CN113407249A - 一种面向位置隐私保护的任务卸载方法 - Google Patents

一种面向位置隐私保护的任务卸载方法 Download PDF

Info

Publication number
CN113407249A
CN113407249A CN202011594404.XA CN202011594404A CN113407249A CN 113407249 A CN113407249 A CN 113407249A CN 202011594404 A CN202011594404 A CN 202011594404A CN 113407249 A CN113407249 A CN 113407249A
Authority
CN
China
Prior art keywords
task
server
calculating
unloading
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011594404.XA
Other languages
English (en)
Other versions
CN113407249B (zh
Inventor
何利
甯小娥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202011594404.XA priority Critical patent/CN113407249B/zh
Publication of CN113407249A publication Critical patent/CN113407249A/zh
Application granted granted Critical
Publication of CN113407249B publication Critical patent/CN113407249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44594Unloading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6227Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database where protection concerns the structure of data, e.g. records, types, queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5038Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/543User-generated data transfer, e.g. clipboards, dynamic data exchange [DDE], object linking and embedding [OLE]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种面向位置隐私保护的任务卸载方法,包括:S1,以用户的真实位置为圆心生成一个圆环形的虚拟位置空间,以初始随机概率选择一个虚拟位置;S2,使用虚拟位置获取附近部署了边缘服务器的基站位置,构建服务器选择矩阵;S3,根据服务器选择矩阵,择优选择服务器发送任务卸载请求;S4,分配带宽,并计算出处理任务的相关参数;S5,选择在任务容忍时间内能够处理完成且节省能耗和时间最多以及收益最大的任务卸载到边缘节点执行。本发明考虑用户位置隐私问题对任务进行卸载,本发明能有效的保护用户的位置隐私,且尽可能的获得服务质量;使用强化学习算法做出任务卸载决策,在线学习动态调整卸载策略。

Description

一种面向位置隐私保护的任务卸载方法
技术领域
本发明属于移动计算领域,特别是涉及一种面向位置隐私的任务卸载方法。
背景技术
位置隐私保护是指在基于位置服务时保护用户的位置信息不被泄露,从而 保护用户的其他敏感信息不被推测出来。越来越多的研究者开始重视位置隐私 保护问题。边缘任务卸载是指在边缘计算中,边缘服务器在移动设备提交的任 务卸载请求中选择部分任务在边缘节点上处理,剩余任务将在本地处理。
已有的位置隐私保护方法主要有匿名、位置模糊和加密。匿名方法是隐瞒 用户的身份,通常是先删除身份标识属性,然后针对标识属性进行匿名处理。 匿名不仅可以保护用户位置隐私还可以保护用户数据隐私,但是匿名容易被反 匿名。位置模糊是指将用户精确的位置模糊成一个空间范围,服务器只知道用 户在这个模糊空间内,而并不清楚确切位置。位置模糊会降低LBS(基于位置服 务)的服务质量。加密是指使用密码学对数据进行加密处理,每个位置信息的处 理和查询都是基于密文的,这就使得非法攻击者无法解密出用户真实的位置和 身份信息。而加密处理会增加时间开销和传输开销。
近年来移动边缘网络的出现,使得一些关于计算密集型任务的难题可以被 有效解决。当用户设备开始运行计算密集型任务并处于移动边缘网络中时,设 备可以选择将计算任务发送到就近的公共服务器上,这一过程称作卸载 (Offloading)。将任务卸载到边缘计算服务器上处理,用户设备的计算资源和电 量均未消耗。因此移动边缘计算可以有效地降低设备的资源占用、能量消耗, 同时提供更快的响应速度。但是在计算卸载的过程中我们还面临着种种限制。 有限的计算资源和带宽资源并不能确保所有人的计算请求都能在第一时间被处 理完成,有限的带宽使得同一时间内发送和接受数据的用户是有限的。如不采 取一定的策略,直接将大量的用户分配到同一个网络接入点,或者是大量任务 分配到同一服务器,都将会导致所有人都无法以正常的速率进行任务的提交以 及计算结果的接收。如何将有限的计算和带宽资源分配给大量的卸载计算任务、 为用户设备请求的计算任务规划出合理的卸载策略和资源分配策略是移动边缘 网络技术中的一个亟待解决的问题。已有的任务卸载方法主要有线性规划、资 源匹配、博弈论等方法。
发明内容
本发明旨在解决现有边缘计算中存在的位置隐私问题和任务卸载问题,提 出了一种在保护位置隐私的同时,使用强化学习的方法来实现任务卸载决策和 资源分配。
本发明解决上述技术问题采用的技术方案如下:一种面向位置隐私保护的 任务卸载方法,包括以下步骤:
S1,生成虚拟位置,以当前设备位置l(x,y)为圆心,以r1,r2为半径形成一个 圆环虚拟位置空间S,以虚拟位置选择概率p选择一个虚拟位置l1'(x1',y2'),并在 以圆心为对称的另一边选取另一个虚拟位置l2'(x1',y2'),p为0到1的实数,r1、 r2均为大于0的实数且r1<r2
S2,构建服务器选择矩阵,设备获得M个附近的服务器位置,根据设备真 实位置计算出设备与M个服务器之间的真实距离,根据距离对每一个服务器评 定隐私级别,根据距离和带宽计算传输代价,形成服务器选择矩阵Tc,其中元 素Tc(i)表示第i个服务器与设备的隐私级别和传输代价,M为正整数,且i为不大 于M的正整数。
S3,选择发送卸载请求的服务器,根据步骤S2得到的服务器选择矩阵,计 算出在有效保护位置信息的同时能够付出较低的传输代价的服务器,根据服务 器选择概率pch选择最优的服务器发送任务卸载请求。
S4,计算任务矩阵,首先对当前队列中等候任务卸载设备根据距离分配带 宽,然后计算传输延迟、发送延迟、本地计算时间、本地计算能耗、边缘计算 时间、边缘计算能耗,将这些参数构成N行的任务矩阵Tt,其中元素Tt(i)代表第 i个任务的相关属性,N为正整数,且i为不大于N的正整数。
S5,使用强化学习建模,将任务的决策参数(包括步骤S4中计算传输延迟、 发送延迟、本地计算时间、本地计算能耗、边缘计算时间、边缘计算能耗)作 为输入,得到任务卸载结果。
本发明的优点及有益效果如下:
1.本发明在边缘计算任务卸载中考虑用户的位置隐私保护,利用位置模糊产 生虚拟位置来获取服务器的位置。首次在选择服务器发送任务卸载请求时考虑 位置泄露风险,权衡隐私和传输代价,选择能够保护用户位置隐私且传输代价 小的服务器。此方法避免将用户位置直接暴露给服务器以及降低被服务器感知 位置的风险。
2.在分配用户带宽时,考虑用户的信道传输延迟,由于用户选择服务器并不 是以最近距离目标,考虑延迟问题,根据距离和信道质量来合理分配带宽。
3.相比较于传统云,边缘云计算离用户设备更近,可以减少网络传输延迟, 提升应用程序运行速度,节省用户设备能耗,改善用户体验。使用强化学习在 线学习任务卸载策略,充分考虑延迟和服务器资源情况,以最大化收益和节省 能耗与时间为目标,找出最优卸载策略,使移动边缘云计算的性能大幅度提升。
附图说明
图1是本发明面向位置隐私保护的任务卸载策略的原理图;
图2为位置隐私保护框架示意图;
图3为服务器选择矩阵;
图4强化学习的任务卸载示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自 始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解 为对本发明的限制。
本发明公开了一种面向位置隐私保护的任务卸载方法,如图1所示,包括 以下步骤:
第一步,生成虚拟位置,以当前位置l(x,y)为圆心,以r1,r2为半径形成一个 圆环,以初始随机概率p选择一个虚拟位置l1'(x1',y2'),并在以圆心为对称的另 一边选取另一个虚拟位置l2'(x1',y2')。所述p为0到1的实数,且r1、r2均为大于 0的实数且r1<r2
在本实施方案中,运用以上获取的虚拟位置,发起基于LBS的服务器请求, 获取部署在基站的服务器位置,得到服务器的位置信息集合。
使用模糊实际位置生成虚拟位置的方法包括以下步骤:
(1)将设备位置l(x,y)为圆心,根据距离公式求解一个虚拟位置空间S:
S={s(x',y')|x+r1<x'<x+r2,y+r1<y'<y+r2}
其中x',y'表示虚拟位置的经纬度坐标,r1,r2表示虚拟空间中经纬坐标与真 实位置的差值;且为了使虚拟空间与真实位置有所差异同时不能过于影响服务 质量,本实施案例设置0.005<r1<r2<0.01。
(2)根据虚拟空间的位置点与真实位置之间的距离初始化虚拟位置选择概 率p,由近到远在距离上符合正态分布;
Figure BDA0002869911380000031
μ为位置参数,σ为尺度参数。表示p服从期望为μ,方差为σ2的概率分 布。
第二步,构建服务器选择矩阵。设备获得M个附近的服务器位置,根据设 备真实位置计算出设备与M个服务器之间的真实距离,根据距离对每一个服务 器评定隐私级别,根据距离和带宽计算传输代价,形成服务器选择矩阵Tc。其 中元素Tc(i)表示第i个服务器与设备的隐私级别和传输代价,所述M为正整数, 且i为不大于M的正整数。
在本实施例中,使用设备位置信息l(x,y)和服务器位置信息li(xi,yi)根据经 纬度距离公式计算距离dis:
C=sin(y)sin(yi)cos(x-xi)+cos(y)cos(yi)
Figure BDA0002869911380000032
其中,R表示地球的平均半径。
根据距离dis,利用隐私判别公式对每个服务器判定隐私保护级别:
Figure BDA0002869911380000033
其中,disi,mj表示设备i与BSmj之间的距离;Rmj,range表示BSmj的最大通信范围; BSmj表示设备i能够与基站通信的第个j设备
根据距离和带宽估计传输代价
Figure BDA0002869911380000041
Tsi,mj=Bmji
ηi=log(1+S/N)
Figure BDA0002869911380000042
其中,Tsi,mj表示设备i与BSmj的传输速率,Bmj表示服务器的带宽资源,ηi表 示设备的上行链路频谱效率,S/N表示设备的信噪比,Task表示设备计算任务 的大小。
第三步,选择发送卸载请求的服务器,根据第二步得到的服务器选择矩阵, 使用线性规划计算出在有效保护位置信息的同时能够付出较低的传输代价的服 务器,根据服务器选择概率pch选择最优的服务器。
在本实施方式中,依据第第二步得到的服务器选择矩阵,如图3所示。(1) 制定线性规划问题,目标函数为:maxz=(c1privacy+c2/delay)p,相关约束如下: delay≤20,privacy∈{2,3,4}。通过线性规划选择出符合条件的服务器,首先对整数 线性规划问题的整数约束条件进行松弛操作,以使其转化为可解的线性规划问 题。根据约束对线性规划问题求解,得到最优解(privacy*,delay*),然后对求解结 果进行过滤操作,由于距离服务器太近会被感知到位置,所以将满足 c3≤dis/range≤c4的服务器过滤掉,连接服务器的设备越多意味着服务器的资源 分配有限,如果目前可选择的服务器数量不止一个,将连接设备N>10服务器过 滤掉最后,比较各个候选解,只保留性能较优的服务器作为最终解,舍去其余 部分。
(2)然后利用用户当前速度vt和位移方向(xa,ya)计算服务器选择概率pch
Figure BDA0002869911380000044
其中,Rmj,range表示基站的通信范围;tr表示设备计算任务的约束时间。xi, yi表示服务器位置的横纵坐标。
(3)将线性规划选出来的服务器根据选择概率选出在约定时间内最适合卸 载的服务器。
第四步,计算任务矩阵。首先对当前队列中等候任务卸载设备根据距离分 配带宽。然后对所有请求卸载的任务评估其卸载成本和收益。依据任务卸载请 求中任务的基本参数,包括距离、数据大小、所需计算力等参数计算能耗以及 延迟。具体,根据带宽计算出传输延迟,根据任务卸载请求计算出发送延迟、 传输能耗、本地计算时间、本地计算能耗、边缘计算时间,边缘计算能耗。这 些参数构成N行的任务矩阵Tt,其中元素Tt(i)代表第i个任务的相关属性,所述 N为正整数,且i为不大于N的正整数。
(1)根据设备与服务器之间的距离来分配带宽Bi
Figure BDA0002869911380000051
Figure BDA0002869911380000052
其中,Bmj表示服务器的所有带宽资源,di,mj表示设备与基站之间的距离,D 表示连接到BSmj的设备距离和。
(2)根据带宽和距离计算计算任务传输延迟
Figure BDA0002869911380000053
Figure BDA0002869911380000054
(3)根据设备发送功率psend和任务大小Ltaski计算发送延迟:
Ti send=Ltaskipsend
(4)根据设备传输功率pt,i以及传输延迟
Figure BDA0002869911380000055
计算传输能耗:
Figure BDA0002869911380000056
(4)根据设备的计算能力和任务所需的计算力计算任务本地计算时间:
Figure BDA0002869911380000057
其中,Ctaski表示任务所需的计算力,
Figure BDA0002869911380000058
表示本地计算能力。
(5)根据设备功率和本地计算时间计算本地计算能耗:
Figure BDA0002869911380000059
其中,
Figure BDA00028699113800000510
表示设备功率。
(6)根据边缘计算资源和任务所需计算力计算边缘计算时间:
Figure BDA00028699113800000511
其中,
Figure BDA00028699113800000512
表示边缘计算资源。
(7)根据边缘计算功耗和计算时间计算边缘计算能耗。
Figure BDA00028699113800000513
其中,
Figure BDA00028699113800000514
表示边缘计算功率,
Figure BDA00028699113800000515
表示计算时间。
第五步,使用强化学习建模,将任务的决策参数作为输入,得到任务卸载 结果。首先给出基于强化学习理论的计算任务卸载策略的求解过程:首先根据 强化学习理论,定义出待解决的问题中的几个重要部分。
强化学习过程需要将原问题转化为一个马尔科夫决策过程<S,A,R>,即由状 态S、动作A、奖励R三部分组成的过程。系统从所处的某一状态开始,根据 当前状态选择动作并加以执行,而后到达新的状态,并取得新状态对应的奖励。
这里我们定义每个服务器在t时间段的剩余计算力和资源为其在t时间段所 处的状态。在每个状态下,用户设备的可选动作为其中三个决策动作分别代表 无动作、将计算任务在本地运行、将计算任务卸载到边缘云服务器运行。每个 状态的奖励信息Rt定义为到达此状态时的节省能耗和时间以及收益的加权和W, 如果采取卸载动作产生的能耗更少,则将卸载至边缘云服务器作为计算任务Ti,t的卸载策略,输出动作a=1;否则将在用户设备本地运行作为卸载策略,输出 动作a=0,即不进行卸载。考虑任务容忍时间,根据任务容忍时间进行优先级 排序,将节省能耗和时间较多且受益较大的任务卸载到边缘节点上处理,根据 卸载任务所获得收益以及节省的能耗和时间作为奖励。
本实施方案中,先将等待卸载决策的任务进行预先修剪处理。将已经超出 容忍时间任务选择本地执行,然后计算出当前已有的资源和计算力状态下,在 容忍时间之内不能够成功返回结果的任务择本地卸载。其次以服务器的计算力 和资源量作为服务器状态;将每个任务的容忍时间和所需计算力作为输入,由 神经网络输出卸载策略,在得到神经网络输出的策略同时,获取此策略带来的 奖励Rt,此处的收益定义为本次卸载任务所获得的收益、节省的能耗和时间的 加权和;然后将本次决策过程的状态信息St、决策结果At、奖励Rt,以及所到 达的新的状态信息St+1存储至经验重放缓存中作为历史经验。最后更新服务器状态;在随后的的决策过程中,每隔N次决策过程,从缓存中随机抽取一批历史 经验训练神经网络参数。方法为使用随机梯度下降法,沿使收益增加的方向调 整神经网络参数。
该面向位置隐私保护的任务卸载策略,不仅能够有效的保护用户的位置隐 私;而且多目标优化的方法降低能耗与延迟的同时能够积累更多的收益,在考 虑用户服务质量的同时兼顾服务提供商的利益。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解: 在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、 替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

1.一种面向位置隐私保护的任务卸载方法,其特征在于,包括以下步骤:
S1,生成虚拟位置,以当前设备位置l(x,y)为圆心,以r1,r2为半径形成一个圆环虚拟位置空间S,以虚拟位置选择概率p选择一个虚拟位置l1'(x1',y2'),并在以圆心为对称的另一边选取另一个虚拟位置l2'(x1',y2'),p为0到1的实数,r1、r2均为大于0的实数且r1<r2
S2,构建服务器选择矩阵,设备获得M个附近的服务器位置,根据设备真实位置计算出设备与M个服务器之间的真实距离,根据距离对每一个服务器评定隐私级别,根据距离和带宽计算传输代价,形成服务器选择矩阵Tc,其中元素Tc(i)表示第i个服务器与设备的隐私级别和传输代价,M为正整数,且i为不大于M的正整数;
S3,选择发送卸载请求的服务器,根据步骤S2得到的服务器选择矩阵,计算出在有效保护位置信息的同时能够付出较低的传输代价的服务器,根据服务器选择概率pch选择最优的服务器发送任务卸载请求;
S4,计算任务矩阵,首先对当前队列中等候任务卸载设备根据距离分配带宽,然后计算传输延迟、发送延迟、本地计算时间、本地计算能耗、边缘计算时间、边缘计算能耗,将这些参数构成N行的任务矩阵Tt,其中元素Tt(i)代表第i个任务的相关属性,N为正整数,且i为不大于N的正整数;
S5,使用强化学习建模,将任务的决策参数作为输入,得到任务卸载结果。
2.根据权利要求1所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤S1所述虚拟位置选择概率p根据虚拟空间的位置点与真实位置之间的距离初始化,且由近到远在距离上符合正态分布;
Figure FDA0002869911370000011
μ为位置参数,σ为尺度参数;表示p服从期望为μ,方差为σ2的概率分布。
3.根据权利要求1所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤S2所述构建服务器选择矩阵的具体步骤包括:
(1)根据经纬度距离公式计算出设备与服务器之间的真实距离;
(2)根据隐私判定公式对每个服务器判定隐私保护级别;
(3)根据距离和带宽估计传输代价。
4.根据权利要求1所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤S3所述选择发送卸载请求的服务器,具体包括:
(1)使用线性规划选择出隐私泄露风险低且传输代价小的一组服务器;
(2)利用用户当前速度和位移方向计算服务器选择概率;
(3)将步骤(1)选出来的服务器根据服务器选择概率选出在约定时间内最适合提交任务卸载请求的服务器。
5.根据权利要求4所述一种面向位置隐私保护的任务卸载方法,其特征在于:所述步骤(1)具体包括,首先对整数线性规划问题的整数约束条件进行松弛操作,然后对求解结果进行过滤操作,最后比较各个候选解,保留性能较优的服务器,舍去其余部分。
6.根据权利要求1所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤S4所述任务矩阵具体计算包括:
(1)根据设备与服务器之间的距离来分配带宽;
(2)根据带宽和距离计算计算任务传输延迟;
(3)根据设备发送功率和任务大小计算发送延迟;
(4)根据设备的计算能力和任务所需的计算力计算任务本地计算时间;
(5)根据设备功率和本地计算时间计算本地计算能耗;
(6)根据边缘计算资源和任务所需计算力计算边缘计算时间;
(7)根据边缘计算功耗和计算时间计算边缘计算能耗。
7.根据权利要求1所述一种面向位置隐私保护的任务卸载方法,其特征在于:所述步骤S5中卸载任务的选择,具体过程如下:
(1)先将等待卸载决策的任务进行预先修剪处理;
(2)以服务器的计算力和资源量作为服务器状态;
(3)将每个任务的容忍时间和所需计算力作为输入,由神经网络输出卸载策略;
(4)更新服务器状态。
8.根据权利要求7所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤(1)所述修剪处理包括,将已经超出容忍时间的任务选择本地执行,然后计算出当前已有的资源和计算力状态下,在容忍时间之内不能够成功返回结果的任务选择本地执行。
9.根据权利要求7所述一种面向位置隐私保护的任务卸载方法,其特征在于:步骤(3)所述神经网络输出卸载策略是,根据任务容忍时间进行优先级排序,将节省能耗和时间较多且受益较大的任务卸载到边缘节点上处理。
CN202011594404.XA 2020-12-29 2020-12-29 一种面向位置隐私保护的任务卸载方法 Active CN113407249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011594404.XA CN113407249B (zh) 2020-12-29 2020-12-29 一种面向位置隐私保护的任务卸载方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011594404.XA CN113407249B (zh) 2020-12-29 2020-12-29 一种面向位置隐私保护的任务卸载方法

Publications (2)

Publication Number Publication Date
CN113407249A true CN113407249A (zh) 2021-09-17
CN113407249B CN113407249B (zh) 2022-03-22

Family

ID=77677541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011594404.XA Active CN113407249B (zh) 2020-12-29 2020-12-29 一种面向位置隐私保护的任务卸载方法

Country Status (1)

Country Link
CN (1) CN113407249B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114356545A (zh) * 2021-12-07 2022-04-15 重庆邮电大学 一种面向隐私保护与能耗优化的任务卸载方法
CN114528081A (zh) * 2022-02-10 2022-05-24 绍兴文理学院 一种面向移动边缘计算用户隐私保护的任务卸载优化方法
CN115175250A (zh) * 2022-06-16 2022-10-11 武汉大学日照信息技术研究院 一种保护用户地理隐私的无人机辅助卸载激励方法及系统
CN115551105A (zh) * 2022-09-15 2022-12-30 公诚管理咨询有限公司 基于5g网络边缘计算的任务调度方法、装置和存储介质
CN116595575A (zh) * 2023-04-18 2023-08-15 广州大学 一种面向边缘智能控制器的依赖任务卸载和隐私保护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222792A1 (en) * 2008-02-28 2009-09-03 Vedvyas Shanbhogue Automatic modification of executable code
CN104364750A (zh) * 2013-01-06 2015-02-18 英特尔公司 用于触摸数据和显示区域控制的分布式预处理的方法、装置和系统
CN110611667A (zh) * 2019-09-02 2019-12-24 深圳市赛梅斯凯科技有限公司 边缘计算环境下动态的位置隐私保护方法及装置
CN111641681A (zh) * 2020-05-11 2020-09-08 国家电网有限公司 基于边缘计算和深度强化学习的物联网服务卸载决策方法
CN111930436A (zh) * 2020-07-13 2020-11-13 兰州理工大学 一种基于边缘计算的随机型任务排队卸载优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222792A1 (en) * 2008-02-28 2009-09-03 Vedvyas Shanbhogue Automatic modification of executable code
CN104364750A (zh) * 2013-01-06 2015-02-18 英特尔公司 用于触摸数据和显示区域控制的分布式预处理的方法、装置和系统
CN110611667A (zh) * 2019-09-02 2019-12-24 深圳市赛梅斯凯科技有限公司 边缘计算环境下动态的位置隐私保护方法及装置
CN111641681A (zh) * 2020-05-11 2020-09-08 国家电网有限公司 基于边缘计算和深度强化学习的物联网服务卸载决策方法
CN111930436A (zh) * 2020-07-13 2020-11-13 兰州理工大学 一种基于边缘计算的随机型任务排队卸载优化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114356545A (zh) * 2021-12-07 2022-04-15 重庆邮电大学 一种面向隐私保护与能耗优化的任务卸载方法
CN114356545B (zh) * 2021-12-07 2024-05-28 重庆邮电大学 一种面向隐私保护与能耗优化的任务卸载方法
CN114528081A (zh) * 2022-02-10 2022-05-24 绍兴文理学院 一种面向移动边缘计算用户隐私保护的任务卸载优化方法
CN114528081B (zh) * 2022-02-10 2024-08-09 绍兴文理学院 一种面向移动边缘计算用户隐私保护的任务卸载优化方法
CN115175250A (zh) * 2022-06-16 2022-10-11 武汉大学日照信息技术研究院 一种保护用户地理隐私的无人机辅助卸载激励方法及系统
CN115551105A (zh) * 2022-09-15 2022-12-30 公诚管理咨询有限公司 基于5g网络边缘计算的任务调度方法、装置和存储介质
CN115551105B (zh) * 2022-09-15 2023-08-25 公诚管理咨询有限公司 基于5g网络边缘计算的任务调度方法、装置和存储介质
CN116595575A (zh) * 2023-04-18 2023-08-15 广州大学 一种面向边缘智能控制器的依赖任务卸载和隐私保护方法

Also Published As

Publication number Publication date
CN113407249B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN113407249B (zh) 一种面向位置隐私保护的任务卸载方法
CN109947545B (zh) 一种基于用户移动性的任务卸载及迁移的决策方法
Fadlullah et al. HCP: Heterogeneous computing platform for federated learning based collaborative content caching towards 6G networks
Dai et al. Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things
CN111800828B (zh) 一种超密集网络的移动边缘计算资源分配方法
Dai et al. A learning-based approach for vehicle-to-vehicle computation offloading
CN110798849A (zh) 一种超密网边缘计算的计算资源分配与任务卸载方法
CN111711666B (zh) 一种基于强化学习的车联网云计算资源优化方法
CN110233755B (zh) 一种物联网中雾计算的计算资源和频谱资源分配方法
Mekala et al. Resource offload consolidation based on deep-reinforcement learning approach in cyber-physical systems
CN111124531A (zh) 一种车辆雾计算中基于能耗和延迟权衡的计算任务动态卸载方法
CN112668877B (zh) 结合联邦学习和强化学习的事物资源信息分配方法及系统
Meng et al. Deep reinforcement learning based task offloading algorithm for mobile-edge computing systems
CN109639833A (zh) 一种基于无线城域网微云负载均衡的任务调度方法
WO2024113974A1 (zh) 算力网络的路由分配方法、装置、电子设备及存储介质
CN114375058A (zh) 任务队列感知的边缘计算实时信道分配和任务卸载方法
CN115629865B (zh) 一种基于边缘计算的深度学习推理任务调度方法
CN111988787A (zh) 一种任务的网络接入和服务放置位置选择方法及系统
CN113347267A (zh) 一种移动边缘云计算网络中的mec服务器部署方法
CN114938381A (zh) 一种基于深度强化学习的d2d-mec卸载方法、计算机程序产品
Li et al. DQN-enabled content caching and quantum ant colony-based computation offloading in MEC
Yao et al. Energy-aware task allocation for mobile IoT by online reinforcement learning
Li Optimization of task offloading problem based on simulated annealing algorithm in MEC
Zou et al. ST-EUA: Spatio-temporal edge user allocation with task decomposition
Liang et al. Stochastic Stackelberg Game Based Edge Service Selection for Massive IoT Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant