CN113406120B - Preparation method of metal friction layer transmission electron microscope sample - Google Patents

Preparation method of metal friction layer transmission electron microscope sample Download PDF

Info

Publication number
CN113406120B
CN113406120B CN202110567966.3A CN202110567966A CN113406120B CN 113406120 B CN113406120 B CN 113406120B CN 202110567966 A CN202110567966 A CN 202110567966A CN 113406120 B CN113406120 B CN 113406120B
Authority
CN
China
Prior art keywords
sample
ion
metal
sheet
friction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110567966.3A
Other languages
Chinese (zh)
Other versions
CN113406120A (en
Inventor
张卫文
李道喜
王智
罗宗强
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110567966.3A priority Critical patent/CN113406120B/en
Publication of CN113406120A publication Critical patent/CN113406120A/en
Application granted granted Critical
Publication of CN113406120B publication Critical patent/CN113406120B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/364Embedding or analogous mounting of samples using resins, epoxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention discloses a preparation method of a metal friction layer transmission electron microscope sample. The method comprises the following steps: cutting a metal sheet from a sample, and polishing to obtain a polished metal sheet; embedding the polished metal sheet in a metal tube, and sticking the embedding position by using resin to obtain a sheet sample; polishing the front surface and the back surface of the sheet sample respectively to obtain a polished sheet sample, and performing ion thinning treatment until the sheet sample is provided with a hole to obtain an ion thinned sample; and carrying out ion polishing treatment on the sample after the ion thinning to obtain the metal friction layer transmission electron microscope sample. The preparation method has simple process, uses mature sample preparation equipment and technology, is favorable for preventing the friction layer from falling off in the sanding process and the sample from being cracked easily in the thinning process by adopting a pit instrument, and is suitable for preparing the transmission electron microscope sample with the section of the metal friction layer with the multi-layer structure of the micron-sized surface oxidation layer, the serious plastic deformation layer and the like.

Description

Preparation method of metal friction layer transmission electron microscope sample
Technical Field
The invention relates to the field of transmission electron microscope sample preparation, in particular to a preparation method of a metal friction layer transmission electron microscope sample.
Background
The metal friction material generates friction and abrasion in the process of interacting with a pair of friction pairs, so that a friction layer is formed on the surface layer of the metal friction material, the analysis of the microstructure morphology of the friction layer is an important way for understanding the abrasion condition of the metal friction material and analyzing the friction and abrasion mechanism, a transmission electron microscope has high spatial resolution which can reach 0.1-0.2nm often, can analyze information of the microstructure, chemical components, morphology, element distribution, atom distribution and the like of the material, and is one of the most effective means for representing the microscopic characteristics, so the microstructure observation and analysis based on the transmission electron microscopy analysis technology is an important means for analyzing the metal friction layer.
The preparation of a metal friction layer transmission electron microscope sample is a very critical step in the TEM analysis technique, since it requires the acquisition of thin regions with a thickness below 100 nm. At present, the main methods for preparing a transmission electron microscope sample of a metal block material are electrolytic double-spraying thinning and ion thinning. However, the electrolytic double-spraying thinning technology has higher requirements on the toughness of the prepared material and is not suitable for preparing a metal friction layer sample. Therefore, the sample is generally prepared by ion thinning. The traditional ion thinning is to thin the sample to 100 μm by mechanical grinding, then punch a wafer with a diameter of 3mm by a sample punch, and continuously grind the sample by 40-50 μm by using a pit instrument. And finally, bombarding and thinning by adopting Ar ions until breakdown is achieved, and obtaining a TEM sample. However, for a metal friction layer with a multi-layer structure, such as a micron-sized surface oxidation layer, a severe plastic deformation layer and the like, the surface oxidation layer of a sample is easy to fall off or the sample is easy to crack by adopting the traditional ion thinning method, and the sample with the whole thin area of the metal friction layer is difficult to obtain.
Disclosure of Invention
In order to overcome the defects in the prior art, the invention aims to provide a preparation method of a metal friction layer transmission electron microscope sample.
The invention solves the problem that the surface oxide layer of a sample with the section of a metal friction layer is easy to fall off or the sample is easy to crack in the prior art, and provides a preparation method of a transmission electron microscope sample with the metal friction layer, which can obtain the complete section of the metal friction layer and has short manufacturing period.
The purpose of the invention is realized by at least one of the following technical solutions.
The metal friction layer transmission electron microscope sample obtained by the preparation method provided by the invention is a metal friction layer section transmission electron microscope sample with a multi-layer structure of a micron-scale surface oxidation layer, a severe plastic deformation layer and the like.
The invention provides a preparation method of a metal friction layer transmission electron microscope sample, which comprises the following steps:
(1) Preparation of a primary sample: cutting a metal sheet from a sample, and polishing to obtain a polished metal sheet;
(2) Inlaying: embedding the polished metal sheet in the step (1) in a metal tube, and adhering the embedded part with resin to obtain a sheet sample;
(3) Respectively polishing the front surface and the back surface of the sheet sample obtained in the step (2) to obtain a polished sheet sample, and then performing ion thinning treatment until a hole of the sheet sample is formed to obtain an ion thinned sample;
(4) And (4) carrying out ion polishing treatment on the sample subjected to ion thinning in the step (3) to obtain the metal friction layer transmission electron microscope sample.
Further, the thickness of the metal sheet in the step (1) is 0.8-1mm; and cutting the sample by an electric spark wire cutting or diamond disk saw to obtain the metal sheet.
Preferably, the thickness of the metal sheet in the step (1) is 1mm.
Preferably, when the sample is cut by using a diamond disk saw, the linear speed of the diamond disk saw is below 6 mm/s.
Further, the polishing in the step (1) is performed by using waterproof abrasive paper with the thickness of less than 1000#, and the thickness of the polished metal sheet in the step (1) is 0.4-0.6mm.
Preferably, the thickness of the polished metal sheet in the step (1) is 0.5mm.
Further, the length and width of the metal sheet in the step (1) can be determined according to the width of the grinding mark of the original sample.
Further, the metal pipe in the step (2) is a copper pipe; the length of the metal pipe is 0.4-0.6mm, the inner diameter of the metal pipeline is 2.5mm, and the outer diameter of the metal pipe is 3mm.
Preferably, the length of the metal pipe in the step (2) is the same as the thickness of the polished metal sheet.
Further, the resin in the step (2) is epoxy resin.
Preferably, in step (2), after the resin is adhered to the inlaid part, the resin overflowing after curing can be removed by using sand paper.
Further, the grinding in the step (3) comprises: the front and back surfaces of the sheet sample were sequentially sanded with 1000#, 2000#, 3000#, 5000# and 7000# sandpaper.
Preferably, in the grinding process of step (3), the number of times of grinding of each kind is increased by times as the number of the water-ground sandpaper is changed from 1000# to 7000 #.
Further, the thickness of the polished slice sample in the step (3) is 30-50 μm.
Further, the ion thinning treatment in the step (3) is double-sided ion thinning treatment; the ion beam energy of the ion thinning treatment is 4-8keV, the rotation angle of the ion gun is within +/-8 degrees, and the ion thinning treatment is carried out until the ion gun is drilled.
Further, the ion polishing process of step (4) includes: firstly, carrying out first ion polishing treatment on a sample subjected to ion thinning under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-6 degrees, wherein the time of the first ion polishing treatment is not less than 3min, then carrying out second ion polishing treatment under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-4 degrees, wherein the time of the second ion polishing treatment is not less than 3min, and finally carrying out third ion polishing treatment under the conditions that the ion beam energy is 3-4keV and the ion gun rotation angle is adjusted to +/-3 degrees, wherein the time of the third ion polishing treatment is not less than 4min.
Preferably, the ion polishing process of step (4) includes: firstly, carrying out first ion polishing treatment on a sample subjected to ion thinning under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-6 degrees, wherein the time of the first ion polishing treatment is 3-10min, then carrying out second ion polishing treatment under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-4 degrees, wherein the time of the second ion polishing treatment is 3-10min, and finally carrying out third ion polishing treatment under the conditions that the ion beam energy is 3-4keV and the ion gun rotation angle is adjusted to +/-3 degrees, wherein the time of the third ion polishing treatment is 4-8min.
Further preferably, the ion polishing treatment in step (4) includes: firstly, carrying out first ion polishing treatment on a sample subjected to ion thinning under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-6 degrees, wherein the time of the first ion polishing treatment is 10min, then carrying out second ion polishing treatment under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-4 degrees, wherein the time of the second ion polishing treatment is 10min, and finally carrying out third ion polishing treatment under the conditions that the ion beam energy is 3-4keV and the ion gun rotation angle is adjusted to +/-3 degrees, wherein the time of the third ion polishing treatment is 8min.
Preferably, the metal friction layer transmission electron microscope sample obtained in the step (4) can be transferred to a TEM sample box, and a drying agent is put into the TEM sample box, and the TEM sample box is vacuum-packaged and sealed.
The invention provides a metal friction layer transmission electron microscope sample prepared by the preparation method. If the observation effect of the metal friction layer transmission electron microscope sample under TEM is not ideal, the metal friction layer transmission electron microscope sample can be further thinned by adopting an ion polishing process until a good thin area is obtained.
Compared with the prior art, the invention has the following advantages and beneficial effects:
the metal friction layer transmission electron microscope sample prepared by the invention is a metal friction layer section transmission electron microscope sample with a multi-layer structure of a micron-scale surface oxidation layer, a severe plastic deformation layer and the like, and the preparation method avoids the falling off of the friction layer in the sand paper polishing process and avoids the sample fragmentation which is easy to occur in the pit instrument thinning process; in addition, the graded ion polishing which gradually reduces the ion bombardment energy is adopted, the dropping of the friction layer micro-area in the thinning process is also avoided, the graded ion polishing mode which gradually reduces the rotation angle of the ion gun is adopted, the thickness of the thin area around the hole is gradually changed, and the sufficient electron transparent thin area of the friction layer is ensured.
Drawings
FIG. 1 is a flow chart of a fabrication process of a TEM sample of a metal friction layer according to an embodiment;
FIG. 2 is a schematic diagram of a Cu-15Ni-8Sn copper alloy material after GCr15 double-grinding in the example;
FIG. 3 is a topographical view of a cross section of a friction layer of a Cu-15Ni-8Sn copper alloy sample in an example under a scanning electron microscope;
FIG. 4 is a flow chart of primary sample preparation in the examples;
FIG. 5 is a transmission electron micrograph of a cross-sectional sample of the metallic friction layer prepared in example 1;
FIG. 6 is a transmission electron micrograph of a cross-sectional sample of the metallic friction layer prepared in example 2;
FIG. 7 is a transmission electron micrograph of a cross-sectional sample of the metallic friction layer prepared in example 3.
Detailed Description
The following examples are presented to further illustrate the practice of the invention, but the practice and protection of the invention is not limited thereto. It is noted that the processes described below, if not specifically detailed, are all those that can be realized or understood by those skilled in the art with reference to the prior art. The reagents or apparatus used are not indicated by the manufacturer, and are regarded as conventional products commercially available.
The samples used in the following examples were prepared as follows.
And (3) performing a test on the milled copper alloy wear-resistant material by using Cu-15Ni-8Sn and GCr15 through ring-block type friction and wear to obtain a sample after friction. A schematic of the resulting post-friction sample is shown with reference to fig. 2. The overall size of the sample is 10mm multiplied by 10mm, a grinding mark with certain width and depth is formed on the abrasion surface, the abrasion surface is uneven, a layer of black oxide is adhered, and the TEM observation direction is vertical to the grinding mark direction.
The morphology of the friction layer cross section of the Cu-15Ni-8Sn copper alloy sample observed under a scanning electron microscope is shown in FIG. 3. As can be seen, the cross section of the metal friction layer is as follows from outside to inside: an oxide layer, a nano layer, a deformation layer and a substrate.
Example 1
A method for preparing a metal friction layer transmission electron microscope sample comprises the following steps (as shown in figure 1):
(1) Primary sample preparation (as can be seen in fig. 4): cutting a metal sheet (the length and the width are both 10 mm) with the thickness of 0.8mm from the rubbed sample by an electric spark wire, and sequentially performing double-side grinding by using No. 600, no. 800 and No. 1000 water sand paper to obtain a ground metal sheet (namely a primary sample, the thickness of which is 0.4 mm);
(2) Cutting the polished metal sheet obtained in the step (1), wherein the length, the width and the thickness of the cut metal sheet are 2mm, 1.5mm and 0.4mm, embedding the cut metal sheet in a copper pipe (the inner diameter is 2.5mm, the outer diameter is 3mm and the length is 0.4 mm), adhering the embedded part with epoxy resin, and after the epoxy resin is cured, grinding the overflowing epoxy resin with No. 1000 abrasive paper to obtain a sheet sample;
(3) Polishing the front surface and the back surface of the sheet sample obtained in the step (2) by using 1000#, 2000#, 3000#, 5000# and 7000# waterproof abrasive paper respectively in sequence to obtain a polished sheet sample (the thickness is 30 micrometers), then performing ion thinning treatment to perform double-surface thinning, wherein the energy of an ion beam of the ion thinning treatment is 6keV, the rotation angle of an ion gun of the ion thinning treatment is +/-8 degrees, and the sample is obtained until the sheet sample is provided with a hole;
(4) Performing ion polishing treatment on the sample subjected to ion thinning in the step (3), wherein the ion polishing treatment is divided into three steps, and in the first step, a target area is polished for 5min by adopting a process that the energy of an ion beam is 5.5keV and the rotation angle of an ion gun is +/-6 degrees; step 2, adjusting the ion beam energy to be 5keV, adjusting the rotation angle of an ion gun to be +/-4 degrees and setting the time to be 5min; step 3, adjusting the energy of the ion beam to 3keV, wherein the rotation angle of the ion gun is +/-3 degrees, and the polishing time is 5min; and obtaining the metal friction layer transmission electron microscope sample.
And transferring the obtained metal friction layer transmission electron microscope sample to a TEM sample box, putting a drying agent, and carrying out vacuum packaging and sealing for storage.
The morphology of the metal friction layer transmission electron microscope sample (metal friction layer cross section sample) obtained in this example at different magnifications is shown in fig. 5.
As can be seen from FIG. 5, the TEM sample had holes; a large-area thin area is arranged around the hole, so that the oxide layer, the deformation layer and the matrix can be distinguished; can take transmission electron diffraction contrast image, selective area electron diffraction, point, line and surface scanning of energy spectrum, high-angle annular dark field image and high-resolution electron microscopic image (listing high-resolution sample image).
Example 2
A preparation method of a metal friction layer transmission electron microscope sample comprises the following steps:
(1) Cutting a metal sheet (the length and the width are both 10 mm) with the thickness of 0.9mm from the rubbed sample by using a diamond disk saw, wherein the diameter of a diamond disk saw blade is 100mm, the revolution is 60rpm, the linear speed of the outer edge of the diamond saw blade is about 5.2mm/s, and performing double-side grinding by using No. 600, no. 800 and No. 1000 waterproof abrasive paper in sequence to obtain a ground metal sheet (the thickness is 0.5 mm);
(2) Cutting the polished metal sheet obtained in the step (1), wherein the length, the width and the thickness of the cut metal sheet are 2mm, 1.5mm and 0.5mm respectively, embedding the cut metal sheet in a copper pipe (the inner diameter is 2.5mm, the outer diameter is 3mm and the length is 0.5 mm), adhering the embedded part with epoxy resin, and after the epoxy resin is cured, grinding the overflowing epoxy resin with No. 1000 abrasive paper to obtain a sheet sample;
(3) Polishing the front surface and the back surface of the sheet sample obtained in the step (2) by using 1000#, 2000#, 3000#, 5000# and 7000# waterproof abrasive paper respectively in sequence to obtain a polished sheet sample (the thickness is 40 mu m), then performing ion thinning treatment to perform double-surface thinning, wherein the energy of an ion beam of the ion thinning treatment is 7keV, the rotation angle of an ion gun of the ion thinning treatment is +/-8 degrees, and the sample is obtained until the sheet sample is provided with a hole;
(4) Performing ion polishing treatment on the sample subjected to ion thinning in the step (3), wherein the ion polishing treatment is divided into three steps, and in the first step, a target area is polished for 8min by adopting a process that the energy of an ion beam is 6.5keV and the rotation angle of an ion gun is +/-6 degrees; step 2, adjusting the ion beam energy to 5.5keV, the rotation angle of an ion gun to be +/-4 ℃ and the time to be 8min; step 3, adjusting the energy of the ion beam to 3keV, wherein the rotation angle of the ion gun is +/-3 degrees, and the polishing time is 8min; and obtaining the metal friction layer transmission electron microscope sample.
And transferring the obtained metal friction layer transmission electron microscope sample to a TEM sample box, putting a drying agent, and carrying out vacuum packaging and sealing for storage.
The morphology of the metal friction layer transmission electron microscope sample (metal friction layer cross section sample) obtained in this example at different magnifications is shown in fig. 6.
As can be seen from FIG. 6, the TEM sample had holes; a large-area thin area is arranged around the hole, so that the oxide layer, the deformation layer and the substrate can be distinguished; can take transmission electron diffraction contrast image, selective area electron diffraction, point, line and surface scanning of energy spectrum, high-angle annular dark field image and high-resolution electron microscopic image (listing high-resolution sample image).
Example 3
A preparation method of a metal friction layer transmission electron microscope sample comprises the following steps:
(1) Cutting a metal sheet (the length and the width are both 10 mm) with the thickness of 1mm from the rubbed sample by using a diamond disk saw, wherein the diameter of a diamond disk saw blade is 100mm, the revolution is 60rpm, the outer edge linear velocity of the diamond saw blade is about 5.2mm/s, and performing double-side grinding by using No. 600, no. 800 and No. 1000 waterproof abrasive paper in sequence to obtain a ground metal sheet (the thickness is 0.6 mm);
(2) Cutting the polished metal sheet obtained in the step (1), wherein the length, the width and the thickness of the cut metal sheet are 2mm, 1.5mm and 0.6mm respectively, embedding the cut metal sheet in a copper pipe (the inner diameter is 2.5mm, the outer diameter is 3mm and the length is 0.6 mm), adhering the embedded part with epoxy resin, and after the epoxy resin is cured, grinding the overflowing epoxy resin with No. 1000 abrasive paper to obtain a sheet sample;
(3) Sequentially polishing the front surface and the back surface of the sheet sample obtained in the step (2) by 1000#, 2000#, 3000#, 5000# and 7000# waterproof abrasive paper respectively to obtain a polished sheet sample (the thickness is 50 micrometers), then performing ion thinning treatment to perform double-surface thinning, wherein the ion beam energy of the ion thinning treatment is 7keV, the ion gun rotation angle of the ion thinning treatment is +/-8 degrees, and the sample is processed until the sheet sample is perforated to obtain the ion thinned sample;
(4) Performing ion polishing treatment on the sample subjected to ion thinning in the step (3), wherein the ion polishing treatment is divided into three steps, and in the first step, a target area is polished for 10min by adopting a process that the energy of an ion beam is 7.5keV and the rotation angle of an ion gun is +/-6 degrees; step 2, adjusting the ion beam energy to 5.5keV, the rotation angle of an ion gun to be +/-4 degrees and the time to be 10min; step 3, adjusting the energy of the ion beam to 3keV, wherein the rotation angle of the ion gun is +/-3 degrees, and the polishing time is 10min; and obtaining the metal friction layer transmission electron microscope sample.
And transferring the obtained metal friction layer transmission electron microscope sample to a TEM sample box, putting a drying agent, and carrying out vacuum packaging and sealing for storage.
The morphology of the metal friction layer transmission electron microscope sample (metal friction layer cross section sample) obtained in this example at different magnifications is shown in fig. 7.
As can be seen from FIG. 7, the TEM sample had holes; a large-area thin area is arranged around the hole, so that the oxide layer, the deformation layer and the substrate can be distinguished; can take transmission electron diffraction contrast image, selective area electron diffraction, point, line and surface scanning of energy spectrum, high-angle annular dark field image and high-resolution electron microscopic image (listing high-resolution sample image).
The above examples are only preferred embodiments of the present invention, which are intended to be illustrative and not limiting, and those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the spirit and scope of the invention.

Claims (5)

1. The preparation method of the metal friction layer transmission electron microscope sample is characterized in that the metal friction layer transmission electron microscope sample is a metal friction layer section transmission electron microscope sample with a multilayer structure of a micron-sized surface oxidation layer and a severe plastic deformation layer; the preparation method comprises the following steps:
(1) Cutting a metal sheet from a sample, polishing the metal sheet to obtain a polished metal sheet, wherein the length and the width of the metal sheet are both 10 mm;
(2) Cutting the polished metal sheet obtained in the step (1), wherein the cut metal sheet is 2mm in length and 1.5mm in width, embedding the cut metal sheet in a metal tube, and adhering the embedding position with resin to obtain a sheet sample;
(3) Polishing the front surface and the back surface of the sheet sample obtained in the step (2) respectively to obtain a polished sheet sample, and then performing ion thinning treatment until a hole is formed in the sheet sample to obtain an ion thinned sample;
(4) Carrying out ion polishing treatment on the sample subjected to ion thinning in the step (3) to obtain a transmission electron microscope sample of the metal friction layer;
the thickness of the polished metal sheet in the step (1) is 0.4-0.6 mm;
the metal pipe in the step (2) is a copper pipe; the length of the metal pipe is 0.4-0.6mm, the inner diameter of the metal pipe is 2.5mm, and the outer diameter of the metal pipe is 3mm;
the resin in the step (2) is epoxy resin;
the thickness of the polished slice sample in the step (3) is 30-50 μm;
the ion thinning treatment in the step (3) is double-sided ion thinning treatment; the ion beam energy of the ion thinning treatment is 4-8keV, and the rotation angle of an ion gun is within +/-8 degrees;
the ion polishing treatment in the step (4) adopts a graded ion polishing mode of gradually reducing ion bombardment energy, and comprises the following steps: firstly, carrying out first ion polishing treatment on a sample subjected to ion thinning under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-6 degrees, wherein the time of the first ion polishing treatment is not less than 3min, then carrying out second ion polishing treatment under the conditions that the ion beam energy is 5-8keV and the ion gun rotation angle is +/-4 degrees, wherein the time of the second ion polishing treatment is not less than 3min, and finally carrying out third ion polishing treatment under the conditions that the ion beam energy is 3-4keV and the ion gun rotation angle is adjusted to be +/-3 degrees, wherein the time of the third ion polishing treatment is not less than 4min.
2. The method for preparing a transmission electron microscope sample of a metal friction layer according to claim 1, wherein the thickness of the metal flake of step (1) is 0.8-1mm; and cutting the sample by an electric spark wire cutting or diamond disk saw to obtain the metal sheet.
3. The method for preparing a transmission electron microscope sample of a metal friction layer according to claim 2, wherein when the sample is cut by a diamond circular saw, the linear velocity of the diamond circular saw is less than 6 mm/s.
4. The method for preparing a TEM sample of a metallic friction layer as claimed in claim 1, wherein the grinding in step (1) is carried out by using a waterproof sand paper of 1000# or less.
5. The method for preparing a transmission electron microscope sample of a metal friction layer according to claim 1, wherein the polishing of step (3) comprises: the front and back surfaces of the sheet sample were sequentially sanded with 1000#, 2000#, 3000#, 5000# and 7000# sandpaper.
CN202110567966.3A 2021-05-24 2021-05-24 Preparation method of metal friction layer transmission electron microscope sample Expired - Fee Related CN113406120B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110567966.3A CN113406120B (en) 2021-05-24 2021-05-24 Preparation method of metal friction layer transmission electron microscope sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110567966.3A CN113406120B (en) 2021-05-24 2021-05-24 Preparation method of metal friction layer transmission electron microscope sample

Publications (2)

Publication Number Publication Date
CN113406120A CN113406120A (en) 2021-09-17
CN113406120B true CN113406120B (en) 2022-12-16

Family

ID=77674791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110567966.3A Expired - Fee Related CN113406120B (en) 2021-05-24 2021-05-24 Preparation method of metal friction layer transmission electron microscope sample

Country Status (1)

Country Link
CN (1) CN113406120B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088751B (en) * 2021-11-12 2024-04-16 西安交通大学 Multilayer film transmission electron microscope sample and preparation method thereof
CN114295458B (en) * 2021-12-31 2024-03-19 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material by atomic scale

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519771A (en) * 2011-12-30 2012-06-27 青岛大学 Method for preparing cross section transmission electron microscope sample
CN105973674A (en) * 2016-07-01 2016-09-28 中国科学院地质与地球物理研究所 Preparation method of transmission electron microscope sample with large area of thin region
CN110926898A (en) * 2019-12-09 2020-03-27 中国工程物理研究院化工材料研究所 Preparation method of electron beam sensitive brittle material transmission electron microscope sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519771A (en) * 2011-12-30 2012-06-27 青岛大学 Method for preparing cross section transmission electron microscope sample
CN105973674A (en) * 2016-07-01 2016-09-28 中国科学院地质与地球物理研究所 Preparation method of transmission electron microscope sample with large area of thin region
CN110926898A (en) * 2019-12-09 2020-03-27 中国工程物理研究院化工材料研究所 Preparation method of electron beam sensitive brittle material transmission electron microscope sample

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ti2AlN(MAX相)薄膜微观组织结构及抗氧化性能研究;陈哲;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20190815(第8期);第B020-401页 *
粉末冶金法原位合成γ-A l2O3W/A l复合材料及力学性能;屈晓瑶;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20190415(第4期);第B020-115页 *
陈哲.Ti2AlN(MAX相)薄膜微观组织结构及抗氧化性能研究.《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》.2019,(第8期),第B020-401页. *

Also Published As

Publication number Publication date
CN113406120A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
CN113406120B (en) Preparation method of metal friction layer transmission electron microscope sample
KR102378788B1 (en) Coated cutting tool and method for producing same
WO2005083148A1 (en) Sputtering target with few surface defects and method for processing surface thereof
TW201132781A (en) Sputtering target with reduced particle generation and method for producing the sputtering target
CN103196728A (en) Method for preparing scanning electron microscope (SEM) sample or transmission electron microscope (TEM) sample protection layer by using focused ion beam (FIB) technology
US10197478B2 (en) Sample carrier and method for processing a sample
CN111796121A (en) Strong texture structure metal transmission electron microscopic characterization sample preparation method
CN110987554A (en) Method for inspecting microstructure of scale of wire product
CN113804707B (en) Method for preparing high-density powder particle transmission electron microscope sample by film support
Luo et al. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing
CN111982948A (en) Preparation method of scanning electron microscope section sample of micron-sized powder
JP5700171B2 (en) Coated cutting tool
CN116429477A (en) Preparation method of powder magnetic metal abrasive dust transmission electron microscope sample
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
CN102721594A (en) Method for observing tungsten-ferro-nickel alloy metallographic structure
JP2009244240A (en) Method for manufacturing sample for cross-sectional observation by scanning electron microscope
CN114878607A (en) EBSD sample preparation method for metal material surface layer
CN110530691A (en) A kind of preparation method of Ultrafine Grained Steel EBSD sample
Zhou et al. Efficient grinding diamond film using chromium-coated diamond grinding wheel based on mechanochemical effect
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide
US10604836B2 (en) Methods for surface preparation of sputtering target
CN112505076B (en) Preparation method of geological thin slice sample for TEM analysis
JP2012225789A (en) Method of manufacturing thin sample for electron microscope and observation method of the sample
EP1612836B1 (en) Method for the removal of a microscopic sample from a substrate
TW200825194A (en) Sputtering target, surface treatment, and film thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221216