CN113420392B - Conjugate heat transfer radiator design method based on flow channel track optimization - Google Patents

Conjugate heat transfer radiator design method based on flow channel track optimization Download PDF

Info

Publication number
CN113420392B
CN113420392B CN202110751830.8A CN202110751830A CN113420392B CN 113420392 B CN113420392 B CN 113420392B CN 202110751830 A CN202110751830 A CN 202110751830A CN 113420392 B CN113420392 B CN 113420392B
Authority
CN
China
Prior art keywords
function
bernstein
flow channel
curve
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110751830.8A
Other languages
Chinese (zh)
Other versions
CN113420392A (en
Inventor
李珂翔
高国明
陈杨
宋荣贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
724th Research Institute of CSIC
Original Assignee
724th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 724th Research Institute of CSIC filed Critical 724th Research Institute of CSIC
Priority to CN202110751830.8A priority Critical patent/CN113420392B/en
Publication of CN113420392A publication Critical patent/CN113420392A/en
Application granted granted Critical
Publication of CN113420392B publication Critical patent/CN113420392B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

The invention discloses a conjugate heat transfer radiator design method based on flow channel track optimization, which comprises the steps of determining the inlet and outlet positions and the geometric dimensions of a conjugate heat transfer radiator and the boundary parameters of a system; fitting a flow channel track by adopting a Bernstein function as a mathematical tool by combining a spline curve function and a least square method; determining the normal direction of the curve by using a Bernstein function to further define a flow channel track function; taking a circle as the cross section shape of the flow channel; taking a coefficient embedded with a Bernstein function as a design variable, taking the minimum average temperature of an important plane as a target function, and establishing a shape optimization model by space size constraint; and optimizing the flow channel distribution by adopting a linear approximate constraint optimization algorithm COBYLA (chip on Board analysis) and simultaneously normalizing the design variables to improve the optimization stability. The invention can reasonably consider the defects of the traditional radiator design method and the application of the conventional optimization technology, further release the influence of the geometric dimension on the heat dissipation performance of the conjugated heat transfer radiator and improve the temperature distribution of an important plane.

Description

Conjugate heat transfer radiator design method based on flow channel track optimization
Technical Field
The invention belongs to the field of electronic equipment.
Background
In electronic equipment systems, heat sinks are indispensable or even central components. Most electronic devices must be designed with sufficient consideration of the effects of heat generating components, thermal environments, random thermal runaway, etc. on system efficiency, stability, and lifetime. Statistically, more than 55% of electronic products fail due to poor heat dissipation. In order to ensure the reliability and stability of the electronic equipment and prolong the service life of the electronic equipment, the development of a novel efficient heat dissipation technology is an urgent need at present. The traditional design method is based on experience, geometric dimensions of a given radiator are usually simply compared through an enumeration method, and the traditional design method is flexible in advantageous design and relatively intuitive. However, the design method inevitably has the defects of randomness, indefinite design period, indefinite design structure, and the like. With continuous development and development of computer technology and numerical methods, optimization methods are well applied in the design process of the geometric structure of the heat sink as novel technologies. The most representative methods are shape optimization and topology optimization. In general, topology optimization is in a conceptual design stage in the whole design flow, the mathematical demonstration and engineering application thereof are not mature, and a lot of improvement work needs to be carried out after that. Shape optimization has been widely used in structural design as a sophisticated method, although there is a limitation that the optimization result depends on initial design guessing. However, most designs simply optimize the geometry using simple, clear-to-the-eye dimensions as design variables, which greatly limits the potential for further heat dissipation. The invention further improves the temperature distribution of the important plane by digitizing the flow channel track and combining the shape optimization method by taking the minimum average temperature as the target. The potential of improving the heat dissipation performance of the geometric dimension is further mined under the constraint of limited space, and the result can be qualitatively understood and quantitatively analyzed. The method provides a theoretical basis for engineering practice.
Disclosure of Invention
The invention provides a design method of a conjugate heat transfer radiator based on flow channel track optimization. Liquid is used as a transport working medium of the conjugated heat transfer radiator, a Bernstein function is used for parameterizing a flow channel track, and the method further excavates the potential of improving the heat dissipation performance by changing parameters defining the geometric dimension.
The invention is realized by the following technical scheme:
step 1, determining the surface heat flux density of a power device, the external dimension of a radiator and the inlet and outlet positions of a flow channel according to the configuration condition of on-site electronic equipment; according to the determined heat flow density and the determined overall dimension, determining an inlet and outlet geometric dimension parameter, a heat transfer attribute parameter, a flow attribute parameter and a heat dissipation system material attribute of the heat radiator; wherein the radiator inlet diameter R in Outlet diameter R out (ii) a The heat transfer property parameter comprises an inlet fluid temperature T in The heat convection coefficient h with the outside world and the heat source Q are dispersed; the flow property parameter comprises an inlet pressure P in Outlet pressure P out (ii) a The material properties of the heat dissipation system comprise solid aluminum and fluid water, and the heat dissipation system has solid thermal conductivity k s Thermal conductivity of fluid k f Fluid constant pressure specific heat capacity C p Fluid density ρ;
step 2, fitting and parameterizing a flow channel track by using a Bernstein function according to the distribution of field power devices; appointing the fitting coordinate system to be carried out in the xoy plane, wherein z is the height direction, and the method comprises the following substeps:
(2a) According to the distribution of power devices, preliminarily determining the track of a flow channel by using a spline interpolation curve function, wherein the curve function of the ith section is
Figure BDA0003144976420000021
(2b) Roughly determining a flow channel track defined by a Bernstein function according to the spline interpolation curve function determined in the step (2 a), wherein the parameter equation of the ith section of curve function is as follows:
Figure BDA0003144976420000022
wherein,
Figure BDA0003144976420000023
respectively representing Bernstein parameter equations with respect to the parameter t in a Cartesian coordinate system; ξ is the highest power of the Bernstein function;
Figure BDA0003144976420000024
coefficients corresponding to the bernstein function;
(2c) According to the spline interpolation curve function determined in (2 a) and the Bernstein curve function determined roughly in (2 b), when the condition is
Figure BDA0003144976420000025
Accurately determining the coefficients defined in (2 b) by a least squares method
Figure BDA0003144976420000026
Figure BDA0003144976420000027
The numerical model is as follows:
Figure BDA0003144976420000028
Subject to 0≤t λ ≤1;
wherein, the process divides the ith curve into K sections, and λ (λ =0, …, K) is one of the nodes;
step 3, further determining a function defined by the Bernstein function in the direction of the curve normal according to the determined Bernstein function of the flow channel track, and comprising the following substeps:
(3a) And (3) further determining a function defined by the Bernstein function in the curve normal direction according to the Bernstein function accurately defined in the step (2 c), wherein the parameter equation is as follows:
Figure BDA0003144976420000031
wherein,
Figure BDA0003144976420000032
respectively representing parametric equations defined in terms of bernstein normal directions of the parameter t in a cartesian coordinate system; ψ is respectively the highest power of the corresponding bernstein function,
Figure BDA0003144976420000033
for coefficients corresponding to the Bernstein function, the initial value is determined as
Figure BDA0003144976420000034
The normal direction is located by cos theta and sin theta, d i (t) defines the distance from the initial curve in the normal direction. cos θ and sin θ are determined as:
Figure BDA0003144976420000035
(3b) A function defined by the normal direction of the Bernstein deterministic curve determined in accordance with (3 a), the value d of the distance from the initial curve in the normal direction i (t) is defined as:
Figure BDA0003144976420000036
wherein,
Figure BDA0003144976420000037
is the maximum value of the distance moving in the normal direction; sin [ b ] i (t)]Is the distance and maximum value of the movement
Figure BDA0003144976420000038
The ratio of (a) to (b).
Figure BDA0003144976420000039
Is defined as:
Figure BDA00031449764200000310
where Δ t represents the step size; a is a coefficient matrix determined by a Lagrangian interpolation method; t is t k Is composed of
Figure BDA00031449764200000311
The highest order variable of (2); (3c) According to the function from the initial curve in the normal direction determined in (3 b), the flexible degree of freedom is formed by the embedded function b i (t) determining, defined as:
Figure BDA00031449764200000312
wherein
Figure BDA00031449764200000313
Is b is i (t) the highest power;
Figure BDA00031449764200000314
as a function b i (t) coefficient;
step 4, determining the cross section shape of the trajectory of the flow channel according to the further determined Bernstein function of the trajectory, and further determining the configuration of the whole flow channel;
step 5, according to engineering requirements, establishing optimization criteria including a coefficient embedded into a Bernstein function as a design variable, a minimum average temperature of a contact surface of the heat radiator and the power device as a target function, space size constraint and the like, and establishing a shape optimization model of the conjugated heat transfer heat radiator as follows:
Figure BDA0003144976420000041
Figure BDA0003144976420000042
Subject toφ min ≤φ≤φ max
where φ is a vector of design variables whose elements include coefficients defined by (4 a) and (4 c); phi is a min And phi max Respectively representing the minimum value and the maximum value of the design variable constraint; n is the number of curves for constructing the flow channel track;
Figure BDA0003144976420000043
to determine the average temperature of the surface; t (phi) is a temperature value at a certain point of a determined surface, which is implicitly expressed by a design variable phi; Ω is a defined surface;
step 6, applying boundary conditions according to the shape optimization model, and establishing a finite element model of the radiator;
step 7, optimizing an objective function by adopting a linear approximate constraint optimization algorithm COBYLA according to a finite element model of the radiator, and improving the temperature distribution of the contact surface of the radiator and the power device; setting corresponding optimization tolerance sigma, and meanwhile, unitizing design variables into:
Figure BDA0003144976420000044
wherein,
Figure BDA0003144976420000045
for optimizing design variables formed during the process
Figure BDA0003144976420000046
The unitized values for the initial design variable φ, corresponding to the design variable constraints in step 6, become:
Figure BDA0003144976420000047
wherein,
Figure BDA0003144976420000048
and
Figure BDA0003144976420000049
each represents the minimum and maximum values of the unitized design variable.
Preferably, the cross section determined in step (4) may be circular, and the finite element model may be established in step (6) by using a non-structural tetrahedral mesh.
Compared with the prior art, the invention has the following characteristics:
1. the method is combined with the advantage that the curve formed by the Bernstein function only needs a few control points to determine the approximate trend of the curve, and the least square method is used for gradually approaching an auxiliary spline curve function which can be more accurately represented in the initial stage. This process avoids solving solutions that are quadratic and power-above.
2. A fitting function for the normal direction is defined. The process defines that the moving range of the initial flow path track is limited to the normal direction, and the quality of the optimized important plane temperature distribution depends on the moving distance of the initial track in the normal direction. This process mathematically defines the maximum distance traveled in order to avoid numerical instability due to "boundary collisions" that occur during the optimization process. Meanwhile, the moving range is strongly restricted through the trigonometric function, so that the problem that the optimization system is too rigid due to too much restriction is solved.
3. The whole process further releases the constraint of the geometric dimension on the heat dissipation performance, further improves the temperature distribution of the concerned surface, is easy to understand and operate, and provides a theoretical basis for engineering practice.
Drawings
FIG. 1 is a flow chart of the present invention;
FIG. 2 is a three-dimensional conjugate heat transfer heat sink model; wherein: 1. a flow channel inlet 2, a flow channel outlet 3 and a heat source.
FIG. 3 is a three-dimensional conjugate heat transfer radiator flow path model; wherein: 4. a flow path trajectory.
FIG. 4 is an optimized front heat sink flow path trajectory;
fig. 5 is an optimized rear heat sink flow path footprint.
Detailed Description
The invention is described in further detail below with reference to the drawings and embodiments, but the invention is not limited thereto.
Referring to fig. 1, the invention relates to a method for designing a heat sink based on channel trajectory optimization, which comprises the following steps:
step 1, determining boundary parameters such as surface heat flux density of power device, outline dimension of radiator, and inlet and outlet positions of flow channel
Determining the surface heat flux Q of the power device according to the configuration condition of the field electronic equipment real (ii) a The overall dimension parameters of the radiator are as follows: length L, width W, height H; the position of the gate is shown in fig. 2.
Determining the diameter R of the inlet of the radiator according to the determined heat flow density and the external dimension in Outlet diameter R out (ii) a The heat transfer property parameter comprises an inlet fluid temperature T in The heat convection coefficient h with the outside world and the heat source Q are dispersed; the flow property parameter comprises an inlet pressure P in Outlet pressure P out (ii) a The material properties of the heat dissipation system comprise solid aluminum and fluid water, and the heat dissipation system has solid thermal conductivity k s Thermal conductivity of fluid k f Fluid constant pressure specific heat capacity C p Fluid density ρ.
Step 2, fitting and parameterizing a flow channel track by using a Bernstein function according to the distribution of field power devices;
substep 2a, preliminary determination by spline interpolationFlow path trajectory defined by the value curve function: the determined i-th segment of the spline curve function is
Figure BDA0003144976420000051
Substep 2b, roughly determining the flow path trajectory defined by the bernstein function: the parameter equation of the curve function of the ith section is determined as follows:
Figure BDA0003144976420000061
wherein,
Figure BDA0003144976420000062
respectively representing Bernstein parameter equations with respect to the parameter t in a Cartesian coordinate system; ξ is the highest power of the Bernstein function;
Figure BDA0003144976420000063
are coefficients corresponding to the bernstein function.
Substep 2c, precisely determining the flow path trajectory defined by the bernstein function:
when the conditions are
Figure BDA0003144976420000064
By means of a least-squares method, the coefficients defined in step 3 are determined accurately
Figure BDA0003144976420000065
And
Figure BDA0003144976420000066
the numerical model is as follows:
Figure BDA0003144976420000067
Figure BDA0003144976420000068
Subject to 0≤t λ ≤1
wherein, this process divides the ith curve into K segments, λ (λ =0, …, K) is one of the nodes.
Step 3, further determining a function defined by the bernstein function determination curve normal direction;
substep 3a, determining the i-th curve function parameter equation as:
Figure BDA0003144976420000069
wherein,
Figure BDA00031449764200000610
respectively representing parameter equations defined in terms of Bernstein normal directions of the parameters t in a Cartesian coordinate system; ψ is respectively the highest power of the corresponding bernstein function,
Figure BDA00031449764200000611
for coefficients corresponding to the Bernstein function, the initial value is determined as
Figure BDA00031449764200000612
The normal direction is located by cos theta and sin theta, d i (t) defines the distance from the initial curve in the normal direction. cos θ and sin θ are determined as
Figure BDA0003144976420000071
Substep 3b, value d from the initial curve in the direction of the function normal i (t) is defined as
Figure BDA0003144976420000072
Wherein,
Figure BDA0003144976420000073
is the maximum value of the distance moving in the normal direction; sin [ b ] i (t)]Distance to move and maximum value
Figure BDA0003144976420000074
The ratio of (a) to (b).
Figure BDA0003144976420000075
Is defined as
Figure BDA0003144976420000076
Where Δ t represents the step size; a is a coefficient matrix determined by a Lagrangian interpolation method; t is t k Is composed of
Figure BDA0003144976420000077
The highest order variable of (c).
Substep 3c, function of the initial curve, the flexible degrees of freedom of which are defined by the embedded function b i (t) determination, defined as
Figure BDA0003144976420000078
Wherein
Figure BDA0003144976420000079
Is b is i (t) the highest power;
Figure BDA00031449764200000710
as a function b i Coefficient of (t).
Step 4, determining the shape of the cross-section of the flow channel
The shape of the cross section is determined to be circular.
Step 5, determining the shape optimization criterion
Establishing a shape optimization criterion:
Figure BDA00031449764200000711
Figure BDA00031449764200000712
Subject toφ min ≤φ≤φ max
where φ is a vector of design variables whose elements include the coefficients defined by steps (6 a) and (6 c); phi is a min And phi max Respectively representing the minimum value and the maximum value of the design variable constraint; n is the number of curves for constructing the flow channel track;
Figure BDA00031449764200000713
to determine the average temperature of the surface; t (phi) is a temperature value at a certain point of a determined surface, which is implicitly expressed by a design variable phi; Ω is a defined surface.
Step 6, building a finite element model
And establishing a finite element model by adopting a non-structural tetrahedral mesh.
Step 7, set optimization algorithm parameters and finite element analysis
And setting a corresponding optimization tolerance sigma by adopting a linear approximate constraint optimization algorithm COBYLA, and unitizing the design variables. Finite element analysis was implemented in COMSOL software.
The advantages of the present invention are further illustrated by the following simulation cases:
1. simulation parameters
Referring to fig. 2 and 3, the three-dimensional external dimension of the conjugated heat transfer radiator is 80mm 60mm 12mm, and the size of each discrete heat source is Q =0.5W/mm 2 The diameter of the inlet and outlet is R in =R out =6mm, inlet temperature T in =20 ℃, and the convective heat transfer coefficient is h = 5W/(m) 2 K) inlet pressure P in =50Pa, outlet pressure P out =0Pa. The solid material is aluminum, and the liquid working medium is water. The case only focuses on the flow path distribution of the z = constant plane.
2. Simulation content and results
Table 1 shows the data of the corresponding average temperature and maximum temperature. Fig. 4 and 5 give pre-optimized and post-optimized heat sink flow path trajectories.
Table 1 comparison of surface properties on heat sink before and after optimization
Scheme(s) Average temperature (. Degree. C.) Maximum temperature (. Degree. C.)
A 73.595 108
II 72.042 91
Δ 1.548 17
Wherein, the first scheme is the result of the shape optimization pretreatment, the second scheme is the result of the shape optimization posttreatment, and delta represents the data difference value between the first scheme and the second scheme. From data and temperature distribution, the optimized temperature distribution becomes better, and the heat dissipation performance is further improved.

Claims (1)

1. A design method of a conjugate heat transfer radiator based on flow channel track optimization is characterized by comprising the following steps:
step 1, determining the surface heat flux density of a power device and the outline ruler of a radiator according to the configuration condition of field electronic equipmentThe position of the inlet and the outlet of the runner; according to the determined heat flow density and the determined overall dimension, determining an inlet and outlet geometric dimension parameter, a heat transfer attribute parameter, a flow attribute parameter and a heat dissipation system material attribute of the heat radiator; wherein the radiator inlet diameter R in Outlet diameter R out (ii) a The heat transfer property parameter comprises an inlet fluid temperature T in The heat convection coefficient h with the outside world and the heat source Q are dispersed; the flow property parameter comprises an inlet pressure P in Outlet pressure P out (ii) a The material properties of the heat dissipation system comprise solid aluminum and fluid water, and the heat dissipation system has solid thermal conductivity k s Thermal conductivity of fluid k f Fluid constant pressure specific heat capacity C p Fluid density ρ;
step 2, fitting and parameterizing a flow channel track by using a Bernstein function according to the distribution of field power devices; appointing the fitting coordinate system to be carried out in the xoy plane, wherein z is the height direction, and the method comprises the following substeps:
(2a) According to the distribution of power devices, preliminarily determining the track of a flow channel by using a spline interpolation curve function, wherein the curve function of the ith section is
Figure FDA0003144976410000011
(2b) Roughly determining a flow channel track defined by a Bernstein function according to the spline interpolation curve function determined in the step (2 a), wherein the parameter equation of the ith section of curve function is as follows:
Figure FDA0003144976410000012
wherein,
Figure FDA0003144976410000013
respectively representing Bernstein parameter equations with respect to the parameter t in a Cartesian coordinate system; ξ is the highest power of the Bernstein function;
Figure FDA0003144976410000014
coefficients corresponding to the bernstein function;
(2c) According to the spline interpolation curve function determined in (2 a) and the Bernstein curve function determined roughly in (2 b), when the condition is
Figure FDA0003144976410000015
Accurately determining the coefficients defined in (2 b) by a least squares method
Figure FDA0003144976410000016
Figure FDA0003144976410000017
The numerical model is as follows:
Figure FDA0003144976410000018
Figure FDA0003144976410000019
Subject to 0≤t λ ≤1;
wherein, the process divides the ith curve into K sections, and λ (λ =0, …, K) is one of the nodes;
step 3, further determining a function defined by the Bernstein function in the direction of the curve normal according to the determined Bernstein function of the flow channel track, and comprising the following substeps:
(3a) And (3) further determining a function defined by the Bernstein function in the curve normal direction according to the Bernstein function accurately defined in the step (2 c), wherein the parameter equation is as follows:
Figure FDA0003144976410000021
wherein,
Figure FDA0003144976410000022
individual watchA parametric equation defined in terms of bernstein normal directions for a parameter t in a cartesian coordinate system; ψ is respectively the highest power of the corresponding bernstein function,
Figure FDA0003144976410000023
for coefficients corresponding to the Bernstein function, the initial value is determined as
Figure FDA0003144976410000024
The normal direction is located by cos theta and sin theta, d i (t) defining the distance from the initial curve in the normal direction, cos θ and sin θ being determined as:
Figure FDA0003144976410000025
(3b) A function defined by the normal direction of the Bernstein deterministic curve determined in accordance with (3 a), the value d of the distance from the initial curve in the normal direction i (t) is defined as:
Figure FDA0003144976410000026
wherein,
Figure FDA0003144976410000027
is the maximum value of the distance moving in the normal direction; sin [ b ] i (t)]Distance to move and maximum value
Figure FDA0003144976410000028
The ratio of (a);
Figure FDA0003144976410000029
is defined as:
Figure FDA00031449764100000210
where Δ t represents the step size; a is a coefficient matrix determined by a Lagrangian interpolation method; t is t k Is composed of
Figure FDA00031449764100000211
The highest order variable of (2);
(3c) According to the function from the initial curve in the normal direction determined in (3 b), the flexible degree of freedom is formed by the embedded function b i (t) determining, defined as:
Figure FDA0003144976410000031
wherein
Figure FDA0003144976410000032
Is b is i (t) the highest power;
Figure FDA0003144976410000033
as a function b i (t) coefficient;
step 4, determining the cross section shape of the track of the flow channel according to the further determined Bernstein function of the track, and further determining the configuration of the whole flow channel;
step 5, according to engineering requirements, establishing optimization criteria including a coefficient embedded into a Bernstein function as a design variable, a minimum average temperature of a contact surface of the heat radiator and the power device as a target function, space size constraint and the like, and establishing a shape optimization model of the conjugated heat transfer heat radiator as follows:
Figure FDA0003144976410000034
Figure FDA0003144976410000035
Subject toφ min ≤φ≤φ max
where φ is a vector of design variables whose elements include coefficients defined by (4 a) and (4 c); phi is a min And phi max Respectively representing the minimum value and the maximum value of the design variable constraint; n is the number of curves for constructing the flow channel track;
Figure FDA0003144976410000036
to determine the average temperature of the surface; t (phi) is a temperature value at a certain point of a determined surface, which is implicitly expressed by a design variable phi; Ω is a defined surface;
step 6, applying boundary conditions according to the shape optimization model, and establishing a finite element model of the radiator;
step 7, optimizing an objective function by adopting a linear approximate constraint optimization algorithm COBYLA according to a finite element model of the radiator, and improving the temperature distribution of the contact surface of the radiator and the power device; setting corresponding optimization tolerance sigma, and meanwhile, unitizing design variables into:
Figure FDA0003144976410000037
wherein,
Figure FDA0003144976410000038
for optimizing design variables formed during the process
Figure FDA0003144976410000039
With the unitized values of the initial design variable φ, the design variable constraints corresponding to step 6 become:
Figure FDA00031449764100000310
wherein,
Figure FDA00031449764100000311
and
Figure FDA00031449764100000312
each represents the minimum and maximum values of the unitized design variable.
CN202110751830.8A 2021-07-02 2021-07-02 Conjugate heat transfer radiator design method based on flow channel track optimization Active CN113420392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110751830.8A CN113420392B (en) 2021-07-02 2021-07-02 Conjugate heat transfer radiator design method based on flow channel track optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110751830.8A CN113420392B (en) 2021-07-02 2021-07-02 Conjugate heat transfer radiator design method based on flow channel track optimization

Publications (2)

Publication Number Publication Date
CN113420392A CN113420392A (en) 2021-09-21
CN113420392B true CN113420392B (en) 2023-03-17

Family

ID=77720141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110751830.8A Active CN113420392B (en) 2021-07-02 2021-07-02 Conjugate heat transfer radiator design method based on flow channel track optimization

Country Status (1)

Country Link
CN (1) CN113420392B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256272B (en) * 2018-03-01 2021-07-23 湖南城市学院 S-shaped flow passage layout optimization design method for liquid cooling radiator
CN109800507B (en) * 2019-01-22 2020-08-21 西安电子科技大学 Secondary shape optimization design method for topological boundary of heat dissipation cold plate
CN110427661B (en) * 2019-07-16 2023-06-02 中国科学院力学研究所 Efficient heat exchange structure self-adaptive optimization design method based on variation method
CN112084590B (en) * 2020-09-03 2022-09-13 西安电子科技大学 Optimization design method for variable cross-section runner conjugate heat transfer radiator
CN112084591B (en) * 2020-09-03 2022-09-13 西安电子科技大学 Radiator cooling channel design method based on three-dimensional topological optimization

Also Published As

Publication number Publication date
CN113420392A (en) 2021-09-21

Similar Documents

Publication Publication Date Title
CN111832203B (en) Graphical method for generating heat dissipation topology by zero-deficiency grid curved surface
CN107122527B (en) A kind of cold plate flow passage design method based on topological optimization
CN111709096B (en) Design method of special-shaped fin structure for strengthening natural convection heat transfer
CN109800507B (en) Secondary shape optimization design method for topological boundary of heat dissipation cold plate
CN111709171A (en) Isogeometric solving and heat dissipation topology generation method for heat flow strong coupling problem
CN104809334A (en) Calculating method of large-volume concrete cooling temperature field
CN108256272B (en) S-shaped flow passage layout optimization design method for liquid cooling radiator
TWI732655B (en) Method and system for optimizing metal stamping process parameters
CN111209696B (en) SLM (Selective laser melting) forming technology-based hydraulic integrated block path design method
CN115048861B (en) Intelligent distribution method and system for flow of 3D chip embedded liquid cooling channel
CN114117877B (en) Topological optimization method based on isogeometric particle description
CN112084590B (en) Optimization design method for variable cross-section runner conjugate heat transfer radiator
CN115017639A (en) Cold plate flow channel topology design method aiming at uneven heat distribution
CN115358014A (en) Power device air-cooled radiator model, optimization method and performance calculation method
CN113420392B (en) Conjugate heat transfer radiator design method based on flow channel track optimization
Zhang et al. Weight and performance optimization of rectangular staggered fins heat exchangers for miniaturized hydraulic power units using genetic algorithm
Li et al. Optimization of heat exchangers with dimpled surfaces to improve the performance in thermoelectric generators using a Kriging model
CN104657565A (en) Method for designing hot-working die of close-profile water channel
CN118013796A (en) Multi-chip parallel module rapid thermal modeling method based on temperature field reconstruction method
Li et al. Multi-objective parameter optimization design of tapered-type manifold/variable cross-section microchannel heat sink
CN114169100B (en) Efficient design optimization method and system for super-large variable impeller machinery and application
CN111210522B (en) Method for tracking streamline distribution in three-dimensional unstructured grid flow field by using FEM (finite element modeling)
Al-Zahrani CFD Analysis for Improving Forced Convection Heat Transfer from Newly Designed Perforated Heat Sinks
Hwang et al. Optimization of liquid cooling microchannel in 3D IC using complete converging and diverging channel models
CN114757125A (en) Self-organizing heat sink structure design method based on diffusion back-diffusion system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant