CN113421934B - 一种钙钛矿吸光层材料的制备方法 - Google Patents

一种钙钛矿吸光层材料的制备方法 Download PDF

Info

Publication number
CN113421934B
CN113421934B CN202110663796.9A CN202110663796A CN113421934B CN 113421934 B CN113421934 B CN 113421934B CN 202110663796 A CN202110663796 A CN 202110663796A CN 113421934 B CN113421934 B CN 113421934B
Authority
CN
China
Prior art keywords
snf
cssni
perovskite
graphene
graphene sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110663796.9A
Other languages
English (en)
Other versions
CN113421934A (zh
Inventor
宗迎夏
刘玉梅
宗成中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110663796.9A priority Critical patent/CN113421934B/zh
Publication of CN113421934A publication Critical patent/CN113421934A/zh
Application granted granted Critical
Publication of CN113421934B publication Critical patent/CN113421934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种钙钛矿吸光层材料及方法,其包括CsSnI3钙钛矿材料,并且还包含有增强材料,增强材料为石墨烯和SnF2的掺杂物。在制备方法中,在石墨烯片上通过浸渍法负载得到有SnF2的石墨烯片;通过真空热蒸发沉积的方式制得负载CsI薄膜的二次基片,然后以CsI薄膜为基础再次沉积得到SnI2薄膜负载的结构;以得到具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料通过石墨烯和SnF2的掺杂物的加入,使得CsSnI3钙钛矿材料转换效率得到了明显的提升,并且这种转换效率高于单独的CsSnI3钙钛矿材料和掺杂SnF2的CsSnI3钙钛矿材料;另外,这种材料中不使用对于环境具有破坏作用的铅元素,极大地提高了这种材料的安全性和环境保护作用,具有很好的应用价值。

Description

一种钙钛矿吸光层材料的制备方法
技术领域
本发明涉及一种钙钛矿吸光层材料,具体涉及一种CsSnI3钙钛矿材料。
背景技术
为了应对能源危机,太阳能电池在近些年来得到了广泛和深度的发展,在一些生活和工业领域,已经逐渐地开始普遍地、规模化地使用太阳能电池。在太阳能电池技术的发展中,其吸光层材料属于研究的热点之一,目前,太阳能电池的吸光层材料的理论基础主要为钙钛矿材料,这种钙钛矿材料的分子式为ABX3型的结构,其中A可以为CH3NH3 +,B可以为Pb2 +,X为卤素离子。然而,这种基于铅元素(Pb)的钙钛矿材料虽然吸光性能稳定,但是其具有较强的环境破坏力,在本领域中一直寻求替代铅元素的吸光层材料。
目前在现有技术中出现了CsSnI3钙钛矿的材料,这种材料完全地避免了对于铅元素的依赖,具有很好地环境友好性,为本领域的新兴热点材料之一。然而,这种材料也存在一个较为突出的问题,Sn空缺产生高浓度的受主缺陷使得材料表现为强的p型电导,这样深能级缺陷态形成电子和空穴的复合中心,导致这种材料的工作转换效率不高。经过研究后表明,添加了Sn元素进入到钙钛矿材料之后则能够提高吸光层的转换效率。基于此,当把氟化亚锡加入到钙钛矿材料之中进行改良,其吸光层性能确实有提升,但是提升的幅度有限,其远低于传统的铅类的钙钛矿吸光层材料的电池性能。因此,这种材料的吸光层材料仍然有进一步提升的空间。
发明内容
为解决上述技术中存在的问题,本发明提供一种环保友好性且吸光层性能得到保证的钙钛矿材料和方法。
本发明提供的一种钙钛矿吸光层材料,其包括CsSnI3钙钛矿材料,并且还包含有增强材料,所述增强材料为石墨烯和SnF2的掺杂物。
上述方案的有益效果为:通过石墨烯和SnF2的掺杂物的加入,使得CsSnI3钙钛矿材料转换效率得到了明显的提升,并且这种转换效率高于单独的CsSnI3钙钛矿材料和掺杂SnF2的CsSnI3钙钛矿材料;另外,这种材料中不使用对于环境具有破坏作用的铅元素,极大地提高了这种材料的安全性和环境保护作用,具有很好的应用价值。
一个优选的方案是,所述石墨烯和SnF2的掺杂物中的SnF2与CsSnI3的摩尔比为0.1:1至0.3:1。经过在不同含量的SnF2的使用情况下对于吸光层的转换效率进行测试,发现在达到0.1:1以上的时候则会使得转换效率得到明显提升,而对于超过0.3:1的成分,则转换效率不会有显著变化,因此在这个范围内的实施例是比较合适的。
一个优选的方案是,所述石墨烯和SnF2的掺杂物中的SnF2与CsSnI3的摩尔比为0.2:1。经过测试,发现这个摩尔比的时候吸光层的转换效率达到了最优化状态。
一个优选的方案是,包括两层薄膜结构,下层薄膜结构为掺杂SnF2的石墨烯片,上层薄膜结构为CsSnI3薄膜。
本发明提供的钙钛矿吸光层材料的制备方法,其包括下面的步骤:
S1:获得石墨烯片,在所述石墨烯片上通过浸渍法负载得到有SnF2的石墨烯片;
S2:以掺杂有SnF2的石墨烯片为基片,通过真空热蒸发沉积的方式制得负载CsI薄膜的二次基片,然后以所述CsI薄膜为基础再次沉积得到SnI2薄膜负载的结构;
S3:迅速在退火炉中以保护气体的氛围下在180℃至320℃范围内的不同温度下进行退火步骤,随后自然冷却,以得到具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料。
具体实施方式
本发明提供的一种钙钛矿吸光层材料,其包括CsSnI3钙钛矿材料,并且还包含有增强材料,所述增强材料为石墨烯和SnF2的掺杂物。
本发明通过石墨烯和SnF2的掺杂物的加入,使得CsSnI3钙钛矿材料转换效率得到了明显的提升,并且这种转换效率高于单独的CsSnI3钙钛矿材料和掺杂SnF2的CsSnI3钙钛矿材料;另外,这种材料中不使用对于环境具有破坏作用的铅元素,极大地提高了这种材料的安全性和环境保护作用,具有很好的应用价值。
所述石墨烯和SnF2的掺杂物中的SnF2与CsSnI3的摩尔比为0.1:1至0.3:1。经过在不同含量的SnF2的使用情况下对于吸光层的转换效率进行测试,发现在达到0.1:1以上的时候则会使得转换效率得到明显提升,而对于超过0.3:1的成分,则转换效率不会有显著变化,因此在这个范围内的实施例是比较合适的。所述石墨烯和SnF2的掺杂物中的SnF2与CsSnI3的摩尔比为0.2:1。经过测试,发现这个摩尔比的时候吸光层的转换效率达到了最优化状态。
在具体的实验对照中,分别测试了CsSnI3钙钛矿材料(简称为CsSnI3材料)、掺杂SnF2的CsSnI3钙钛矿材料(简称为SnF2-CsSnI3材料)、石墨烯和SnF2的掺杂物的CsSnI3钙钛矿材料(简称为C-SnF2-CsSnI3材料)。具体见下面的表1。
表1:不同材料类型的电转换效率的性能测试。
组别 材料类型 变化量 转换效率
1 CsSnI<sub>3</sub>材料 - 5%以下
2 SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比10% 14%
3 SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比20% 18%
4 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比5% 6%
5 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比10% 17%
6 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比15% 20%
7 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比20% 25%
8 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比25% 22%
9 C-SnF<sub>2</sub>-CsSnI<sub>3</sub>材料 SnF<sub>2</sub>摩尔比30% 21%
本发明提供的钙钛矿吸光层材料包括两层薄膜结构,下层薄膜结构为掺杂SnF2的石墨烯片,上层薄膜结构为CsSnI3薄膜。
本发明提供的钙钛矿吸光层材料的制备方法,其包括下面的步骤:
S1:获得石墨烯片,在所述石墨烯片上通过浸渍法负载得到有SnF2的石墨烯片;另外还可以通过现有的其它的方式把SnF2掺杂到石墨烯片上。
S2:以掺杂有SnF2的石墨烯片为基片,通过真空热蒸发沉积的方式制得负载CsI薄膜的二次基片,然后以所述CsI薄膜为基础再次沉积得到SnI2薄膜负载的结构;
S3:迅速在退火炉中以保护气体的氛围下在180℃至320℃范围内的不同温度下进行退火步骤,随后自然冷却,以得到具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料。以上制备方法为优选实施例。

Claims (3)

1.钙钛矿吸光层材料的制备方法,其特征在于,包括下面的步骤:
S1:获得石墨烯片,在所述石墨烯片上通过浸渍法负载得到有SnF2的石墨烯片;
S2:以掺杂有SnF2的石墨烯片为基片,通过真空热蒸发沉积的方式制得负载CsI薄膜的二次基片,然后以所述CsI薄膜为基础再次沉积得到SnI2薄膜负载的结构;
S3:迅速在退火炉中以保护气体的氛围下在180℃至320℃范围内的温度下进行退火步骤,随后自然冷却,以得到具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料。
2.根据权利要求1所述的钙钛矿吸光层材料的制备方法,其特征在于,具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料中的SnF2与CsSnI3的摩尔比为0.1:1至0.3:1。
3.根据权利要求2所述的钙钛矿吸光层材料的制备方法,其特征在于,具有掺杂SnF2石墨烯片的CsSnI3钙钛矿薄膜材料中的SnF2与CsSnI3的摩尔比为0.2:1。
CN202110663796.9A 2021-06-16 2021-06-16 一种钙钛矿吸光层材料的制备方法 Active CN113421934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110663796.9A CN113421934B (zh) 2021-06-16 2021-06-16 一种钙钛矿吸光层材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110663796.9A CN113421934B (zh) 2021-06-16 2021-06-16 一种钙钛矿吸光层材料的制备方法

Publications (2)

Publication Number Publication Date
CN113421934A CN113421934A (zh) 2021-09-21
CN113421934B true CN113421934B (zh) 2022-05-03

Family

ID=77788594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110663796.9A Active CN113421934B (zh) 2021-06-16 2021-06-16 一种钙钛矿吸光层材料的制备方法

Country Status (1)

Country Link
CN (1) CN113421934B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416279B2 (en) * 2013-11-26 2016-08-16 Hunt Energy Enterprises, L.L.C. Bi- and tri-layer interfacial layers in perovskite material devices
US10096393B2 (en) * 2014-03-31 2018-10-09 Medtronic, Inc. Nuclear radiation particle power converter
CN104979421B (zh) * 2014-04-11 2017-09-26 中国科学院大连化学物理研究所 一种叠层太阳能电池
WO2016199118A1 (en) * 2015-06-10 2016-12-15 Solarpaint Ltd. Photovoltaic device and components
CN109713137A (zh) * 2018-12-30 2019-05-03 华北电力大学 用于钙钛矿太阳电池传输层的元素气相掺杂方法
CN110190195B (zh) * 2019-05-16 2021-03-30 华南理工大学 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法

Also Published As

Publication number Publication date
CN113421934A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
Guo et al. Efficient and hole‐transporting‐layer‐free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation
Zhou et al. The fabrication of formamidinium lead iodide perovskite thin films via organic cation exchange
Cheng et al. Phenoxazine-Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells.
Benagli et al. High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor
CN103050551B (zh) 太阳能电池的钝化层及其制造方法
CN112687807B (zh) 一种基于两步法制备的2d/3d杂化钙钛矿太阳能电池
Xu et al. n-type absorber by Cd2+ doping achieves high-performance carbon-based CsPbIBr2 perovskite solar cells
Jiang et al. Enhanced efficiency and mechanical robustness of flexible perovskite solar cells by using HPbI3 additive
Liu et al. Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells
CN110783464A (zh) 一种钙钛矿太阳能电池及其制备方法
CN111509127A (zh) 一种疏水性二维/三维混合钙钛矿太阳能电池及其制备方法
CN109817810A (zh) 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
CN111883621A (zh) 一种高效晶硅异质结太阳能电池的tco镀膜工艺方法
Deng et al. Electron-deficient 4-nitrophthalonitrile passivated efficient perovskite solar cells with efficiency exceeding 22%
CN113421934B (zh) 一种钙钛矿吸光层材料的制备方法
Liu et al. Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air
CN110544730A (zh) 选择性发射极及其制备方法、选择性发射极电池
CN105914297B (zh) 一种有机光伏电池及其制备方法
Condorelli et al. High efficiency hetero-junction: from pilot line to industrial production
CN105870332B (zh) 一种含噻吩环的有机光伏电池及其制备方法
CN114709457B (zh) 一种双掺杂的中温固体氧化物燃料电池电解质及其制备方法
Benick et al. PECVD PSG as a dopant source for industrial solar cells
Isa et al. Optimization of Perovskite Solar Cell Performance using Optimized Level of Tetraethyl Orthosilicate Concentration
CN114628592B (zh) 一种掺杂噻吩甲脒氯的高效宽带隙钙钛矿太阳电池及其制备方法
CN105924446A (zh) 一种有机光伏材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant