for the original valine at position 185 in the amino acid sequence shown in figure 1, as well as: S181T, T237V and R259E represent the amino acid sequence set forth in SEQ ID NO: 1 by substituting the original serine with threonine at position 181 in the amino acid sequence shown in SEQ ID NO: 1 by substituting valine for the original threonine at position 237 in the amino acid sequence shown in SEQ ID NO: 1 by substituting glutamic acid for the original arginine at position 259 in the amino acid sequence shown in figure 1.
As used herein, "nucleic acid molecule" refers to a biomacromolecule compound formed by polymerization of a plurality of nucleotides, and may be any of deoxyribonucleic acid (DNA) fragments, ribonucleic acid (RNA) fragments, and oligonucleotide fragments produced by Polymerase Chain Reaction (PCR) or by in vitro translation, and fragments produced by any one or more of ligation, cleavage, endonuclease action, or exonuclease action, and may be single-stranded or double-stranded. In the present examples, nucleic acid molecules include, but are not limited to, nucleotide sequences for encoding transaminases.
As used herein, "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid, and may be, for example, a plasmid, a virus, a cosmid, or the like, and in the present embodiment, a pUC-19 plasmid into which a foreign gene has not been inserted may be used as a vector.
As used herein, "recombinant expression vector" refers to a DNA construct containing a nucleic acid molecule operably linked to suitable control sequences that enable expression of the nucleic acid molecule in a suitable expression system. In the present embodiment, the recombinant expression vector refers to a DNA construct formed by inserting a foreign gene into a vector using molecular biology techniques, and exemplified by pUC19-WT as a recombinant expression vector.
As used herein, "expression system" refers to a type of host used to express foreign genes to produce proteins, and may be, for example, eukaryotic organisms including, but not limited to, mammalian cells, yeast, fungi, insect cells, and plant cells, prokaryotic organisms including, but not limited to, Bacillus, Clostridium, Lactobacillus, Streptomyces, Staphylococcus, Escherichia coli, Pseudomonas, and Paenibacillus, and viruses. In the examples of the present application, the expression system of pUC19-WT was Escherichia coli.
As used herein, "transformant" refers to a host that has been subjected to exogenous genetic material (e.g., plasmid DNA) to produce a change in genetic characteristics. In the present embodiment, the genetically engineered bacterium containing a gene encoding transaminase belongs to a transformant.
As used herein, "enzyme preparation" refers to a functionalized product obtained by extracting a biocatalytically active substance from a living organism (e.g., a microorganism) with the aid of other components. In the examples of the present application, the active ingredient of the enzyme preparation is a transaminase, the amino acid sequence of which is as set forth in SEQ ID NO: 1 or the amino acid sequence of the transaminase is the same as the amino acid sequence shown in SEQ ID NO: 1 at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% similar amino acid sequence, which can be used in a process for the production of sitagliptin. In some embodiments, the enzyme preparation may include necessary excipients, stabilizers, protectants, and the like, food-or pharmaceutically acceptable adjuvants and/or adjuvants.
Description of the culture Medium in the examples of the present application
(1) LB Medium
Every 100mL of LB liquid culture medium, including: 1.0g of peptone, 0.5g of yeast powder, and 1.0g of NaCl.
For LB solid medium, 20g/L agar was added based on the LB liquid medium formulation.
(2) Self-induction culture medium
120g of yeast powder, 60g of tryptone, 0.75g of magnesium sulfate (MgSO4) and 16.5g of ammonium sulfate ((NH4)2SO4), 32.5g of potassium dihydrogen phosphate (KH)2PO4), 35.5g disodium hydrogen phosphate (Na)2HPO4), 2.5g of glucose and 10g of alpha-lactose, the weighed components are then all added to the mill and filledGrinding the mixture into powder to obtain the powdered self-induction culture medium. Dissolving the powdered self-induction culture medium in 1L deionized water, mixing well, adjusting pH to 7.0, and sterilizing at 121 deg.C for 30 min.
Secondly, the description of the plasmids and competent cells involved in the examples of the present application is detailed in the following table 1:
TABLE 1 description of the examples of the present application relating to plasmids and competent cells
Figure BDA0003139638830000071
Figure BDA0003139638830000081
Third, description of gene fragments and reagents involved in the examples of the present application:
the gene segment related in the embodiment of the application comprises a primer, a primer shown as SEQ ID NO: 2, etc. were synthesized by Biotechnology engineering (Shanghai) Ltd.
Restriction enzymes (e.g., BamH I, Nde I and Dpn I), T4 ligase, KOD Hi-Fi enzyme kit, gel recovery kit, 10 XT 4 ligase Buffer (Buffer), double distilled water (ddH) referred to in the examples of the present application2Molecular reagents such as O) were purchased from Takara Bio Inc.
The substrate compound referred to in the examples of this application, the (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one, and the (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one standards, are commercially available.
The technical scheme and the beneficial effects of the application are further explained by combining the embodiment.
Example 1: screening transaminase and constructing recombinant expression vector containing transaminase coding gene
1.1 screening for transaminases
A soil sample of 5-15 cm is collected in a certain paddy field of Changan town of Haining city of Hangzhou city to be used as a screening sample of transaminase. Weighing 5g of soil sample, placing the soil sample into a 50mL centrifuge tube, adding 5mL of 0.1% (w/w) sodium pyrophosphate solution, reversing the solution for several times, uniformly mixing the solution, placing the mixture at room temperature for 20min, and slightly reversing the solution every 10min to uniformly mix the solution; then, centrifugation was carried out at 12000 Xg for 10min at room temperature, and the supernatant was removed to collect the precipitate; 0.5g of precipitate is weighed, and genome extraction operation is carried out on the weighed precipitate by adopting a FastDNA kit to obtain a soil genome.
Designing a PCR primer pair F1 (upstream primer) and R1 (downstream primer) according to the conserved amino acid sequences of the upstream and downstream of transaminase, and adding enzyme cutting sites BamH I and Nde I at the ends of the primer pair, wherein the nucleotide sequence of F1 is shown as SEQ ID NO: 73, and the nucleotide sequence of R1 is shown in SEQ ID NO: as shown at 74. The PCR system was a KOD system (commercially available from Takara Bio-engineering, Inc.) and the template was the soil genome extracted as described above. The PCR reaction conditions are as follows: pre-denaturation at 95 ℃ for 5 min; denaturation at 95 ℃ for 30 s; annealing at 55 ℃ for 30 s; extension at 72 ℃ for 1.5min for 30 cycles; extending for 10min at 72 ℃; keeping at 4 ℃.
And (3) after the PCR reaction is finished, carrying out agarose gel electrophoresis on the PCR product, wherein the result of the agarose gel electrophoresis is shown in figure 1, carrying out gel cutting recovery on the band with the fragment size of 500-2000 bp, and then sequencing a plurality of DNA samples recovered by gel cutting respectively to obtain a plurality of corresponding nucleotide sequences. A nucleotide sequence with higher similarity to the nucleotide sequence of the prior transaminase coding gene is obtained by screening by using the Blast comparative analysis function of an NCBI database, and the nucleotide sequence is shown as SEQ ID NO: 2, SEQ ID NO: 2 is shown as SEQ ID NO: 1, wherein, SEQ ID NO: 1 has 94.61% similarity with the amino acid sequence of NCBI accession number RBP 85366.1.
1.2 construction of recombinant expression vector pUC19-WT
Selecting a pUC-19 plasmid without inserted foreign gene as a vector, wherein the pUC-19 plasmid has enzyme cutting sites of BamH I and Nde I, and pUC19-WT is constructed by the following steps:
s1.21, artificially synthesizing the polypeptide shown as SEQ ID NO: 2, carrying out double enzyme digestion on the synthesized nucleotide sequence by using BamH I and Nde I restriction endonucleases, detecting the complete enzyme digestion by 1% agarose gel electrophoresis, and then carrying out gel recovery on the target gene fragment, wherein the operation of recovering the target gene fragment after double enzyme digestion is carried out according to the operation instruction of the gel recovery kit;
s1.22, carrying out double enzyme digestion on the pUC-19 plasmid by using BamH I and Nde I restriction endonucleases, detecting complete enzyme digestion by 1% agarose gel electrophoresis, and then carrying out gel recovery on a carrier framework, wherein the operation of recovering the carrier framework after double enzyme digestion is carried out according to the operation instruction of a gel recovery kit;
s1.23, mixing the target gene fragment obtained in the step S1.21 with the vector framework obtained in the step S1.22, connecting the target gene fragment and the vector framework under the action of T4 ligase at 16 ℃ overnight, then transforming the connection product into DH5a competent cells, selecting a monoclonal antibody for sequencing verification, extracting a recombinant plasmid with correct sequencing, obtaining a recombinant expression vector containing a transaminase encoding gene, and naming pUC19-WT, wherein the connecting body is 20 mu L, and specifically comprises the following steps: mu.L of 10 XT 4 ligase Buffer (Buffer), 5. mu.L of the target gene fragment, 5. mu.L of the vector backbone, 2. mu.L of T4 ligase, and 6. mu.L of double distilled water (ddH)2O)。
Example 2 construction of genetically engineered bacterium containing transaminase-encoding Gene
The polypeptide with the sequence shown in SEQ ID NO: 1 to obtain a plurality of transaminase mutants, wherein the specific mutation modes are detailed in table 2.
Using site-directed mutagenesis strategy, point mutation primers were designed using Oligo7 software according to the amino acid site to be mutated, and mutations were introduced by inserting, replacing or deleting bases at the 5' ends of the upstream and downstream mutation primers. The recombinant expression vector pUC19-WT constructed in example 1 was selected as a template and subjected to inverse PCR using a KOD high fidelity enzyme kit to obtain a transaminase mutation sequence. Treating the obtained transaminase mutation sequence with Dpn I restriction endonuclease, connecting the enzyme digestion products with T4 ligase, transforming escherichia coli BL21(DE3) competence, then coating an LB resistant plate containing kanamycin, placing the plate at 37 ℃ for inverted culture for 18h, selecting a single colony to be transferred into an LB liquid culture medium containing kanamycin, selecting a culture solution, sending the sample to sequence, and storing a clone with correct sequence for later use, thereby obtaining the genetically engineered bacterium taking escherichia coli as a host.
It should be noted that, the nucleotide sequence of the mutant primer can be obtained by those skilled in the art according to the way of introducing the mutation site and the basic principle of primer design. Taking the construction of T34A as an example, the nucleotide sequence of the upstream primer for reverse PCR amplification is shown as SEQ ID NO: 75, the downstream primer for reverse PCR amplification is shown as SEQ ID NO: as shown at 76.
In addition, the reaction procedure of the inverse PCR was: pre-denaturation at 95 ℃ for 3 min; denaturation at 98 ℃ for 30s, annealing at 55 ℃ for 30s, extension at 68 ℃ for 3min, 28 cycles; extension at 72 ℃ for 5 min.
Example 3 inducible expression and post-treatment of genetically engineered bacteria containing transaminase-encoding genes
The genetically engineered bacterium obtained in example 2 was inoculated into LB liquid medium containing 50. mu.g/mL kanamycin, and cultured at 37 ℃ and 180r/min until OD600 became 0.6 to 0.8, to obtain a seed bacterial solution. The seed bacterial liquid was inoculated into a fresh self-induction medium containing 50. mu.g/mL kanamycin at a volume concentration of 1%, and cultured at 30 ℃ for 18 hours to obtain a culture solution. Centrifuging the culture solution at 25 deg.C and 8000r/min for 10min, discarding supernatant to collect precipitate, washing the precipitate with PB buffer solution with pH of 7.0 for several times, and collecting wet thallus.
The obtained wet cells were resuspended in ultrapure water to obtain a bacterial solution having a cell concentration of 20%. The bacterial liquid is treated by an ultrasonic crushing method or a high-pressure homogenizing crushing method, and the crushing conditions can be selected according to actual requirements. The working parameters of an example ultrasonication method were: crushing for 1 s; pausing for 2 s; crushing at 180W for 10 min. The working parameters of an exemplary high-pressure homogeneous crushing method are: crushing twice under 50HZ and 800bar conditions.
After the bacterial liquid is crushed, centrifuging for 10-15 min at 4 ℃ and 12000r/min to remove cell debris and macromolecular impurities, collecting supernatant, and storing at-20 ℃ and 4 ℃ for later use, wherein the supernatant is enzyme liquid containing transaminase.
Example 4 determination of transaminase Properties expressed by genetically engineered bacteria containing transaminase-encoding genes
50. mu.L of the enzyme solution prepared in example 3 was placed on a reaction plate, and 0.75mL of a stock mixture having pH 8.5, which contained 0.2mol/L triethanolamine, 2mmol/L pyridoxal phosphate (PLP), 2mol/L Isopropylamine (IPM), and sterile water, was added to the enzyme solution to obtain a mixed system. Subsequently, 200. mu.L of absolute ethanol containing 25g/L of a substrate compound, which is (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one, was added to the mixed system to carry out an initial reaction. The content of each component in the reaction system is determined as follows: 5g/L of the substrate compound, 1.5mol/L of IPM, 2mmol/L of PLP and 20% (v/v) of absolute ethanol, and the pH of the whole reaction system was 8.5.
And (3) carrying out heat sealing on the reaction plate containing the reaction system, continuously reacting for 2h under the shaking condition of 45 ℃ and 200r/min, and detecting and analyzing a reaction product by using a High Performance Liquid Chromatography (HPLC) method after the reaction is finished.
The model of the HPLC apparatus is Agilent 1260 (Agilent), and the working conditions of the HPLC are as follows:
(1) preparation of a sample solution: taking 50 mu L of reaction product, adding 1mL of anhydrous isopropanol containing saturated sodium chloride, then adding 10 mu L of 5mol/L sodium hydroxide solution, fully mixing uniformly and centrifuging to collect supernatant; taking 500 mu L of supernatant, adding 500 mu L of anhydrous isopropanol, and fully and uniformly mixing to prepare a sample injection, wherein the sample injection amount is 10 mu L each time;
(2) a chromatographic column: CHIRALPAK IC, 4.6 x 150mm, 5 μm.
(3) Preparation of mobile phase: anhydrous n-hexane, anhydrous ethanol and anhydrous triethylamine are added according to the weight ratio of 600: 400: 1, and mixing the components according to the volume ratio.
(4) Flow rate: 1 mL/min.
(5) Detection wavelength: 268 nm.
(6) Column temperature: at 30 ℃.
The substrate conversion (%) was calculated from the amount of the substrate compound reduced, and the results of the measurement of the substrate conversion (%) are shown in Table 2, and the calculation formula of the substrate conversion (%) is shown in the following formula (2):
Figure BDA0003139638830000111
in the formula (2), A1Area of substrate Compound Peak after reaction, A2The peak area of the substrate compound before the reaction.
The enzyme activity (U/g) of the transaminase was calculated from the mass M (mg), the transaminase reaction time, and the cell mass M (g) of the product from the transamination reaction to form (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, wherein the cell mass M (mg) is the mass of wet cells as described in example 3, and the measurement results of the enzyme activity (U/g) are shown in Table 2, wherein the formula for M is shown in the following formula (3), and the formula for the enzyme activity (U/g) is shown in the following formula (4):
Figure BDA0003139638830000112
in the formula (3), C is (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ]]Pyrazin-7-yl]Concentration (mg/mL) of (E) -4- (2,4, 5-trifluorophenyl) butan-1-one Standard, A3Is (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ]]Pyrazin-7-yl]Peak area of (E) -4- (2,4, 5-trifluorophenyl) butan-1-one Standard, A4(3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] formed for transamination]Pyrazin-7-yl]Peak area of the product of-4- (2,4, 5-trifluorophenyl) butan-1-one, V is volume of the whole reaction system (mL).
Figure BDA0003139638830000113
In formula (4), M is the mass (mg) of the product of transamination reaction to form (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one, T is the transamination reaction time (h), and M is the cell mass (mg).
The following details are given to the deductions of the substrate conversion rates and enzyme activities of transaminases corresponding to numbers 1, 17 and 36.
In this example, C is 0.472mg/mL and FIG. 2 shows an HPLC profile of a (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one standard, wherein A3 is 1257276. FIG. 3 shows an HPLC plot of the base compound in the reaction system at the initial reaction, where A2 is 1215423. In addition, the cell mass m was 10mg, the transamination time T was 2h, the volume V of the entire reaction system was 1mL, and the dilution factor was 100 times.
FIG. 4 shows an HPLC profile of the reaction system comprising the transaminase numbered 1 over a reaction time of 2h, where A1 is 1203269, giving a substrate conversion of 1% calculated according to formula (2); a4 is 10650, and M is 0.004mg calculated according to formula (3); the enzyme activity is 20U/g according to the formula (4).
FIG. 5 shows an HPLC profile of reaction system comprising the transaminase number 17 for 2h, where A1 is 948030, with a substrate conversion of 22% calculated according to formula (2); a4 is 234300, and M is 0.088mg, calculated according to formula (3); the enzyme activity is 440U/g according to the formula (4).
FIG. 6 shows an HPLC profile of reaction system comprising the transaminase number 36 for 2h, where A1 is 546940, with a substrate conversion of 55% calculated according to formula (2); a4 is 585750 and M is 0.220mg, calculated according to formula (3); the enzyme activity is 1100U/g calculated according to the formula (4).
TABLE 2 mutation information, sequence information and results of property determination for all transaminases referred to in the examples of the present application
Figure BDA0003139638830000121
Figure BDA0003139638830000131
In Table 2, transaminases shown in Nos. 2 to 36 were obtained by mutating one or more sites based on the transaminase shown in No. 1, and the transaminases shown in Nos. 2 to 36 had significantly improved conversion rates and enzyme activities, compared to the transaminase shown in No. 1. The substrate conversion rate and the enzyme activity obtained by adopting a T34A, F80A, L158Q, P163F, S181T, A183R, V185S, M321N and D322V combined mutation mode are highest, the enzyme activity can reach 1100U/g, and when the enzyme catalysis reaction is carried out for 2 hours, 50 mu L of transaminase liquid can enable the substrate conversion rate to reach 55%.
Among the transaminases obtained by a single site mutation mode, the transaminase obtained by an R276Y mutation mode has the highest substrate conversion rate and enzyme activity, and the transaminase obtained by an M321N mutation mode is used; the substrate conversion rate and the enzyme activity obtained by adopting the H77N mutation mode are lowest. Among transaminases obtained by a multi-site combination mutation mode, the transaminases obtained by a T34A, F80A, L158Q, P163F, S181T, A183R, V185S, M321N and D322V combination mutation mode have the highest substrate conversion rate and enzyme activity, and the transaminases obtained by a F80A, L158Q, P163F, S181T, R276Y and G277D combination mutation mode are used secondly; the substrate conversion rate and enzyme activity obtained by the combined mutation mode of T34A and F80A are lowest, but the substrate conversion rate and enzyme activity are higher than those obtained by the combined mutation mode of a part of single site, such as: transaminase was obtained by T34A mutation, transaminase was obtained by Y153T mutation, etc.
Comparative example
Selecting a transaminase encoding gene derived from Aspergillus fumigatus (Aspergillus fumigatus), wherein the nucleotide sequence of the transaminase encoding gene is shown as SEQ ID NO.77, artificially synthesizing the transaminase encoding gene, and constructing a recombinant expression vector pUC19-AF according to the method shown in 1.2 in example 1.
pUC19-AF was transformed into Escherichia coli BL21(DE3) competent cells, then LB resistant plates containing kanamycin were spread, placed at 37 ℃ for inverted culture for 18 hours, single colonies were selected and transferred to LB liquid medium containing kanamycin, the culture broth was selected and subjected to sequencing, and the sequenced clones were stored for use, thereby obtaining genetically engineered bacterium E.coli BL21(DE3)/pUC 19-AF.
Coli BL21(DE3)/pUC19-AF was subjected to inducible expression and post-treatment according to the method of example 3, and the obtained enzyme solution was stored at-20 ℃ and 4 ℃ for future use.
Test example 1 transaminase stability test
The transaminase of the number 36 and the transaminase of the comparative example were selected for stability testing, and samples were taken and tested for enzyme activity according to the enzyme solutions storage times 4h, 8h, 16h, 24h, 48h, 7d, 15d and 30d, respectively, wherein the enzyme activity was tested according to example 4.
The enzyme activity loss rate of each sample was calculated according to the following formula (5), and the experimental results are detailed in the following table 3:
Figure BDA0003139638830000141
in formula (5), U0Is the initial enzyme activity (U/g) of the enzyme solution, UTThe enzyme activity (U/g) of the samples was used.
TABLE 3 transaminase stability test results
Figure BDA0003139638830000142
Figure BDA0003139638830000151
As can be seen from Table 3, with the extension of the storage time, the transaminase activities of the transaminase of reference No. 36 and the transaminase of the comparative example were both reduced, and the enzyme activity loss rate under the storage condition at 4 ℃ was higher than that under the storage condition at-20 ℃. The transaminase of the comparative example had a loss of 100% of its enzyme activity already at 7d under storage conditions at 4 ℃ while the transaminase of number 36 still had an enzyme activity of 300U/g at 7 d. Under the preservation condition of 20 ℃ below zero, the transaminase of the comparative example and the transaminase of the number 36 still have certain enzyme activity after being preserved for 30 days, and the enzyme activity of the transaminase of the number 36 is 2.3 times that of the transaminase of the comparative example. This test example fully illustrates: compared with the transaminase of the comparative example, the transaminase of the number 36 has higher initial enzyme activity and better stability, and is more favorable for transportation and storage.
Test example 2 transaminase resistance test to organic solvents
The transaminase with the number 36 and the transaminase of the comparative example were selected for organic solvent resistance experiments, the specific experimental procedure comprising the following steps:
Sataking 200. mu.L of the enzyme solution prepared in example 3, placing it on a reaction plate, and adding 1.0mL of a stock mixture having a pH of 8.5 to the enzyme solution, wherein the stock mixture comprises 0.2mol/L triethanolamine, 10mmol/L pyridoxal phosphate (PLP), 10mol/L Isopropylamine (IPM), and sterile water to obtain a mixed system;
Sbto step SaAdding 20mg of substrate compound (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] into the obtained mixed system]Triazolo [4,3-a]Pyrazin-7- (8H) -yl]-1- (2,4, 5-trifluorophenyl) butan-2-one, then adding an organic solvent (absolute ethanol or DMSO) until the total concentration of the organic solvent in the system is 20% (v/v), 30% (v/v), 35% (v/v), 40% (v/v), or 50% (v/v), and then adding water to make up to 2.5mL in total to carry out an initial reaction, thereby obtaining a reaction system, wherein the pH value of the whole reaction system is 8.5;
Scwill contain step SbAnd (3) sealing the reaction plate of the medium reaction system, continuously reacting for 2 hours at 45 ℃ under the shaking condition of 200r/min, detecting and analyzing the reaction product by using HPLC after the reaction is finished, and calculating the substrate conversion rate, wherein the detection condition of the HPLC and the calculation method of the substrate conversion rate refer to example 4.
The results of the organic solvent resistance test are detailed in Table 4 below
TABLE 4 results of the transaminase tolerance to organic solvents
Figure BDA0003139638830000161
As can be seen from Table 4, the transaminase of number 36 has better resistance to organic solvents than the transaminase of the comparative example, whether absolute ethanol or DMSO is used as the organic solvent. On the premise that the enzyme catalysis reaction conditions, the amount of the reaction enzyme (200 muL) and other components except the transaminase in the reaction system are consistent, after the transaminase in the number 36 and the transaminase in the comparative example are respectively reacted in the same concentration of organic solvent for 2h, the substrate conversion rate of the transaminase in the number 36 is higher than that of the transaminase in the comparative example, for example, when the organic solvent is absolute ethanol and the concentration is 50% (v/v), the substrate conversion rate of the transaminase in the number 36 is 1.2 times that of the transaminase in the comparative example, and for example, when the organic solvent is DMSO and the concentration is 50% (v/v), the substrate conversion rate of the transaminase in the number 36 is 1.4 times that of the transaminase in the comparative example.
The transaminase and its use in the preparation of sitagliptin provided by the present application are described in detail above. The principle and the implementation of the present application are explained by applying specific examples, and the above description of the embodiments is only used to help understanding the technical solution and the core idea of the present application; those of ordinary skill in the art will understand that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present application.
Sequence listing
<110> Taizhou enzyme Biotechnology Ltd
<120> transaminase and application thereof in preparation of sitagliptin
<130> SZP210129CN
<141> 2021-06-24
<160> 77
<170> SIPOSequenceListing 1.0
<210> 1
<211> 334
<212> PRT
<213> Artificial sequence
<400> 1
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 2
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 2
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 3
<211> 334
<212> PRT
<213> Artificial sequence
<400> 3
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 5
<211> 334
<212> PRT
<213> Artificial sequence
<400> 5
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp Asn Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 4
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 4
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 6
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 6
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggaa tggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 7
<211> 334
<212> PRT
<213> Artificial sequence
<400> 7
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 8
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 8
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 9
<211> 334
<212> PRT
<213> Artificial sequence
<400> 9
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 10
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 10
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgttactg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 11
<211> 334
<212> PRT
<213> Artificial sequence
<400> 11
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Val Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 12
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 12
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctgttccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 13
<211> 334
<212> PRT
<213> Artificial sequence
<400> 13
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Gln Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 14
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 14
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta ccaatgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 15
<211> 334
<212> PRT
<213> Artificial sequence
<400> 15
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 16
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 16
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 17
<211> 334
<212> PRT
<213> Artificial sequence
<400> 17
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 18
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 18
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 19
<211> 334
<212> PRT
<213> Artificial sequence
<400> 19
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Arg Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 20
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 20
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccaagaa acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 21
<211> 334
<212> PRT
<213> Artificial sequence
<400> 21
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Arg Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 22
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 22
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 23
<211> 334
<212> PRT
<213> Artificial sequence
<400> 23
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Ile Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 24
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 24
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctgattcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 25
<211> 334
<212> PRT
<213> Artificial sequence
<400> 25
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Cys Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 26
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 26
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttgtgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 27
<211> 334
<212> PRT
<213> Artificial sequence
<400> 27
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Val Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 28
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 28
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtgt tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 29
<211> 334
<212> PRT
<213> Artificial sequence
<400> 29
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Glu Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 30
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 30
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctgaagat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 31
<211> 334
<212> PRT
<213> Artificial sequence
<400> 31
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Ser Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 32
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 32
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgttct 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 33
<211> 334
<212> PRT
<213> Artificial sequence
<400> 33
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Tyr Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 34
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 34
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgtatgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 35
<211> 334
<212> PRT
<213> Artificial sequence
<400> 35
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Asp Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 36
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 36
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtga tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 37
<211> 334
<212> PRT
<213> Artificial sequence
<400> 37
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Phe Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 38
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 38
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccgtttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 39
<211> 334
<212> PRT
<213> Artificial sequence
<400> 39
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Val Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 40
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 40
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgatgttact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 41
<211> 334
<212> PRT
<213> Artificial sequence
<400> 41
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Asn Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 42
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 42
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
aatgatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 43
<211> 334
<212> PRT
<213> Artificial sequence
<400> 43
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Val Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 44
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 44
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggttgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 45
<211> 334
<212> PRT
<213> Artificial sequence
<400> 45
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 46
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 46
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 47
<211> 334
<212> PRT
<213> Artificial sequence
<400> 47
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp Asn Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 48
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 48
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggaa tggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 49
<211> 334
<212> PRT
<213> Artificial sequence
<400> 49
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Thr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 50
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 50
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgttactg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 51
<211> 334
<212> PRT
<213> Artificial sequence
<400> 51
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Thr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Ala Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 52
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 52
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgttactg ctatcccgta cctgtgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccagcta actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 53
<211> 334
<212> PRT
<213> Artificial sequence
<400> 53
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp Asn Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Val Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Ala Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 54
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 54
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggaa tggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctgttccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccagcta actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 55
<211> 334
<212> PRT
<213> Artificial sequence
<400> 55
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Gln Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Arg Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 56
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 56
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta ccaatgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccaagaa actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 57
<211> 334
<212> PRT
<213> Artificial sequence
<400> 57
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Arg Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 58
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 58
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccaagaa actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 59
<211> 334
<212> PRT
<213> Artificial sequence
<400> 59
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Val Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Glu Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 60
<211> 1006
<212> DNA
<213> Artificial sequence
<400> 60
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtgt ttgttttcac 720
tgctgctcgt aacgttctgc caggtatcac tcgtcgtact gctctggaaa tcgctgaaga 780
tttcggtctg caaactgtta tcggtgatgt tactccagaa atgctgcgtg gtgctgatga 840
aatcttcgct gcttctactg gtggtggtat cactccggtt gttgctctgg atggtgctcc 900
agttggtgct ggtgttccag gtgattggac tcgtaagatc cgtactcgtt actggcaaat 960
gatggatgaa ccatctgatc tgatcgaacc agttcgttac atctaa 1006
<210> 61
<211> 334
<212> PRT
<213> Artificial sequence
<400> 61
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Phe
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Arg Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Val Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Glu Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 62
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 62
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacttc 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccaagaa actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtgt tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctgaagat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 63
<211> 334
<212> PRT
<213> Artificial sequence
<400> 63
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Gln Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Arg Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Cys Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 64
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 64
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta ccaatgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccaagaa actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttgtgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 65
<211> 334
<212> PRT
<213> Artificial sequence
<400> 65
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp Asn Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Ser Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 66
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 66
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggaa tggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgttct 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 67
<211> 334
<212> PRT
<213> Artificial sequence
<400> 67
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Thr Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Gln Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Tyr Asp Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Met Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 68
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 68
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgta ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta ccaatgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgtatga tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
atggatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 69
<211> 334
<212> PRT
<213> Artificial sequence
<400> 69
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp Asn Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Leu Trp Val
145 150 155 160
Phe Ser Pro Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Ser Pro Ala Asn Val Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Ser Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Phe Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Val Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Asn Asp Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 70
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 70
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggaa tggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta cctgtgggtt 480
ttcagcccaa tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
tctccagcta acgttatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgttct 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccgtttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttgttgg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
aatgatgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 71
<211> 334
<212> PRT
<213> Artificial sequence
<400> 71
Met Asn Gln Leu Thr Ile Leu Glu Ala Gly Leu Asp Glu Ile Ile Cys
1 5 10 15
Glu Thr Val Pro Gly Glu Ala Ile Gln Tyr Ser Arg Tyr Ser Leu Asp
20 25 30
Arg Ala Asn Pro Leu Ala Gly Gly Cys Ala Trp Ile Glu Gly Ala Phe
35 40 45
Val Pro Ala Ala Ala Ala Arg Ile Ser Ile Phe Asp Ala Gly Phe Tyr
50 55 60
Thr Ser Asp Ala Thr Tyr Thr Thr Ala His Val Trp His Gly Asn Ala
65 70 75 80
Phe Arg Leu Glu Asp His Val Glu Arg Phe Leu Ala Gly Ala Glu Lys
85 90 95
Ile Arg Leu Pro Met Pro Ala Thr Lys Ala Glu Ile Met Asp Leu Met
100 105 110
Arg Gly Cys Val Ala Arg Ser Gly Leu Arg Glu Ala Val Val Thr Val
115 120 125
Thr Val Thr Arg Gly Tyr Gly Arg Lys Pro Phe Glu Lys Thr Leu Glu
130 135 140
Ala Leu Glu Ser Gln Leu Tyr Val Tyr Ala Ile Pro Tyr Gln Trp Val
145 150 155 160
Phe Ser Phe Ile Arg Gln Ile Glu Gly Ile Asp Ala Val Ile Ala Gln
165 170 175
Ser Val Arg Arg Thr Pro Arg Asn Ser Met Asp Pro Trp Ile Lys Asn
180 185 190
Tyr Gln Trp Gly Asp Leu Val Arg Ala Ile Phe Glu Ala Gln Glu Arg
195 200 205
Gly Ala Arg Thr Ala Phe Leu Leu Asp Ser Asp Gly Phe Val Thr Glu
210 215 220
Gly Pro Gly Phe Asn Val Leu Met Val Lys Asp Gly Thr Val Phe Thr
225 230 235 240
Ala Ala Arg Asn Val Leu Pro Gly Ile Thr Arg Arg Thr Ala Leu Glu
245 250 255
Ile Ala Arg Asp Phe Gly Leu Gln Thr Val Ile Gly Asp Val Thr Pro
260 265 270
Glu Met Leu Arg Gly Ala Asp Glu Ile Phe Ala Ala Ser Thr Gly Gly
275 280 285
Gly Ile Thr Pro Val Val Ala Leu Asp Gly Ala Pro Val Gly Ala Gly
290 295 300
Val Pro Gly Asp Trp Thr Arg Lys Ile Arg Thr Arg Tyr Trp Gln Met
305 310 315 320
Asn Val Glu Pro Ser Asp Leu Ile Glu Pro Val Arg Tyr Ile
325 330
<210> 72
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 72
atgaaccaac tgactatcct ggaagctggt ctggatgaaa tcatctgtga aactgttcca 60
ggtgaagcta tccaatactc tcgttactct ctggatcgtg ctaacccact ggctggtggt 120
tgtgcttgga tcgaaggtgc tttcgttcca gctgctgctg ctcgtatctc tatcttcgat 180
gctggtttct acacttctga tgctacttac actactgctc acgtttggca cggtaacgct 240
ttccgtctgg aagatcacgt tgaacgtttc ctggctggtg ctgaaaagat ccgtctgcca 300
atgccagcta ctaaggctga aatcatggat ctgatgcgtg gttgtgttgc tcgttctggt 360
ctgcgtgaag ctgttgttac tgttactgtt actcgtggtt acggtcgtaa gccattcgaa 420
aagactctgg aagctctgga atctcaactg tacgtttacg ctatcccgta ccaatgggtt 480
ttcagcttta tccgtcaaat cgaaggtatc gatgctgtta tcgctcaatc tgttcgtcgt 540
actccaagaa actctatgga cccatggatc aagaactacc aatggggtga tctggttcgt 600
gctatcttcg aagctcaaga acgtggtgct cgtactgctt tcctgctgga ttctgatggt 660
ttcgttactg aaggtccagg tttcaacgtt ctgatggtta aggatggtac tgttttcact 720
gctgctcgta acgttctgcc aggtatcact cgtcgtactg ctctggaaat cgctcgtgat 780
ttcggtctgc aaactgttat cggtgatgtt actccagaaa tgctgcgtgg tgctgatgaa 840
atcttcgctg cttctactgg tggtggtatc actccggttg ttgctctgga tggtgctcca 900
gttggtgctg gtgttccagg tgattggact cgtaagatcc gtactcgtta ctggcaaatg 960
aatgttgaac catctgatct gatcgaacca gttcgttaca tctaa 1005
<210> 73
<211> 36
<212> DNA
<213> Artificial sequence
<400> 73
ggatccatga aycarytrac nathytrgar gcnggn 36
<210> 74
<211> 36
<212> DNA
<213> Artificial sequence
<400> 74
catatgyyad atrtanckna cnggytcdat yarrtc 36
<210> 75
<211> 31
<212> DNA
<213> Artificial sequence
<400> 75
gctaacccac tggctggtgg ttgtgcttgg a 31
<210> 76
<211> 31
<212> DNA
<213> Artificial sequence
<400> 76
acgatccaga gagtaacgag agtattggat a 31
<210> 77
<211> 969
<212> DNA
<213> Artificial sequence
<400> 77
atggcttcga tggacaaagt cttctcaggt tactacgccc gtcaaaaact gctggaacgc 60
tcagataatc cgttctcaaa aggtattgcc tatgtcgaag gtaaactggt gctgccgagt 120
gatgcgcgca ttccgctgct ggacgaaggc tttatgcata gtgatctgac ctacgacgtt 180
atctccgtct gggacggccg tttctttcgc ctggatgacc acctgcagcg cattctggaa 240
tcatgcgata aaatgcgtct gaaatttccg ctggcactga gctctgtcaa aaatatcctg 300
gcagaaatgg tggctaaaag cggcattcgt gacgctttcg tcgaagtgat cgttacccgc 360
ggcctgacgg gtgttcgtgg ctctaaaccg gaagatctgt ataacaataa catttacctg 420
ctggtgctgc cgtatatctg ggttatggca ccggaaaatc agctgcatgg cggtgaagct 480
attatcaccc gtacggtgcg tcgcaccccg ccgggtgcct ttgatccgac gatcaaaaac 540
ctgcaatggg gtgacctgac caaaggcctg tttgaagcga tggatcgtgg tgccacctat 600
ccgttcctga cggatggcga caccaatctg acggaaggca gcggtttcaa tattgtcctg 660
gtgaaaaacg gtattatcta caccccggat cgtggtgttc tgcgcggcat tacgcgtaaa 720
tcagtgatcg atgttgcgcg cgccaactcg attgacatcc gtctggaagt ggttccggtg 780
gaacaagcgt accactccga tgaaattttc atgtgtacca cggccggcgg tattatgccg 840
atcaccctgc tggatggtca gccggttaac gacggtcaag tcggcccgat taccaagaaa 900
atttgggatg gctattggga aatgcactac aacccggctt attcgtttcc ggtggattat 960
ggcagcggt 969

Claims (8)

1. A transaminase enzyme, characterized in that the amino acid sequence of the transaminase enzyme is represented by SEQ ID NO: 1 by one or more point mutations in the amino acid sequence set forth in claim 34, said point mutations being made in T34A, or in any combination of:
(1) T34A and F80A;
(2) T34A, H77N and F80A;
(3) T34A, F80A and Y153T;
(6) T34A, F80A, L158Q, P163F, S181T, a183R, and V185S;
(11) T34A, H77N, F80A and D260S;
(13) T34A, H77N, F80A, D260S, V293F, W306V, and M321N; or
(14) T34A, F80A, L158Q, P163F, S181T, a183R, V185S, M321N and D322V.
2. The transaminase enzyme of claim 1, characterized in that the amino acid sequence of the transaminase enzyme is SEQ ID NO: 3. SEQ ID NO: 45. SEQ ID NO: 47. SEQ ID NO: 49. SEQ ID NO: 55. SEQ ID NO: 65. SEQ ID NO: 69 or SEQ ID NO: 71.
3. A nucleic acid molecule comprising a nucleotide sequence encoding the transaminase of claim 1 or 2.
4. The nucleic acid molecule of claim 3, wherein the nucleotide sequence is as set forth in SEQ ID NO: 4. SEQ ID NO: 46. SEQ ID NO: 48. SEQ ID NO: 50. SEQ ID NO: 56. SEQ ID NO: 66. SEQ ID NO: 70 or SEQ ID NO: 72.
5. A recombinant expression vector comprising a vector and the nucleic acid molecule of claim 3 or 4.
6. A transformant comprising an expression system and the nucleic acid molecule of claim 3 or 4 or the recombinant expression vector of claim 5.
7. An enzyme preparation comprising a transaminase as claimed in claim 1 or 2.
8. Use of a transaminase as claimed in claim 1 or 2 or a nucleic acid molecule as claimed in claim 3 or 4 or a recombinant expression vector as claimed in claim 5 or a transformant as claimed in claim 6 or an enzyme preparation as claimed in claim 7 for the preparation of sitagliptin, wherein the transaminase or the enzyme preparation, or the transaminase produced via at least one of the nucleic acid molecule, the recombinant expression vector and the transformant, is brought into contact with the substrate sitagliptin precursor ketone (2Z) -4-oxo-4- [3- (trifluoromethyl) -5, 6-dihydro- [1,2,4] triazolo [4,3-a ] pyrazin-7- (8H) -yl ] -1- (2,4, 5-trifluorophenyl) butan-2-one for the catalysed reaction, to obtain sitagliptin intermediate (3R) -3-amino-1- [3- (trifluoromethyl) -5,6,7, 8-tetrahydro-1, 2, 4-triazolo [4,3-a ] pyrazin-7-yl ] -4- (2,4, 5-trifluorophenyl) butan-1-one.
CN202110729828.0A 2021-06-29 2021-06-29 Transaminase and application thereof in preparation of sitagliptin Active CN113430184B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110729828.0A CN113430184B (en) 2021-06-29 2021-06-29 Transaminase and application thereof in preparation of sitagliptin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110729828.0A CN113430184B (en) 2021-06-29 2021-06-29 Transaminase and application thereof in preparation of sitagliptin

Publications (2)

Publication Number Publication Date
CN113430184A CN113430184A (en) 2021-09-24
CN113430184B true CN113430184B (en) 2022-04-01

Family

ID=77757853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110729828.0A Active CN113430184B (en) 2021-06-29 2021-06-29 Transaminase and application thereof in preparation of sitagliptin

Country Status (1)

Country Link
CN (1) CN113430184B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975969A (en) * 2021-10-14 2023-04-18 弈柯莱生物科技(上海)股份有限公司 Transaminase and use thereof for the preparation of sitagliptin or an intermediate thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384887A (en) * 2017-07-05 2017-11-24 浙江工业大学 A kind of aminopherase, mutant and its application for preparing sitagliptin
WO2019207443A1 (en) * 2018-04-24 2019-10-31 Unichem Laboratories Ltd An enzymatic process for the preparation of (r)-sitagliptin
CN112094856A (en) * 2020-09-23 2020-12-18 国药集团威奇达药业有限公司 Transaminase mutant and application thereof in sitagliptin synthesis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961838B1 (en) * 2013-02-28 2018-04-18 Merck Sharp & Dohme Corp. Immobilized transaminases and process for making and using immobilized transaminase
CN109234327A (en) * 2017-07-11 2019-01-18 上海弈柯莱生物医药科技有限公司 A kind of application of the transaminase of stereoselectivity in asymmetric syntheses Chiral Amine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384887A (en) * 2017-07-05 2017-11-24 浙江工业大学 A kind of aminopherase, mutant and its application for preparing sitagliptin
WO2019207443A1 (en) * 2018-04-24 2019-10-31 Unichem Laboratories Ltd An enzymatic process for the preparation of (r)-sitagliptin
CN112094856A (en) * 2020-09-23 2020-12-18 国药集团威奇达药业有限公司 Transaminase mutant and application thereof in sitagliptin synthesis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GenBank.GenBank: RBP85366.1.《GenBank》.2018,title以及序列部分. *
GenBank: RBP85366.1;GenBank;《GenBank》;20180712;title以及序列部分 *

Also Published As

Publication number Publication date
CN113430184A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
CN112094856B (en) Transaminase mutant and application thereof in sitagliptin synthesis
CN113265382B (en) Polyphosphate kinase mutant
CN111518783B (en) Recombinant (R) -omega-transaminase, mutant and application thereof in preparation of sitagliptin
CN112877307A (en) Amino acid dehydrogenase mutant and application thereof
CN113430184B (en) Transaminase and application thereof in preparation of sitagliptin
CN114350692B (en) Method for preparing decarboxylated carnosine by whole cell catalysis
CN112746067B (en) Lysine decarboxylase mutants for preparing D-ornithine
CN111411095B (en) Recombinant (R) -omega-transaminase, mutant and application thereof
CN111808829B (en) Gamma-glutamyl methylamine synthetase mutant and application thereof
CN113088501B (en) Glutamic acid dehydrogenase mutant for producing L-glufosinate-ammonium and L-glufosinate-ammonium production method
CN114908070A (en) Phospholipase and method for preparing glycerophospholipid by using same
CN110904062A (en) Strain capable of producing L-alanine at high yield
CN114277020B (en) Nitrilase mutant, engineering bacterium and application thereof
CN112266905B (en) Polypeptide modified amino acid dehydrogenase and preparation and immobilization method thereof
CN110846288B (en) Glutathione bifunctional enzyme mutant and application thereof
CN109182286B (en) Improved cyano reductase and application thereof in synthesis of 3-chloropyrazine-2 methylamine
CN110938608A (en) Aldehyde ketone reductase mutant, encoding gene and application of aldehyde ketone reductase mutant in synthesis of (S) -TCPE
GB2358633A (en) Modification of alpha/beta barrel enzymes
CN114196658B (en) Nitrilase mutant and application thereof in catalytic synthesis of 2-chloronicotinic acid
JP2009089649A (en) Diaphorase gene of clostridium kluyveri and its application
CN114752574B (en) Enzyme catalysis system, catalase, preparation method and application
CN116790569B (en) Pyruvic acid decarboxylase mutant and application thereof in preparation of alpha-hydroxyketone compound
CN114438002B (en) Cell for expressing phosphotransferase and non-ribosomal peptide synthetase and application thereof
CN113564141B (en) Single-cell genome amplification enzyme mutant and application thereof
CN113444702B (en) Enone reductase mutant and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant