CN113426444A - 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用 - Google Patents

一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用 Download PDF

Info

Publication number
CN113426444A
CN113426444A CN202110737692.8A CN202110737692A CN113426444A CN 113426444 A CN113426444 A CN 113426444A CN 202110737692 A CN202110737692 A CN 202110737692A CN 113426444 A CN113426444 A CN 113426444A
Authority
CN
China
Prior art keywords
silver
platinum
nano
composite material
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110737692.8A
Other languages
English (en)
Other versions
CN113426444B (zh
Inventor
姜鲁华
谢兴明
崔学晶
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110737692.8A priority Critical patent/CN113426444B/zh
Publication of CN113426444A publication Critical patent/CN113426444A/zh
Application granted granted Critical
Publication of CN113426444B publication Critical patent/CN113426444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Ag0.333V2O5纳米棒与铂和银纳米粒子的复合材料,具体地说,是一种具有等离子共振效应的光电催化剂。其制备过程包括如下步骤:(1)首先采用水热过程制备AgxV2O5纳米棒;(2)将AgxV2O5纳米棒浸渍氯铂酸溶液,干燥后在还原性气氛中进行还原,即得到Ag0.333V2O5纳米棒与铂和银纳米粒子的复合材料Pt/Ag/Ag0.333V2O5。该材料对甲醇等具有优良的光电催化氧化性能。本发明所涉及的制备方法工艺简单、绿色环保、易于放大。

Description

一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制 备和应用
技术领域
本发明涉及一种贵金属和半导体的无机复合材料,具体地说是一种可用于光电催化氧化反应的复合材料。本发明还涉及上述复合材料的制备方法。
技术背景
甲醇电氧化反应作为直接甲醇燃料电池的阳极反应,其反应速率对甲醇燃料电池的放电性能影响显著。甲醇氧化是6电子转移过程,动力学缓慢,并且中间产物CO易毒化铂催化剂,严重制约电池性能。太阳能作为一种取之不竭的能量,有望耦合甲醇氧化反应,提高其动力学速率。因此,开发高效光电催化剂对提高光的利用率至关重要。近年来,诸多研究表明,将铂纳米粒子与具有光响应的半导体复合能够有效提升光照条件下甲醇氧化电流。文献(Applied Catalysis B:Environmental,2017,203,108-115)利用g-C3N4作为光催化剂负载铂纳米粒子,在可见光照射下,Pt/g-C3N4对甲醇的电催化氧化性能提高了2.3倍。文献(Applied Surface Science,2020,521,146431)在Bi2WO6/Cu2S光催化剂上负载铂纳米粒子,与传统电催化氧化性能相比,在光照条件下Pt/Bi2WO6/Cu2S对甲醇氧化的电催化活性提高了1.99倍。文献(Applied Surface Science,2021,541,148450)在NiO/TiO2光催化剂上负载铂纳米粒子,在光照条件下 Pt/NiO/TiO2对甲醇氧化的电催化活性比暗场下提高了0.9倍。
对于光电催化甲醇氧化反应,半导体光催化剂的能带结构对光电催化氧化反应的性能影响显著。Ag0.333V2O5具有层状结构,层板间能够插入离子,这为该材料在二次电池中的应用提供了可能(Materials Letters,2011,65,3436-3439)。尽管Ag0.333V2O5半导体具有较窄的带隙(2.1 ~2.2eV)和较深的价带位置(~2.9eV),然而,Ag0.333V2O5对可见光的利用率依然比较低,这限制了Ag0.333V2O5在光电催化中的应用。
发明内容
针对Ag0.333V2O5半导体对可见光的利用率较低这一问题,本发明先通过水热过程制备出 AgxV2O5前驱体并浸渍氯铂酸溶液,后经氢还原过程将氯铂酸还原为铂纳米粒子,同时前驱体中部分Ag还原为Ag纳米粒子,得到负载铂和银纳米粒子的Ag0.333V2O5复合材料;借助银的等离子体共振效应拓宽Ag0.333V2O5半导体对可见光的吸收利用效率。本发明技术制备得到的 Pt/Ag/Ag0.333V2O5具有优良的光电催化氧化性能。
本发明的技术方案如下:
一种负载铂、银纳米粒子的Ag0.333V2O5复合材料制备方法,具体步骤如下:
步骤一:将五氧化二钒固体粉末加入到过氧化氢水溶液中,再在其中加入硝酸银溶液;
步骤二:将步骤一得到的溶液转移至反应釜中,在一定温度下进行水热反应一段时间,冷却后将产物离心洗涤,干燥后即得到前驱体AgxV2O5粉末;
步骤三:将氯铂酸水溶液和步骤二得到的AgxV2O5粉末按一定比例混合均匀,旋转蒸发干燥后,置于管式炉中,通入还原性气体,在一定温度下保持一段时间,即得到Pt/Ag/Ag0.333V2O5复合材料。
步骤二中所述的水热反应可以在干燥箱、马弗炉或微波反应器中进行;
步骤三中所述的还原性气体为氢气、氢/氩混气、氢/氮混气中的一种或两种;
步骤三中所述的还原温度为120~200℃;
步骤三中所述的还原时间为0.5~2小时。
步骤三所得到的Pt/Ag/Ag0.333V2O5复合材料中铂含量为0.1~20%wt%;
步骤三所得到的Pt/Ag/Ag0.333V2O5复合材料中银含量为0.1~10%wt%。
所述复合材料可用于光电催化氧化反应,可用于燃料电池、金属空气电池、光电水分解等领域。
与现有技术相比,本发明具有以下优点:
1,铂和银纳米粒子在Ag0.333V2O5纳米棒表面分布均匀,无团聚;
2,银的等离子共振效应拓宽了Ag0.333V2O5对可见光的吸收范围,复合材料的光电催化氧化性能显著提高;
3,制备过程简单易行,不涉及苛刻的实验条件,环境友好,适于批量化制备。
附图说明
图1为实施例2所制备的AgxV2O5的扫描电子显微镜图片。
图2为实施例2所制备的Pt/Ag/Ag0.333V2O5透射电子显微镜图片。
图3为实施例1、2、3所制备的催化剂的紫外可见吸收谱图。
图4为实施例1、2、3所制备的催化剂对甲醇氧化电流的对比图。
具体实施方式
下面结合具体的实施例进一步阐述本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
步骤一:称取0.18克五氧化二钒粉末,加入5毫升过氧化氢(30wt%),剧烈反应几分钟,形成暗红色溶液。移取50毫升去离子水加入上述溶液中,形成红棕色的透明溶液。在磁力搅拌条件下,取10毫升的硝酸银溶液(5毫摩尔/升)缓慢倒入上述溶液中。搅拌均匀后,将混合溶液转移到100毫升聚四氟乙烯内衬的反应釜中,将反应釜置于烘箱于180摄氏度下保持24 小时。自然冷却至室温后,将沉淀离心分离,分别用去离子水和乙醇离心洗涤,所得到的样品于鼓风干燥箱中干燥24小时,得到样品AgxV2O5
步骤二:将95毫克AgxV2O5加入30毫升去离子水中,超声分散10分钟。加入浓度为3.7 毫克/毫升的氯铂酸水溶液1.330毫升。磁力搅拌0.5小时后,将悬浮液中的溶剂在旋转蒸发器中蒸发干燥,得到黄褐色粉末。将装在石英舟中的黄褐色粉末放入管式炉中,在150摄氏度的氢气/氩气气氛下还原30分钟,冷却至室温后,用去离子水多次洗涤,在60摄氏度真空烘箱中干燥8小时。得到的样品Pt/Ag/Ag0.333V2O5
实施例2
步骤一:称取0.18克五氧化二钒粉末,加入5毫升过氧化氢(30wt%),剧烈反应几分钟,形成暗红色溶液。移取35毫升去离子水加入上述溶液中,形成红棕色的透明溶液。在磁力搅拌条件下,取25毫升的硝酸银溶液(5毫摩尔/升)缓慢倒入上述溶液中。搅拌均匀后,将混合溶液转移到100毫升聚四氟乙烯内衬的反应釜中,将反应釜置于烘箱于180摄氏度下保持24 小时,自然冷却至室温后,将沉淀离心分离,分别用去离子水和乙醇离心洗涤,所得到的样品于鼓风干燥箱中干燥24小时,得到样品AgxV2O5
步骤二同实施例1。
实施例3
步骤一:称取0.18克五氧化二钒粉末,加入5毫升过氧化氢(30wt%),剧烈反应几分钟,形成暗红色溶液。移取20毫升去离子水加入上述溶液中,形成红棕色的透明溶液。在磁力搅拌条件下,取40毫升的硝酸银溶液(5毫摩尔/升)缓慢倒入上述溶液中。搅拌均匀后,将混合溶液转移到100毫升聚四氟乙烯内衬的反应釜中,将反应釜置于烘箱于180摄氏度下保持24 小时,自然冷却至室温后,将沉淀离心分离,分别用去离子水和乙醇离心洗涤,所得到的样品于鼓风干燥箱中干燥24小时,得到样品AgxV2O5
步骤二同实施例1。
效果实施例1
利用上海辰华电化学工作站(CHI 604E)在电化学三电极体系中对实施例1、实施例2、实施例3所获得的Pt/Ag/Ag0.333V2O5催化剂对甲醇电催化氧化性能进行了测试。在2毫升乙醇中加入5毫克Pt/Ag/Ag0.333V2O5和1毫克活性炭(Vulcan XC-72),超声分散15分钟,然后加入 30微升萘酚溶液,超声分散15分钟,形成均匀的浆液。移取20微升浆液于直径5毫米的玻碳电极上分散均匀,干燥后作为工作电极用于电催化性能测试。对电极为石墨棒,参比电极为饱和甘汞(0.270伏特,相对于可逆氢电极),电解液为0.5摩尔/每升硫酸和1摩尔/每升甲醇混合水溶液。电化学扫描的电位窗口范围为0.09伏特至1.19伏特(相对于可逆氢电极),扫描速率为20毫伏/秒,记录电流-电位曲线。
采用同样的方法测试实施例2和3的样品对甲醇电催化氧化的电流-电位曲线,结果示于图3。
效果实施例2
利用上海辰华电化学工作站在带有光窗口的电化学三电极体系中对实施例1、实施例2、实施例3获得的Pt/Ag/Ag0.333V2O5催化剂在光辐照下对甲醇电催化氧化性能进行测试。工作电极的制备方法、对电极、参比电极和电解液以及测试方法同效果实施例1。不同之处在于,在进行电化学扫描的同时,用氙灯紫外-可见光辐照涂覆有催化剂的工作电极。氙灯总输出功率 252瓦特,波长范围为320~2500纳米。记录电化学扫描的电流-电位曲线,结果示于图3。
由图1中实施例2样品的扫描电子显微镜图片可见,AgxV2O5纳米棒的直径为50-100纳米,纳米棒状结构比表面积大,有利于铂和银纳米粒子在载体上的分散,且棒状结构有利于光生载流子的传输,从而提高甲醇催化氧化活性。
由图2中实施例2样品的高分辨透射电镜图片可见,基底的晶格间距为0.217纳米,归属为Ag0.333V2O5的(601)晶面,在AgxV2O5基底表面分布有2~5纳米的纳米粒子,其中晶格间距为0.229纳米的归属为铂纳米粒子的(111)晶面;晶格间距为0.235纳米,归属为银纳米粒子的(111)晶面。上述结果清晰地表明,在Ag0.333V2O5表面生成了纳米铂和银粒子。
图3是实施例1、实施例2和实施例3得到的催化剂(银含量逐渐增加)的紫外可见光谱。从图中可见,随着催化剂中Ag含量的增加,可见光部分(>500nm)的光吸收明显增大,这是由于Ag的等离子共振效应导致的。
图4对比了暗场和施加紫外-可见光的条件下,实施例1、实施例2和实施例3的催化剂对甲醇电氧化电流。在暗场下,随银含量增大,甲醇氧化的峰电流逐渐增大,实施例3样品对甲醇电催化氧化的峰电流达到5.3毫安/平方厘米。这是由于银的引入提高了材料的电子导电率,从而提高了甲醇电催化氧化性能。在施加紫外-可见光的条件下,实施例1、实施例2和实施例 3的催化剂样品对甲醇电催化氧化的峰电流均明显增大,实施例3的样品对甲醇光电催化氧化具有最高的峰电流,达到10.6毫安/平方厘米。与暗场条件下甲醇氧化电流相比,光场下实施例1、实施例2、实施例3对甲醇氧化电流分别提高了80.5%、91%和100%。因此,本发明所制备的Pt/Ag/Ag0.333V2O5催化剂具有优异的光电催化甲醇氧化性能。

Claims (8)

1.一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒(Pt/Ag/Ag0.333V2O5),其特征在于,Ag0.333V2O5为纳米棒状结构,表面分布有铂纳米粒子和银纳米粒子。
2.如权利要求1所述的Pt/Ag/Ag0.333V2O5,其特征在于,铂的负载量为0.1~20wt%。
3.如权利要求1所述的Pt/Ag/Ag0.333V2O5,其特征在于,银的负载量为0.1~10wt%。
4.如权利要求1所述的Pt/Ag/Ag0.333V2O5,其特征在于,它是通过先将五氧化二钒和硝酸银在过氧化氢水溶液中进行水热反应生成AgxV2O5纳米棒;再将AgxV2O5纳米棒与氯铂酸水溶液混合干燥后在还原性气氛中进行得到的。
5.如权利要求2所述的制备方法,其特征在于,还原性气氛为氢气、氢氩混合气、氢氮混合气中的一种或两种。
6.如权利要求2所述的制备方法,其特征在于,还原温度为120~200℃。
7.如权利要求2所述的制备方法,其特征在于,还原时间为30分钟~2小时。
8.如权利要求1所述的Pt/Ag/Ag0.333V2O5用作高效光电催化甲醇氧化催化剂。
CN202110737692.8A 2021-06-30 2021-06-30 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用 Active CN113426444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110737692.8A CN113426444B (zh) 2021-06-30 2021-06-30 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110737692.8A CN113426444B (zh) 2021-06-30 2021-06-30 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN113426444A true CN113426444A (zh) 2021-09-24
CN113426444B CN113426444B (zh) 2022-07-19

Family

ID=77758099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110737692.8A Active CN113426444B (zh) 2021-06-30 2021-06-30 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN113426444B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263675A1 (en) * 2005-05-19 2006-11-23 Radoslav Adzic Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
CN1913202A (zh) * 2006-05-26 2007-02-14 南开大学 钒酸银电极材料和制备方法及其应用
CN102500371A (zh) * 2011-10-18 2012-06-20 山东大学 可见光响应光催化材料Ag@Ag3VO4及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263675A1 (en) * 2005-05-19 2006-11-23 Radoslav Adzic Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
CN1913202A (zh) * 2006-05-26 2007-02-14 南开大学 钒酸银电极材料和制备方法及其应用
CN102500371A (zh) * 2011-10-18 2012-06-20 山东大学 可见光响应光催化材料Ag@Ag3VO4及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAI-FENG ZHANG ET AL.: ""Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution"", 《JOURNAL OF POWER SOURCES》 *
XIAOHUAN ZOU ET AL.: ""Phosphorus-doping and adition of V2O5 into Pt/graphene resulting in highly-enhanced electro-photo synergistic catalysis for oxygen reduction and hydrogen evolution reactions",", 《INTRNALTIONAL JOURNAL OF HYDROGEN ENERGY》 *
武卫忠: ""一维钒氧化物纳米结构的掺杂及电化学性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN113426444B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Ai et al. Construction of CdS@ Ti3C2@ CoO hierarchical tandem pn heterojunction for boosting photocatalytic hydrogen production in pure water
Zhen et al. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu 2 O/Cu/TiO 2 catalyst
Ma et al. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution
Gong et al. WP modified S-scheme Zn 0.5 Cd 0.5 S/WO 3 for efficient photocatalytic hydrogen production
CN105413730B (zh) 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
WO2021120359A1 (zh) 单原子贵金属锚定缺陷型WO3/TiO2纳米管、其制备和应用
KR20200099046A (ko) 연료전지용 질소 도핑된 금속-탄소 촉매의 제조방법
CN108550871B (zh) 一种二氧化锰/炭黑复合材料及其制备方法和应用
Hu et al. Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO 4-modified electrode under visible light irradiation
CN107892284A (zh) 一种NiS/C3N4二元复合物及其制备和应用方法
CN111215066B (zh) 一种Pt/BiVO4/Bi2O3催化剂的光辅助制备方法及其光电催化应用
EP3006106A1 (en) Catalyst particles, loaded catalyst particles, and use of same
CN112619710A (zh) 一种三嗪基共价网络负载金属单原子的复合材料及其制备方法和应用
CN108855173A (zh) 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
Chen et al. Plasmonic hot electron transfer in anisotropic Pt–Au nanodisks boosts electrochemical reactions in the visible-NIR region
CN111957339A (zh) B,N掺杂碳负载Pt3Fe合金纳米催化剂、制备方法及应用
An et al. 0D ultrafine ruthenium quantum dot decorated 3D porous graphitic carbon nitride with efficient charge separation and appropriate hydrogen adsorption capacity for superior photocatalytic hydrogen evolution
Tan et al. A palladium-doped ceria@ carbon core–sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions
Li et al. MoO2-C@ MoS2: A unique cocatalyst with LSPR effect for enhanced quasi-full-spectrum photocatalytic hydrogen evolution of CdS
CN114335572B (zh) 一种用于燃料电池的金属氧化物复合碳载铂基催化剂及其制备方法
Zhang et al. MoC/MAPbI 3 hybrid composites for efficient photocatalytic hydrogen evolution
Liu et al. Fabrication of a hybrid phase TiO 2/gC 3 N 4 heterojunction composite with enhanced adsorption and photocatalytic degradation of MB under visible light
Shi et al. Synthesis of Cu 3 P/SnO 2 composites for degradation of tetracycline hydrochloride in wastewater
CN113426444B (zh) 一种负载铂和银纳米粒子的Ag0.333V2O5纳米棒复合材料及其制备和应用
CN111193042B (zh) 一种氮掺杂石墨烯@铜铁球复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant