CN113426485B - 一种采用两步法提高有机金属框架材料光催化还原性能的方法 - Google Patents

一种采用两步法提高有机金属框架材料光催化还原性能的方法 Download PDF

Info

Publication number
CN113426485B
CN113426485B CN202010210076.2A CN202010210076A CN113426485B CN 113426485 B CN113426485 B CN 113426485B CN 202010210076 A CN202010210076 A CN 202010210076A CN 113426485 B CN113426485 B CN 113426485B
Authority
CN
China
Prior art keywords
framework material
organic metal
substrate
metal framework
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010210076.2A
Other languages
English (en)
Other versions
CN113426485A (zh
Inventor
赵进才
彭伟
马万红
陈春城
籍宏伟
宋文静
盛桦
章宇超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202010210076.2A priority Critical patent/CN113426485B/zh
Publication of CN113426485A publication Critical patent/CN113426485A/zh
Application granted granted Critical
Publication of CN113426485B publication Critical patent/CN113426485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/24Preparation of ethers by reactions not forming ether-oxygen bonds by elimination of halogens, e.g. elimination of HCl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种两步法提高有机金属框架材料还原性能的方法,所述方法包括:1)将有机金属框架材料和光还原剂醇类化合物进行光反应,得到还原态的有机金属框架材料;2)向步骤1)得到的还原态的有机金属框架材料中加入有机胺和底物进行暗反应得到还原产物;其中,所述底物为CO2,或全卤代C6‑20芳烃。所述方法反应条件温和,反应效率高,有效地使用价廉低毒醇类化合物作为光还原剂还原全卤代C6‑20芳烃、光催化产氢原料和CO2得到其还原产物。

Description

一种采用两步法提高有机金属框架材料光催化还原性能的 方法
技术领域
本发明属于光催化合成技术领域,具体涉及到一种采用两步法提高有机金属框架材料光催化还原性能的方法。
背景技术
有机金属框架材料是由金属离子与有机配体配位形成的有序多孔材料,由于其具有大比表面积,外露的金属反应位点,以及容易改性等优点,已经成为非常具有潜力的光催化剂。在已有的报道中,有机金属框架材料已经被广泛用于研究光催化还原CO2、光催化产氢和光催化还原多溴联苯醚等,但是当前有研究发现有机金属框架材料的还原性能弱于传统无机半导体,在以廉价低毒的醇类化合物,如甲醇等作为光还原剂的条件下,有机金属框架材料难以催化还原这些物质,表现出较差的还原性能。因此人们迫切需要一种能提高有机金属框架材料的还原性能并以廉价低毒的醇类化合物作为光还原剂的方法。
发明内容
为了解决上述技术的问题,本发明提供了一种利用两步法提高有机金属框架材料还原性能的方法,所述方法包括如下步骤:
1)将有机金属框架材料和光还原剂醇类化合物进行光反应,得到还原态的有机金属框架材料;
2)向步骤1)得到的还原态的有机金属框架材料中加入有机胺和底物进行暗反应得到还原产物;
其中,所述底物为CO2,光催化产氢原料或全卤代C6-20芳烃。
根据本发明的实施方式,步骤1)中所述有机金属框架材料包括但不限于钛基有机金属框架材料,如MIL-125(Ti),NH2-MIL-125(Ti),COK-69(Ti)等。
根据本发明的实施方式,步骤1)中所述醇类化合物包括但不限于如下化合物:甲醇,乙醇,异丙醇,苯甲醇等中的一种或多种。
根据本发明的实施方式,步骤1)中所述有机金属框架材料与醇类化合物的用量为10mg有机金属框架材料使用(1~20)mL醇类化合物,例如(1~15)mL醇类化合物,如(5~15)mL醇类化合物。
根据本发明的实施方式,步骤1)中所述光反应使用紫外光-可见光进行光照,光照使用的波长可以依据有机金属框架材料的紫外-可见漫反射光谱的吸收波长来确定。
根据本发明的实施方式,步骤1)中所述光反应使用紫外光-可见光的波长为500nm以下,例如340nm以下,如320以下。
根据本发明的实施方式,MIL-125(Ti)的吸收波长为340nm以下,因此当使用MIL-125(Ti)时,步骤1)中采用340nm以下的紫外光进行光照,例如采用340~320nm的紫外光光照;
根据本发明的实施方式,NH2-MIL-125(Ti)的吸收波长为500nm以下,因此当使用NH2-MIL-125(Ti)时,步骤1)中采用500nm以下的紫外光-可见光进行光照,例如采用500~420nm的可见光进行光照;
根据本发明的实施方式,COK-69(Ti)的吸收波长在350nm及以下,因此当使用COK-69(Ti)时,步骤1)中采用350nm以下的紫外光进行光照,例如采用350~320nm的紫外光进行光照。
根据本发明的实施方式,步骤1)中将有机金属框架材料、光还原剂醇类化合物混合后进行超声,然后进行光反应。
根据本发明的实施方式,步骤1)和步骤2)中所述反应可以在溶剂中进行,所述溶剂包括但不限于乙腈,苯,四氢呋喃等。亦可以不需额外加入溶剂,直接在醇类化合物中反应。
根据本发明的实施方式,步骤1)所述光反应时间为0.5~24h,例如1~5h。
根据本发明的实施方式,步骤2)中所述有机胺包括但不限于如下化合物:伯胺类:乙醇胺,乙基胺,丙基胺等;仲胺类:二乙醇胺,二乙胺,二丙基胺等;叔胺类:三乙醇胺,三乙胺,三丙胺,三戊胺等。
根据本发明的实施方式,步骤2)中所述有机胺的浓度可以在0.1mol/L以上,例如0.1mol/L~5mol/L,如0.1mol/L、0.5mol/L、1mol/L等。
根据本发明的实施方式,步骤2)中所述底物全卤代C6-20芳烃表示具有6~20个碳原子的芳香性或部分芳香性的单环、双环或三环烃环,且其芳环上除非卤素取代基外(若含有取代基)所有的氢原子均被卤素(F、C、Br、I)取代,优选“全卤代C6-14芳环”。所述“全卤代C6-14芳环”为具有6、7、8、9、10、11、12、13或14个碳原子的芳香性或部分芳香性的单环、双环或三环烃环,且其芳环上除非卤素取代基外所有的氢原子均被卤素(F、C、Br、I)取代。所述芳环还可以选自联苯,四氢化萘、二氢萘、萘、芴、或蒽。
根据本发明的实施方式,步骤2)中所述底物包括但不限于如下化合物:二氧化碳,十溴联苯醚,六溴苯,十溴联苯,或十溴联苯酮等。
根据本发明的实施方式,步骤2)中所述底物与有机金属框架材料的摩尔比为(1~3):1,例如1.4:1。
根据本发明的实施方式,所述步骤1)和步骤2)反应的温度可以为0-100℃,例如5-80℃,如10-60℃。
根据本发明的实施方式,步骤1)和步骤2)中所述反应在密封条件下进行。
根据本发明的实施方式,步骤1)和步骤2)中所述反应在无氧的环境中进行,例如在惰性气体(例如氩气)填充的手套箱中进行。
根据本发明的实施方式,所述无氧的环境的氧气浓度为0.1ppm。
根据本发明的实施方式,步骤1)和步骤2)中所述反应在搅拌的条件下进行。
根据本发明的实施方式,步骤2)中所述底物预先溶解于醚类溶剂如四氢呋喃等有机溶剂中的一种、两种或更多种。
有益效果
本发明采用两步法提高有机金属框架材料光催化还原性能。其技术核心是将有机金属框架材料光催化过程分为两步进行,第一步有机金属框架材料与醇类化合物进行光反应,第二步加入有机胺与底物进行暗反应。通过两步法,有机胺助剂作用显著提高了有机金属框架材料在以醇类化合物作为光还原剂条件下的光催化还原性能。所述方法反应条件温和,反应效率高,有效地使用价廉低毒醇类化合物作为光还原剂还原全卤代C6-20芳烃,光催化产氢原料和CO2得到其还原产物。
附图说明
图1为实施例1MIL-125(Ti)还原十溴联苯醚的动力学曲线;
图2为实施例1MIL-125(Ti)还原十溴联苯醚的HPLC检测图;
图3为实施例2MIL-125(Ti)还原六溴苯的动力学曲线;
图4为实施例2MIL-125(Ti)还原六溴苯的HPLC检测图;
图5为对比例1MIL-125(Ti)还原十溴联苯醚的动力学曲线。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
如下实施例1-4及对比例中的三乙醇胺或三乙胺的浓度相对于反应液而言。
如下实施例1-4及对比例中的反应底物浓度相对于反应液而言。
如下实施例1-4中转化率的计算公式为:
转化率=(C0-C1)/C0
其中C0底物的初始,C1为反应60min后底物的浓度。
如下实施例及对比例中的反应均在室温下操作。
实施例1
将10mg有机金属框架材料MIL-125(Ti)与10mL甲醇混合于光化学反应器并密封,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,紫外光(340~320nm)光照2h,之后将光反应器移至氩气填充的手套箱中,向其中加入134μL三乙醇胺(反应溶液中浓度为0.1mol/L)和溶于四氢呋喃的十溴联苯醚母液(纯度为97%,其中含有少量九溴联苯醚),底物初始反应浓度为10-3mol/L,然后进行暗反应。每间隔15min进行取点。
HPLC检测十溴联苯醚的还原动力学曲线,如图1所示,从图1中可以看出,随着反应时间的进行(图1中的时间为反应进行的时间),十溴联苯醚的浓度逐渐降低。通过HPLC谱图(图2所示)可以看出,十溴联苯醚逐渐被还原为低溴代联苯醚(八溴联苯醚和九溴联苯醚),经计算反应60min后十溴联苯醚的转化率为65.8%。
实施例2
将10mg有机金属框架材料MIL-125(Ti)与10mL的苯甲醇和乙腈的混合溶液(两者体积比为v/v=1:10)混合于光化学反应器并密封,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,紫外光(340~320nm)光照2h,之后将光反应器移至氩气填充的手套箱中,向其中加入三乙醇胺(反应液中的浓度为0.1mol/L)和溶于四氢呋喃的六溴苯母液,底物初始反应浓度为10-3mol/L,然后进行暗反应。每间隔15min进行取点。
HPLC检测六溴苯的还原动力学曲线,如图3所示,从图3中可以看出,随着反应时间的进行,六溴苯的浓度逐渐降低。通过液相色谱图(图4所示)可知,六溴苯逐渐被还原为低溴代苯(五溴苯),经计算反应60min后六溴苯的转化率为87.1%。
实施例3
将10mg有机金属框架材料MIL-125(Ti)与10mL甲醇混合于光化学反应器并密封,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,紫外光(340~320nm)光照2h,之后将光反应器移至氩气填充的手套箱中,向其中加入122μL的三乙胺(反应溶液中浓度为0.1mol/L)和溶于四氢呋喃的十溴联苯醚母液,底物初始反应浓度为10-3mol/L,进行暗反应。每间隔15min取点。经HPLC检测,反应60min后,十溴联苯醚被还原为低溴代联苯醚,经计算十溴联苯醚的转化率为81.4%。
实施例4
将10mg有机金属框架材料NH2-MIL-125(Ti)与5mL的苯甲醇混合于光化学反应器并密封,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,可见光(500~420nm)光照12h,之后将光反应器移至氩气填充的手套箱中,加入5mL浓度为0.2mol/L三乙醇胺乙腈溶液和溶于四氢呋喃的十溴联苯醚母液,底物初始反应浓度为10-3mol/L,然后进行暗反应。每间隔15min取点。经HPLC检测十溴联苯醚的浓度逐渐降低,其被还原为低溴代联苯醚,反应60min时十溴联苯醚的转化率为43.3%。
实施例5
50mg MIL-125(Ti)和10mL甲醇加入到光化学反应器中并密封,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,用紫外光(340~320nm)光照5h后,将催化剂转移至手套箱中,在无氧的条件下加入1mL的三乙醇胺。然后向反应器中持续5min通入CO2,待搅拌并反应4h后用离子色谱测得生成甲酸的量为4.6μmol。
对比例1
将10mg MIL-125(Ti)和10mL甲醇添加于光化学反应器,然后超声10min,之后用高纯氩气进行除氧操作。除氧完毕后,紫外-可见光(340~320nm)光照2h,之后将光反应器移至氩气填充的手套箱中,加入溶于四氢呋喃的十溴联苯醚母液,初始底物反应浓度为10- 3mol/L,然后进行暗反应。每间隔15min取点,结果如图5所示,由图5可知在60min内十溴联苯醚未被还原。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种利用两步法提高有机金属框架材料还原性能的方法,其特征在于,所述方法包括如下步骤:
1)将有机金属框架材料和光还原剂醇类化合物进行光反应,得到还原态的有机金属框架材料;
2)向步骤1)得到的还原态的有机金属框架材料中加入有机胺和底物进行暗反应得到还原产物;
其中,所述底物为CO2,光催化产氢原料或全卤代C6-20芳烃;
所述有机金属框架材料选自钛基有机金属框架材料;
所述醇类化合物选自甲醇,乙醇,异丙醇,苯甲醇中的一种或多种;
所述光反应使用紫外光-可见光的波长为500nm以下。
2.根据权利要求1所述的方法,其特征在于,步骤1)中所述有机金属框架材料选自MIL-125(Ti),NH2-MIL-125(Ti),COK-69(Ti)。
3.根据权利要求1或2所述的方法,其特征在于,步骤1)中所述有机金属框架材料与醇类化合物的用量为10mg有机金属框架材料使用(1~20)mL醇类化合物。
4.根据权利要求1所述的方法,其特征在于,步骤1)中当使用MIL-125(Ti)时,步骤1)中采用340 nm以下的紫外光-可见光进行光照。
5.根据权利要求1所述的方法,其特征在于,步骤1)中当使用NH2-MIL-125(Ti)时,步骤1)中采用500 nm以下的紫外光-可见光进行光照。
6.根据权利要求1所述的方法,其特征在于,步骤1)中当使用COK-69(Ti)时,步骤1)中采用350nm以下的紫外-可见光进行光照。
7.根据权利要求1所述的方法,其特征在于,步骤2)中所述有机胺选自如下中的至少一种:乙醇胺,乙基胺,丙基胺,二乙醇胺,二乙胺,二丙基胺,三乙醇胺,三乙胺,三丙胺,三戊胺。
8.根据权利要求1所述的方法,其特征在于,步骤2)中所述有机胺的浓度在0.1 mol/L以上。
9.根据权利要求1所述的方法,其特征在于,步骤2)中所述底物全卤代C6-20芳烃表示具有6~20个碳原子的芳香性或部分芳香性的单环、双环或三环烃环,且其芳环上若含有取代基,除非卤素取代基外所有的氢原子均被卤素取代。
10.根据权利要求9所述的方法,其特征在于,步骤2)中所述全卤代C6-20芳烃为具有6、7、8、9、10、11、12、13或14个碳原子的芳香性或部分芳香性的单环、双环或三环烃环,且其芳环上除非卤素取代基外所有的氢原子均被卤素取代。
11.根据权利要求10所述的方法,其特征在于,步骤2)中所述底物选自如下化合物:二氧化碳,十溴联苯醚,六溴苯,十溴联苯,或十溴联苯酮。
12.根据权利要求1所述的方法,其特征在于,步骤2)中所述底物与有机金属框架材料的摩尔比为(1~3):1。
13.根据权利要求1所述的方法,其特征在于,步骤1)和步骤2)反应的温度为0-100 oC。
14.根据权利要求1所述的方法,其特征在于,步骤1)和步骤2)中所述反应在无氧的环境中进行。
CN202010210076.2A 2020-03-23 2020-03-23 一种采用两步法提高有机金属框架材料光催化还原性能的方法 Active CN113426485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010210076.2A CN113426485B (zh) 2020-03-23 2020-03-23 一种采用两步法提高有机金属框架材料光催化还原性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010210076.2A CN113426485B (zh) 2020-03-23 2020-03-23 一种采用两步法提高有机金属框架材料光催化还原性能的方法

Publications (2)

Publication Number Publication Date
CN113426485A CN113426485A (zh) 2021-09-24
CN113426485B true CN113426485B (zh) 2022-08-16

Family

ID=77752698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010210076.2A Active CN113426485B (zh) 2020-03-23 2020-03-23 一种采用两步法提高有机金属框架材料光催化还原性能的方法

Country Status (1)

Country Link
CN (1) CN113426485B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123907A1 (en) * 2010-04-08 2011-10-13 Katholieke Universiteit Leuven Photo-electrochemical cell
CN103341364A (zh) * 2013-07-09 2013-10-09 福州大学 一种促进co2光催化还原性能的方法
CN108276245A (zh) * 2018-01-08 2018-07-13 中国科学院化学研究所 一种利用光催化还原全氟代芳香化合物至部分氟代芳香化合物的方法
CN110294661A (zh) * 2018-03-23 2019-10-01 中国科学院化学研究所 一种利用光还原实现多溴代芳香化合物完全脱溴的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835343B2 (en) * 2010-09-27 2014-09-16 Uchicago Argonne, Llc Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
US10326145B2 (en) * 2012-04-11 2019-06-18 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN105983420A (zh) * 2015-02-16 2016-10-05 中国科学院理化技术研究所 无机半导体光催化体系还原二氧化碳的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123907A1 (en) * 2010-04-08 2011-10-13 Katholieke Universiteit Leuven Photo-electrochemical cell
CN103341364A (zh) * 2013-07-09 2013-10-09 福州大学 一种促进co2光催化还原性能的方法
CN108276245A (zh) * 2018-01-08 2018-07-13 中国科学院化学研究所 一种利用光催化还原全氟代芳香化合物至部分氟代芳香化合物的方法
CN110294661A (zh) * 2018-03-23 2019-10-01 中国科学院化学研究所 一种利用光还原实现多溴代芳香化合物完全脱溴的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate;Meenakshi Dan-Hardi et al.;《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》;20090721;全文 *
An Amine-Functionalized Titanium Metal–Organic Framework;Yanghe Fu et al.;《Angew. Chem. Int. Ed.》;20120222;全文 *
An unusual dependency on the hole-scavengers in photocatalytic reductions mediated by a titanium-based metal-organic framework;Wei Peng et al;《Catalysis Today》;20181122;90页第1栏第1-2段和第2栏第1段;89页第2栏第2段;参见87页第2栏第2,7段 *

Also Published As

Publication number Publication date
CN113426485A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Liu et al. Photocatalytic cleavage of C–C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π–π stacking interaction
Liu et al. Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability
Fox et al. Heterogeneous photocatalysis
Hou et al. Yin and Yang dual characters of CuO x clusters for C–C bond oxidation driven by visible light
Friedmann et al. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives
Liu et al. Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions
Liu et al. Degradation of perfluorooctanoic acid with hydrated electron by a heterogeneous catalytic system
Gao et al. Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2
Pienta et al. Photochemistry of alkyl halides. 6. gem-Diiodides. A convenient method for the cyclopropanation of olefins
Cherevatskaya et al. Heterogeneous photocatalysts in organic synthesis
Zhao et al. Palladium nanoparticles anchored on sustainable chitin for phenol hydrogenation to cyclohexanone
US5708246A (en) Method of photocatalytic conversion of C-H organics
CN110385138A (zh) 一种铑负载的多孔管状氮化碳光催化剂的制备及其对氯酚的加氢脱氯催化反应
Kohtani et al. Photoreductive transformation of fluorinated acetophenone derivatives on titanium dioxide: Defluorination vs. reduction of carbonyl group
CN113426485B (zh) 一种采用两步法提高有机金属框架材料光催化还原性能的方法
Fan et al. In-situ construction of Bi24O31Br10-decorated self-supported BiOBr microspheres for efficient and selective photocatalytic oxidation of aromatic alcohols to aldehydes under blue LED irradiation
Doohan et al. A comparative analysis of the functionalisation of unactivated cycloalkanes using alkynes and either sunlight or a photochemical reactor
Ding et al. Carbon vacancies in graphitic carbon nitride-driven high catalytic performance of Pd/CN for phenol-selective hydrogenation to cyclohexanone
Günnemann et al. Isotope effects in photocatalysis: an underexplored issue
CN1460542A (zh) 光-磁协同催化技术及其在降解有机污染物上的应用
Dabbous et al. Fine tuning of quantum dots photocatalysts for the synthesis of tropane alkaloid skeletons
CN110041224A (zh) 一种广谱简易制备希夫碱的方法
CN110511127A (zh) 一种利用乙炔化反应副产物制备α-羟基酮的方法
Xu et al. Photocatalytic, Oxidative Cleavage of C− C Bond in Lignin Models and Native Lignin
CN104785258A (zh) 一种光催化末端炔烃亲核加成反应的催化剂及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant