CN113408915A - 生产线瓶颈识别方法及其系统 - Google Patents

生产线瓶颈识别方法及其系统 Download PDF

Info

Publication number
CN113408915A
CN113408915A CN202110714241.2A CN202110714241A CN113408915A CN 113408915 A CN113408915 A CN 113408915A CN 202110714241 A CN202110714241 A CN 202110714241A CN 113408915 A CN113408915 A CN 113408915A
Authority
CN
China
Prior art keywords
production line
equipment
load
production
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110714241.2A
Other languages
English (en)
Other versions
CN113408915B (zh
Inventor
林远长
刘宗辉
何国田
刘�东
曲永涛
尚明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202110714241.2A priority Critical patent/CN113408915B/zh
Publication of CN113408915A publication Critical patent/CN113408915A/zh
Application granted granted Critical
Publication of CN113408915B publication Critical patent/CN113408915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06316Sequencing of tasks or work
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • General Business, Economics & Management (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Manufacturing & Machinery (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

本发明提供一种生产线瓶颈识别方法及其系统,该方法包括:获取生产线数据;根据作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;利用设备负荷模型计算生产线上设备的负荷,及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。本发明计算生产线中不同设备的生产负荷和计算相邻设备之间的动态负荷,通过对生产线上设备的静态负荷与相邻设备间的动态负荷求和,将最大生产负荷之和的设备作为生产线的瓶颈,提高了生产线瓶颈识别的效率与可靠度,有利于企业制定生产计划。

Description

生产线瓶颈识别方法及其系统
技术领域
本发明涉及智能制造技术领域,特别是涉及一种生产线瓶颈识别方法及其系统。
背景技术
智能制造的生产资源是有限的,其制造系统具有动态性和设备互相制约性,从而造成智能生产线的最大化生产出现“瓶颈”现象。瓶颈(Bottleneck)会限制生产线的产出速度,而且也会影响其它环节生产能力的功效。
目前,传统瓶颈识别方法主要分为两种:一种是将设备的表象特征作为生产线瓶颈识别的依据,即将生产线设备的表征作为瓶颈判别的依据;另一种是将设备的内部特征作为生产线瓶颈识别的依据,主要考虑造成生产线生产瓶颈的内部因素,加工状况及调度方案。然而,现有生产线由串联结构过渡到串并混联结构,生产线由单线变为混线生产,意味着生产线是动态的,这些方法只考虑了设备的静态负荷,将设备与生产线割裂开来,不能照顾到整个生产线的全部情况,即没有考虑相邻设备动态负荷等缺陷问题。因此,亟需一种生产线瓶颈识别方法来适应整个生产线静态负荷与动态负荷。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种生产线瓶颈识别方法及其系统,用于解决现有技术中生产线动态变化时,无法适应整个生产线静态负荷与动态负的问题。
为实现上述目的及其他相关目的,本发明提供一种生产线瓶颈识别方法,包括:
步骤S1,获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
步骤S2,根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
步骤S3,分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
步骤S4,利用设备负荷模型计算生产线上设备的负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
本发明的另一目的在于提供一种生产线瓶颈识别系统,包括:
数据获取模块,用于获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
工序生产模块,用于根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
计算模块,用于分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
瓶颈识别模块,利用设备负荷模型计算生产线上设备负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
如上所述,本发明的生产线瓶颈识别方法及其系统,具有以下有益效果:
本发明将多个同一种类的设备看作一个整体设备,不仅计算生产线中不同设备的生产负荷,即,静态负荷,还计算相邻设备之间的动态负荷,计算生产线上设备的静态负荷与相邻设备间的动态负荷之和,将最大的生产负荷之和的设备作为生产线的瓶颈,提高了生产线瓶颈识别的效率与可靠度,有利于企业制定生产计划,也有利于优化生产目标。
附图说明
图1显示为本发明提供的一种生产线瓶颈识别方法流程图;
图2显示为本发明提供的一种生产线瓶颈识别框架图;
图3显示为本发明提供的一种工序前后优先顺序实施例图;
图4显示为本发明提供的一种工序划分实施例图;
图5显示为本发明提供的一种时间统计次数可靠性一实施例图;
图6显示为本发明提供的一种时间统计数据可靠性另一实施例图;
图7显示为本发明提供的一种标准作业时间实施例图;
图8显示为本发明提供的一种生产线瓶颈识别系统结构框图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1,为本发明提供的一种生产线瓶颈识别方法流程图,包括:
步骤S1,获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
其中,需要说明的是,工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵都为生产线的初始数据,即,当前执行的生产数据。
步骤S2,根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
其中,需要说明的是,设备作业工序可参照图3;
步骤S3,分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
例如,统计各个工序的工作时间3次。装配线上的每一个工序就是一个作业单元。Ti表示第i个(i=1,2,…,n)作业单元也就是工序的时间。
其中,需要说明的是,所述步骤S2与步骤S3执行顺序不分先后,即,两个步骤可同时进行。
步骤S4,利用设备负荷模型计算生产线上设备的负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
其中,将同一种类的多个设备作为一个整体,评估该整体的预期生产负荷与计算该整体的实际生产负荷,综合考量该整体的上下环节设备生产负荷,计算该整体的生产负荷。
在本实施例中,将多个同一种类的设备看作一个整体设备,不仅计算生产线中不同设备的生产负荷,即,静态负荷,还计算相邻设备之间的动态负荷,计算生产线上设备的静态负荷与相邻设备间的动态负荷之和,将最大的生产负荷之和的设备作为生产线的瓶颈,提高了生产线瓶颈识别的效率与可靠度,有利于企业制定生产计划,也有利于优化生产目标。
在另一些实施例中,请参阅图2,为本发明提供的一种生产线瓶颈识别框架图,与上述实施例的不同之处在于,包括:
步骤S1中,采集生产线数据,所述生产线数据包含工序顺序(详见图3,执行工序按照顺序排列,有串联结构、并联结构等)、工序划分、每个工序统计次数以及作业优先级矩阵;对所述生产线数据进行预处理(例如,预处理有多种方法:数据清理、数据集成、数据变换、数据归约等,这些预处理技术在数据挖掘之前使用,大大提高了数据挖掘模式的质量,降低实际挖掘所需要的时间);根据预处理的生产线数据确定生产线工序步骤(详见图4,包括工作站序号、工序序号,以及每个工序序号对应的执行内容),统计所述生产线工序步骤中的各工序时间。
步骤S4中,设备负荷模型,例如,综合负荷模型(包含静态负荷模型与动态负荷模型)、线性差分方程负荷模型,在此优先综合负荷模型。
通过该设备负荷模型能够计算生产线的节拍、加工时间、准备时间、可用时间、加工容量与最大容量,依据上述参数按照生产负荷计算公式得到设备的生产负荷,并综合考虑上下环节的设备生产负荷(即,动态负荷),引入影响系数ε。通过选择最大的生产负荷所对应的设备为装配生产线瓶颈识别方法,能够有效快速的识别生产线的瓶颈,提高了瓶颈识别的可靠度,为后续企业生产的优化提供了目标。
在另一些实施例中,利用以下公式计算工序统计次数,采用误差界限法来计算工序统计次数可靠性;
Figure BDA0003134211030000041
式中,N为最低的观测次数,n为目前的测量次数,ti为第i(i=1,2,…,n)次测量的时间值。
具体地,请参阅图5,为本发明提供的一种时间统计次数可靠性一实施例图,例如,计算工序统计次数可靠性;由于每次工序作业的时间不完全确定的,需要通过多次统计均值计算得到该工序的平均作业时间,为了得到准确可靠的装配线时间数据,首先,对工序统计次数进行可靠性分析,假如统计的工序统计次数过多会造成人工成本的增加,假如统计的工序统计次数过少会造成数据的可靠性不足,所以,必须判断工序统计次数是否满足要求。对于工序统计次数的可靠性分析可以采用误差界限法,当准确度取±5%,置信度取95%时,采用上述公式计算工序统计次数,能够确保工序统计次数准确性。
例如,通过每个工序序号,测量每个工序序号下设备的三次作业时间,分别对三次作业时间的一次方求和,二次求和,以及一次方整体求和后再计算其二次方,从而按照上述公式计算得到当前最低的观测次数。
在另一些实施例中,利用三倍标准差法来判断所述工序统计时间是否在预设作业时间范围内,若是,则所述工序统计时间可靠;若否,则所述工序统计时间异常。
请参阅图6,为本发明提供的一种时间统计数据可靠性另一实施例图,例如,计算工序统计时间可靠性;在对作业单元的作业时间进行统计后,由于每次工序作业的时间的测定不是完全一致的,就需要多次统计,通过均值计算得到该工序的平均作业时间作为工序的作业时间Ti,所以,观测时间的准确性就显得尤其重要,而平均作业时间是由每次测量统计时间ti决定的,这就需要对ti的可靠性进行判断,判断各个作业单元的ti是否存在异常值。
例如,计算数据的可靠性,主要是工序统计时间可靠性计算,目前,数据的统计测量往往是人工测量,对于明显异常的数据会人为剔除,但是这种方法的主观性太大,数据的可靠性难以保障。故采用经典的异常数据去除方法,即,三倍标准差法(法),主要计算公式如下:
Figure BDA0003134211030000051
Figure BDA0003134211030000052
其中:
Figure BDA0003134211030000053
指每个作业单元三次作业时间测量的均值;n表示现在的测量次数,本文中n=3;ti代表第i(i=1,2,…,n)次测量的时间值。
Figure BDA0003134211030000054
正常值的应该在±3σ范围内,即平均值
Figure BDA0003134211030000055
不在预设时间
Figure BDA0003134211030000056
范围内,则平均值
Figure BDA0003134211030000057
被判定为异常;平均值
Figure BDA0003134211030000058
在预设时间
Figure BDA0003134211030000059
范围内,则平均值
Figure BDA00031342110300000510
被判定为作业时间可靠(正常)。
具体地,按照工序序号,每个工位序号三次的工序统计时间,即,测量三次,计算三次测量工序统计时间的标准差,按照工序统计时间均值减去三倍标准差和工序统计时间均值加上三倍标准差所形成的预设时间范围,如果每次测量的工序统计时间均在这个预设时间范围内,则测量的工序统计时间正常,即,可靠性高;反之,则异常。
通过上述方式,能够有效避免人为主观因素的影响,同时,提高了工序统计时间获取的准确性。
在另一些实施例中,请参阅图7,为本发明提供的一种标准作业时间实施例图,例如,采用如下公式计算生产线的标准作业时间:
TS(Sk)=T(Sk)·γ·(1+θ)
式中,TS(Sk)--生产线的标准作业时间,T(Sk)--第k(k=1,2,…,m)个设备的工作时长;γ-评比系数;θ-宽放率。
其中,标准作业时间是指在一定生产环境下,一个熟练工人按规定作业标准生产一个单位合格产品所消耗的时间。
具体地,评比系数和宽放率可根据需求设置,例如,评比系数,是校正正常作业时间的差异的系数。由于工作者和机械需要一定的休息时间,故在作业时间基础上加上一定的宽放时间,宽放时间的多少由公司决定,宽放时间的大小由宽放率来反映。
其中,如图7所示,统计各个工作站序号下对应的工序序号,每个工序序号具体执行的工序内容,每个工序序号下对应设备具体的作业均值时间
Figure BDA0003134211030000061
设备的工作时长T(Sk)与标准作业时间TS(Sk)。
在本实施例中,通过标准作业时间可反映出生产线上正常的操作条件、熟练程度、作业方法、劳动强度与速度以及质量标准;通过标准作业时间能够制定生产计划、人员工时计划,从而有利于后续工序方案的优化和制定。
在另一些实施例中,计算各个设备的负荷,装配生产线中共有M个不同设备m∈{1,2,...,M},产品经过共N道装配工序n∈{1,2,...,N},M(σn)代表在设备M上的加工步骤工序集合,j为M同种设备数量,故设备M(σn)的生产负荷L(σn)为:
Figure BDA0003134211030000062
ε=L[M(σn)+1]-L[M(σn)-1]
式中,装配生产线中共有M个不同设备m∈{1,2,...,M},产品经过共N道装配工序n∈{1,2,...,N},M(σn)为在设备M上的加工步骤工序集合,j为M同种设备数量,
Figure BDA0003134211030000063
为设备M(σn)上实际加工时间,
Figure BDA0003134211030000064
为设备M(σn)上实际准备时间,
Figure BDA0003134211030000065
为设备M(σn)上最大可用工时,
Figure BDA0003134211030000066
为设备M(σn)上实际加工容量,
Figure BDA0003134211030000067
为设备M(σn)上最大总容量,ε为影响系数,L[M(σn)+1]为设备M(σn)前相邻工序集合设备的生产负荷,L[M(σn)-1]为设备M(σn)后相邻工序集合设备的生产负荷,L[M(σn)]最大生产负荷值的设备整体为生产线瓶颈。
因此,当且仅当L[M(σn)]最大的设备整体被识别为生产线的瓶颈,例如,设备实际能力所对应的参数(
Figure BDA0003134211030000068
Figure BDA0003134211030000069
)与预期能力所对应的参数(
Figure BDA00031342110300000610
Figure BDA00031342110300000611
),从而得到设备实际的静态负荷,并综合考虑上下环节的设备生产负荷(即,动态负荷),引入影响系数ε。
其中,需要说明的是,存在多个相同的设备被看作一个整体的情况,在计算该整体相邻的设备之间的动态负荷时,应该考虑多个相同的设备与相邻的设备之间的动态负荷之和,通过精准计算整体设备与相邻设备之间的动态负荷,能够更精准的计算整体设备的。
通过选择最大的生产负荷所对应的设备为装配生产线瓶颈识别方法,能够有效快速的识别生产线的瓶颈,提高了瓶颈识别的可靠度,为后续企业生产的优化提供了目标。
请参阅图8,为本发明提供的一种生产线瓶颈识别系统结构框图,包括:
数据获取模块1,用于获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
工序生产模块2,用于根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
计算模块3,用于分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
瓶颈识别模块4,利用设备负荷模型计算生产线上设备负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
其中,需要说明的是,生产线瓶颈识别系统与生产线瓶颈识别方法为一一对应关系,其对应的技术细节、技术效果请参照上述生产线瓶颈识别方法,在此不在一一赘述。
综上所述,本发明将多个同一种类的设备看作一个整体设备,不仅计算生产线中不同设备的生产负荷,即,静态负荷,还计算相邻设备之间的动态负荷,计算生产线上设备的静态负荷与相邻设备间的动态负荷之和,将最大的生产负荷之和的设备作为生产线的瓶颈,提高了生产线瓶颈识别的效率与可靠度,有利于企业制定生产计划,也有利于优化生产目标。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种生产线瓶颈识别方法,其特征在于,所述方法包括以下步骤:
步骤S1,获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
步骤S2,根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
步骤S3,分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
步骤S4,利用设备负荷模型计算生产线上设备的负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
2.根据权利要求1所述的生产线瓶颈识别方法,其特征在于,所述获取生产线数据的步骤,包括:采集生产线数据,对所述生产线数据进行预处理;根据预处理的生产线数据确定生产线工序步骤,统计所述生产线工序步骤中的各工序时间。
3.根据权利要求1或2所述的生产线瓶颈识别方法,其特征在于,还包括:利用三倍标准差法来判断所述工序统计时间是否在预设作业时间范围内,若是,则所述工序统计时间可靠;若否,则所述工序统计时间异常。
4.根据权利要求1或2所述的生产线瓶颈识别方法,其特征在于,利用以下公式计算工序统计次数,采用误差界限法来计算工序统计次数可靠性;
Figure FDA0003134211020000011
式中,N为最低的观测次数,n为目前的测量次数,ti为第i(i=1,2,…,n)次测量的时间值。
5.根据权利要求1所述的生产线瓶颈识别方法,其特征在于,还包括:采用如下公式计算生产线的标准作业时间:
TS(Sk)=T(Sk)·γ·(1+θ)
式中,TS(Sk)为生产线的标准作业时间,T(Sk)为第k(k=1,2,…,m)个设备的工作时长;γ为评比系数;θ为宽放率。
6.根据权利要求1所述的生产线瓶颈识别方法,其特征在于,还包括:将同一种类的多个设备作为一个整体,评估该整体的预期生产负荷与计算该整体的实际生产负荷,综合考量该整体的上下环节设备生产负荷,计算该整体的生产负荷。
7.根据权利要求1或6所述的生产线瓶颈识别方法,其特征在于,采用以下公式计算生产线各个设备的负荷:
Figure FDA0003134211020000021
ε=L[M(σn)+1]-L[M(σn)-1]
式中,装配生产线中共有M个不同设备m∈{1,2,...,M},产品经过共N道装配工序n∈{1,2,...,N},M(σn)为在设备M上的加工步骤工序集合,j为M同种设备数量,
Figure FDA0003134211020000022
为设备M(σn)上实际加工时间,
Figure FDA0003134211020000023
为设备M(σn)上实际准备时间,
Figure FDA0003134211020000024
为设备M(σn)上最大可用工时,
Figure FDA0003134211020000025
为设备M(σn)上实际加工容量,
Figure FDA0003134211020000026
为设备M(σn)上最大总容量,ε为影响系数,L[M(σn)+1]为设备M(σn)前相邻工序集合设备的生产负荷,L[M(σn)-1]为设备M(σn)后相邻工序集合设备的生产负荷,L[M(σn)]最大生产负荷值的设备整体为生产线瓶颈。
8.根据权利要求1所述的生产线瓶颈识别方法,其特征在于,还包括:根据设备内的工序顺序,采用以下公式计算各个设备的工作时间;
Figure FDA0003134211020000027
式中,T(Sk)为第k(k=1,2,…,m)个设备的作业时间,Tp为第k个设备的第p(p=1,2,…,n)个工序的时间。
9.根据权利要求1所述的生产线瓶颈识别方法,其特征在于,所述步骤S2与步骤S3执行顺序不分先后。
10.一种生产线瓶颈识别系统,其特征在于,所述系统包括:
数据获取模块,用于获取生产线数据,所述生产线数据包含工序顺序、工序划分、每个工序统计次数以及作业优先级矩阵;
工序生产模块,用于根据所述作业优先级矩阵得到作业优先级,根据作业优先级划分工序集合,从而确定设备作业工序;
计算模块,用于分别计算工序统计次数可靠性、工序统计时间可靠性与标准作业时间;
瓶颈识别模块,利用设备负荷模型计算生产线上设备的负荷,以及计算相邻设备间的动态负荷,计算生产线上设备的负荷与相邻设备间的动态负荷之和,将生产负荷的最大值作为整个生产线的瓶颈。
CN202110714241.2A 2021-06-25 2021-06-25 生产线瓶颈识别方法及其系统 Active CN113408915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110714241.2A CN113408915B (zh) 2021-06-25 2021-06-25 生产线瓶颈识别方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110714241.2A CN113408915B (zh) 2021-06-25 2021-06-25 生产线瓶颈识别方法及其系统

Publications (2)

Publication Number Publication Date
CN113408915A true CN113408915A (zh) 2021-09-17
CN113408915B CN113408915B (zh) 2023-02-28

Family

ID=77679489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110714241.2A Active CN113408915B (zh) 2021-06-25 2021-06-25 生产线瓶颈识别方法及其系统

Country Status (1)

Country Link
CN (1) CN113408915B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116070876A (zh) * 2023-03-06 2023-05-05 浪潮通用软件有限公司 一种基于瓶颈设备能力的排产优化方法、设备及介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288476A (ja) * 2002-03-28 2003-10-10 Hitachi Ltd 生産ラインの統合ライン能力評価・管理運用システム、および、その統合ライン能力評価・管理運用方法
JP2012168746A (ja) * 2011-02-15 2012-09-06 Hitachi Engineering & Services Co Ltd 作業負荷平準化装置および作業負荷平準化方法
CN103676881A (zh) * 2013-12-16 2014-03-26 北京化工大学 一种半导体生产线动态瓶颈分析方法
CN104871097A (zh) * 2012-12-13 2015-08-26 Abb技术有限公司 用于监测和/或诊断工业工厂生产线操作的系统和方法
CN105809307A (zh) * 2014-12-30 2016-07-27 中国铁道科学研究院电子计算技术研究所 一种基于物联技术的离散生产线瓶颈检测方法
CN106875120A (zh) * 2017-02-16 2017-06-20 吉林大学 一种离散型生产线产能波动过程及其影响度评价方法
CN110163436A (zh) * 2019-05-23 2019-08-23 西北工业大学 基于动态瓶颈预测的智能车间生产优化方法
CN110288126A (zh) * 2019-05-30 2019-09-27 湖南大学 一种机器人铸造生产线产能优化方法
CN110411757A (zh) * 2019-07-30 2019-11-05 安徽江淮汽车集团股份有限公司 轴头动态载荷计算方法、装置、设备及存储介质
CN112132400A (zh) * 2020-08-28 2020-12-25 武汉理工大学 一种工序时间规划方法、存储介质及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288476A (ja) * 2002-03-28 2003-10-10 Hitachi Ltd 生産ラインの統合ライン能力評価・管理運用システム、および、その統合ライン能力評価・管理運用方法
JP2012168746A (ja) * 2011-02-15 2012-09-06 Hitachi Engineering & Services Co Ltd 作業負荷平準化装置および作業負荷平準化方法
CN104871097A (zh) * 2012-12-13 2015-08-26 Abb技术有限公司 用于监测和/或诊断工业工厂生产线操作的系统和方法
CN103676881A (zh) * 2013-12-16 2014-03-26 北京化工大学 一种半导体生产线动态瓶颈分析方法
CN105809307A (zh) * 2014-12-30 2016-07-27 中国铁道科学研究院电子计算技术研究所 一种基于物联技术的离散生产线瓶颈检测方法
CN106875120A (zh) * 2017-02-16 2017-06-20 吉林大学 一种离散型生产线产能波动过程及其影响度评价方法
CN110163436A (zh) * 2019-05-23 2019-08-23 西北工业大学 基于动态瓶颈预测的智能车间生产优化方法
CN110288126A (zh) * 2019-05-30 2019-09-27 湖南大学 一种机器人铸造生产线产能优化方法
CN110411757A (zh) * 2019-07-30 2019-11-05 安徽江淮汽车集团股份有限公司 轴头动态载荷计算方法、装置、设备及存储介质
CN112132400A (zh) * 2020-08-28 2020-12-25 武汉理工大学 一种工序时间规划方法、存储介质及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李冬文: ""H企业生产线平衡改善研究"", 《机械制造》 *
李明等: "业务主线约束型作业车间网络瓶颈分析", 《组合机床与自动化加工技术》 *
田凌: ""数字孪生与生产线仿真技术研究"", 《图学学报》 *
陆远: ""柔性自动化生产线设备动态负荷率分析及优化"", 《柔性自动化生产线设备动态负荷率分析及优化》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116070876A (zh) * 2023-03-06 2023-05-05 浪潮通用软件有限公司 一种基于瓶颈设备能力的排产优化方法、设备及介质

Also Published As

Publication number Publication date
CN113408915B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN109978403B (zh) 一种产品装配过程的质量管控方法、装置及设备
CN100428142C (zh) 使用实时分区处理能力分析优化制造过程的系统和方法
CN106529704A (zh) 月最大电力负荷预测方法及装置
US11347959B2 (en) Classification method for automatically identifying wafer spatial pattern distribution
CN112904266B (zh) 一种电能表寿命预测方法及装置
CN108491991B (zh) 基于工业大数据产品工期的约束条件分析系统与方法
CN116051037B (zh) 基于数据分析的项目进度监管系统
CN108646684B (zh) 一种基于变动性度量的多产品生产线生产周期预测方法
CN113408915B (zh) 生产线瓶颈识别方法及其系统
CN106875120A (zh) 一种离散型生产线产能波动过程及其影响度评价方法
CN112712256A (zh) 一种低压配网设备检修顺序评估方法
CN112527778B (zh) 基于异常信息数据库增量的异常消缺管理系统及方法
CN105956755A (zh) 电力综合线损率影响因子量化关系建立方法及系统
CN107025514A (zh) 一种动态评估变压器设备状态的评价方法及输变电设备
KR20150049077A (ko) 시나리오 시뮬레이션 및 병목 공정 정보 처리를 포함하는 디지털 제조 최적화 시스템
CN117592656A (zh) 基于碳数据核算的碳足迹监控方法及系统
CN111091292B (zh) 一种核电站实时风险动态建模分析系统
CN111914424A (zh) 一种基于短期测风资料的设计风速取值方法及系统
Bai et al. An OEE improvement method based on TOC
CN113159564B (zh) 一种基于mes与cmms大数据的自动化生产线综合效能评价方法
CN112347655B (zh) 一种基于机组运行性能评估的风电场理论功率计算方法
CN102262188B (zh) 工件抽样检验的方法
CN114384872A (zh) 产品研制过程质量综合管控系统
CN114967628A (zh) 一种基于5g智能工厂的保健食品生产杀菌管控系统
CN113762754A (zh) 一种混合车间低熵自适应调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant