CN113403324B - Cassava disease-resistant related gene MeAHL17 and application thereof - Google Patents

Cassava disease-resistant related gene MeAHL17 and application thereof Download PDF

Info

Publication number
CN113403324B
CN113403324B CN202110585700.1A CN202110585700A CN113403324B CN 113403324 B CN113403324 B CN 113403324B CN 202110585700 A CN202110585700 A CN 202110585700A CN 113403324 B CN113403324 B CN 113403324B
Authority
CN
China
Prior art keywords
cassava
meahl17
pro
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110585700.1A
Other languages
Chinese (zh)
Other versions
CN113403324A (en
Inventor
丁泽红
胡伟
铁韦韦
颜彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanya Research Institute Chinese Academy Of Tropical Agricultural Sciences
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Original Assignee
Sanya Research Institute Chinese Academy Of Tropical Agricultural Sciences
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanya Research Institute Chinese Academy Of Tropical Agricultural Sciences, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences filed Critical Sanya Research Institute Chinese Academy Of Tropical Agricultural Sciences
Priority to CN202110585700.1A priority Critical patent/CN113403324B/en
Publication of CN113403324A publication Critical patent/CN113403324A/en
Application granted granted Critical
Publication of CN113403324B publication Critical patent/CN113403324B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a cassava disease-resistant related gene MeAHL17 and application thereof; the CDS nucleotide sequence of MeAHL17 is shown in SEQ ID No. 1. The invention accurately identifies the function of MeAHL17 in resisting the cassava bacterial wilt disease, provides theoretical basis and key genes for improving the cassava bacterial wilt disease, and has important application value.

Description

Cassava disease resistance related gene MeAHL17 and application thereof
Technical Field
The invention relates to the field of biological breeding, and in particular relates to a cassava disease resistance related gene MeAHL17 and application thereof.
Background
Cassava (Manihot esculenta Crantz) is an important economic crop and grain crop in tropical and subtropical regions, and plays a significant role in agriculture and industrial production in China. Bacterial wilt of Cassava (CBB) is one of the very serious diseases in the current cassava production, which can cause the cassava yield to be greatly reduced and seriously threaten the income increase of farmers and the sustainable development of the cassava industry.
Therefore, how to effectively excavate the cassava bacterial wilt resistance candidate genes and carry out detailed functional research on the cassava bacterial wilt resistance candidate genes so as to provide important gene resources for improving the cassava bacterial wilt disease is a difficult problem to be solved urgently in the current cassava biological breeding field.
Bacterial blight of cassava is an important agronomic trait. Because of the high heterozygosity of the cassava genome, the construction of a segregation population through parent hybridization and the positioning of the bacterial blight disease-resistant gene of the cassava by adopting a traditional map-based cloning method are limited to a great extent; meanwhile, the research foundation of cassava is poor, a transgenic system is not mature, the excavation of the resistance gene of the bacterial wilt of cassava is greatly limited, and no available gene is applied to the genetic improvement of the resistance of the cassava.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a cassava disease resistance related gene MeAHL17 and application thereof, which can provide gene resources and important reference basis for improving the cassava bacterial wilt and provide basis for gene improvement and biological breeding.
In order to achieve the aim, the invention provides a cassava disease resistance related gene MeAHL17, wherein the CDS nucleotide sequence of MeAHL17 is shown as SEQ ID No. 1.
The amino acid sequence of the MeAHL17 protein coded by the cassava disease resistance related gene MeAHL17 is shown in SEQ ID No. 2.
The invention also provides a promoter of the cassava disease resistance related gene MeAHL17, and the nucleotide sequence of the promoter is shown in SEQ ID No. 3.
The invention also provides application of the promoter of the cassava disease resistance related gene MeAHL17 or MeAHL17 in preventing and treating cassava bacterial wilt.
The invention also provides application of the promoter of the cassava disease resistance related gene MeAHL17 or MeAHL17 in breeding new plant varieties, preferably, the plant is cassava.
The invention has the beneficial effects that:
(1) the invention accurately identifies the function of MeAHL17 in resisting the bacterial wilt of cassava, provides theoretical basis and key genes for improving the bacterial wilt of cassava, and has important application value;
(2) the invention shows that the A/G allelic variation of the promoter region of MeAHL17 is related to the resistance of cassava bacterial wilt disease. By detecting the genotype, the early prediction and the rapid screening of the bacterial wilt resistance of cassava are facilitated, and the disease-resistant breeding process of the cassava is accelerated.
Drawings
FIG. 1 is a diagram of the gene mapping and functional SNP analysis of MeAHL 17;
in the figure, FIG. 1A is a view showing an analysis of bacterial wilt disease GWAS of cassava, which maps candidate genes to the interval of 11.65 to 11.70Mb of chromosome 2;
FIG. 1B is a comparative analysis chart of candidate gene transcriptome;
FIG. 1C is the MeAHL17 gene model, with the red dashed line indicating the location of the functional SNP in the promoter region of MeAHL 17;
FIG. 1D is a graph of dual luciferase assay comparing the activity of the MeAHL17 promoter regions (300 bp and 600bp upstream of the transcription start site) containing A and G, each sample comprising 8 biological replicates;
FIG. 1E is a graph comparing the resistance of cassava to bacterial wilt based on the AA and AG MeAHL17 alleles;
FIG. 2 is a graph of analysis of the disease resistance function of MeAHL 17;
in the figure, figure 2A is a graph of the difference in the expression levels of MeAHL17 in cassava with AG alleles (Yunnan8 and ZM9781) and AA alleles (ZM95308 and ruishi x3) measured by qRT-PCR for 3 biological replicates per sample, data expressed as mean ± standard deviation,. indicates P <0.01, at 0 and 2 days after Xam infection;
FIG. 2B is a graph showing the difference in expression level of MeAHL17 in cassava leaves transformed with pCAMBIA1304 (vector control, VC1), pCAMBIA1304:: MeAHL17 (overexpression, OE), pTRV (vector control, VC2) or pTRV:: MeAHL17(RNA silencing, RNAi) in the above four varieties (wherein ZM95308 and Ruishi X3 both carry AA alleles; Yunnan8 and ZM9781 both carry AG alleles), respectively; expression was measured by qRT-PCR, 3 biological replicates per sample were assayed, and data are expressed as mean ± standard deviation, P <0.05, P < 0.01;
FIG. 2C is a graph of the number of bacteria in cassava leaves transformed with pCAMBIA1304 (vector control, VC1), pCAMBIA1304:: MeAHL17 (overexpression, OE), pTRV (vector control, VC2) or pTRV:: MeAHL17(RNA silencing, RNAi) at 0 and 6 days after infection with Xam; data are expressed as mean ± standard deviation, P <0.05, P <0.01, and 4 biological replicates were determined for each sample.
Detailed Description
The present invention is described in further detail below with reference to specific examples so as to be understood by those skilled in the art.
Example 1 screening of cassava disease resistance-related Gene MeAHL17
1. Whole genome correlation analysis is carried out based on cassava germplasm natural population, and gene intervals related to cassava bacterial wilt disease are rapidly locked
The cassava germplasm natural population comes from an agricultural delirium cassava germplasm resource garden. 299 parts of cassava material was arbitrarily selected, fresh young leaves were frozen in liquid nitrogen, and genomic DNA was extracted using DNeasy Plant Mini kit (Qiagen, Beijing). Each sample was used to construct a pair-end library with an insert size of 500bp using 5. mu.g of genomic DNA. The 150bp paired end reads for each sample were sequenced using the Illumina X-Ten platform. Sequencing reads for each sample were aligned to the cassava SC205 reference genome using the BWA mem v0.7.17 program. The alignment results were ranked and repeatedly labeled using Samtools v1.9 and Picard v 1.94.
After deleting low-quality reads, the reads on both single-ended and double-ended alignments adopt the GATK toolkit v3.5 flow to detect SNP. The HaplotypeCaller module is used to create an original genotype file containing SNPs and indels, and further filter them using the following parameters: "QUAL <2.0| | | QD <2.0| | | MQ <40.0| | FS >60.0| | MQRankSum < -12.5| | ReadPosRankSum < -8.0-clusterSize 2-clusterWindowSize 5" and "QD <2.0| | FS >200.0| ReadPosRankSum < -20.0". The identified SNPs and indels were annotated using SnpEff v3.6c software. A total of 1,313,775 high quality SNPs were obtained by filtering the low quality SNPs using "Major Allele Frequency (MAF) >0.05 and deletion data < 20%".
The bacterial wilt of cassava germplasm is evaluated according to the technical specification (NY/T3005-2016) of the bacterial wilt of cassava in China. The average of three biological replicates was used to determine the level of resistance. Then, the cassava bacterial wilt is taken as a phenotypic character, and genome-wide association analysis (GWAS) is carried out. AQ matrices generated by admixtree v1.3.0 were considered to be fixed effects, and SPAGeDi v1.3a was used to construct the relatives (K) matrix. The corresponding P value threshold of 0.000001 is set to control the whole genome type I error rate.
The results show that: the interval 11.65-11.70Mb of chromosome 2 was significantly associated with cassava bacterial wilt disease (FIG. 1A).
2. Further screening for candidate genes based on comparative transcriptome analysis
Transcriptome data were obtained from the NCBI-SRA database under accession number SRP 045199. After removal of the linker sequence and low quality reads, clean reads were aligned to the SC205 reference genome by HISAT2 v 2.0.4. Gene expression levels were calculated by StringTie v1.3.4d using default parameters. Gene expression levels were normalized using FPKM. The differentially expressed genes were identified using the DEseq2 software. Differentially expressed genes are defined as FDR <0.01 and fold change > 2.
Based on cassava genome annotation, there are 6 candidate genes in the 11.65-11.70Mb interval on chromosome 2. Interestingly, only Sc02g014000 expression was significantly induced by the pathogen under the cassava bacterial wilt disease treatment conditions (fig. 1B).
Therefore, it was concluded that Sc02g014000 is an important candidate gene for regulating bacterial blight of cassava, which encodes a nuclear localization protein containing an AT-hook domain, which was designated MeAHL17 based on gene homology, and the CDS nucleotide sequence of MeAHL17 is shown in SEQ ID No. 1; the amino acid sequence is shown as SEQ ID No. 2; the nucleotide sequence of the promoter of MeAHL17 is shown in SEQ ID No. 3.
Example 2
1. Based on comparative genome analysis, SNP (single nucleotide polymorphism) sites significantly related to gene expression are excavated
Based on genome re-sequencing data, one SNP variation was found in the MeAHL17 promoter region (at-53 bp upstream of the start codon, i.e., 948 site of the nucleotide sequence of the promoter of MeAHL 17) (A/G, FIG. 1C).
To explore the effect of a/G allelic variation on the activity of the MeAHL17 promoter, we performed a dual luciferase assay in cassava protoplasts. MeAHL17 promoter sequences (-1 to-300 bp and-1 to-600 bp) with A or G were cloned and inserted into pGreenII0800-LUC vector and transformed into cassava protoplasts. Relative luciferase activity was determined using a dual luciferase reporter assay kit (RG027, Beyotime, shanghai). The results show that: the G-containing MeAHL17 promoter was more active than the a-containing MeAHL17 promoter (fig. 1D), indicating that a/G allelic variation affects expression of MeAHL 17.
2. A large amount of cassava germplasm analysis finds that A/G variation is obviously associated with cassava bacterial wilt resistance
By screening a large number of cassava germplasm we found that the germplasm carrying the AA allele by MeAHL17 was more sensitive to bacterial blight of cassava than the germplasm carrying the AG allele (fig. 1E). It is deduced from this that allelic variation of A/G in the promoter region regulates the expression of MeAHL17, which in turn influences the resistance of bacterial blight of cassava.
Example 3 overexpression and validation of RNAi function indicate that MeAHL17 plays an important role in the resistance of bacterial blight of cassava
To examine the expression profile of MeAHL17 in response to bacterial wilt (Xam), we collected leaves of 4 representative cassava varieties (of which ZM95308 and Ruishi X3 carry AA alleles; Yunnan8 and ZM9781 carry AG alleles) 0 and 2 days after Xam infection. Total RNA was isolated using cDNA synthesis kit (K1622, USA) and reverse transcribed. Then, using MeEF1a as internal reference and 2 -ΔΔCt The method identified the relative expression level of MeAHL17 by quantitative real-time PCR (qRT-PCR).
The results show that: the expression level of MeAHL17 carrying the AA allele induced less after Xam treatment compared to the AG allele (fig. 2A).
Subsequently, overexpression and RNAi functional verification were performed simultaneously in the above 4 cassava varieties. To overexpress the MeAHL17, the coding sequence of the MeAHL17 was amplified and inserted into the pCAMBIA1304 vector, followed by injection of the agrobacterium strain (GV3101) with the recombinant vector or pCAMBIA1304 (control) into the cassava leaves. To silence the MeAHL17, the MeAHL17 specific region was amplified and cloned into pTRV2 vector, followed by injection of agrobacterium strain (GV3101) with recombinant vector or pTRV2 (control) into cassava leaves together with pTRV 1. After two days of cultivation of the plants transformed with pCAMBIA1304:: MeAHL17 and pCAMBIA1304 or two weeks of cultivation of the plants transformed with pTRV:: MeAHL17 and pTRV, Xam was inoculated into the cassava leaves, and the number of bacteria and the gene expression level were checked after 6 days.
The results show that: xam the number of bacterial populations in the different varieties after overexpression of MeAHL17 was significantly reduced compared to the control, whereas the number of bacterial populations in the MeAHL17 silenced varieties (Yunnan8 and ZM9781) was significantly increased compared to the control (FIGS. 2B-C). These results indicate that MeAHL17 plays an important role in combating bacterial blight of cassava, and that allelic variation of A/G in its promoter region is associated with resistance to bacterial blight.
Other parts not described in detail are prior art. Although the present invention has been described in detail with reference to the above embodiments, it is only a part of the embodiments of the present invention, not all of the embodiments, and other embodiments can be obtained without inventive step according to the embodiments, and all of the embodiments are included in the scope of the present invention.
Sequence listing
<110> research institute of tropical biotechnology of Chinese tropical academy of agricultural sciences
Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences
<120> cassava disease-resistant related gene MeAHL17 and application thereof
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 939
<212> DNA
<213> cassava (Manihot esculenta)
<400> 1
atgaaaggtg aatatgtaga ggcacaccat ccaccaaagc atgaaaacgt cacccctatg 60
aacatgttct ctaaacttca tccccatccc catcaccagc tccctttctc tcagcacttc 120
caactctctc gtgaatctga agatgatgaa actagaagca ccggcgctgc cgccgtaacc 180
accccttccc ctaacaccaa tcccgccacc accacaacac caagccagaa gcagaaaccc 240
accgaaccca atagcagtgc tggcactgat ggtgccagta ttgaagttgt tcgcaggccc 300
aggggtagac cgcctggttc caagaataga cctaaaccac ctgtggtcat tacacgagac 360
cctgaaccag ctatgagtcc ttacattctc gaagtccctg gtggaagcga cgtcgttgaa 420
tcgatatccc gcttttgtcg ccgcaagaac atcggaatct gcgttcttac aggatctggc 480
gccgttacta atgttactct tcgtcagcca tcaacgactc ccgggtctac cattactttc 540
catggaagct tcgatattct atcgctttct gctacgttta tgcctcaacc ggtgtcgcat 600
ccagtgccca acacttttac tatctctctg gcgggtccgc agggccagat cgtgggtggg 660
tttgttgctg gaagcttggt agcagctggt accgtgtatg tcatcgcggc gacgtttaat 720
aaccctagtt atcaccggtt accgggtgaa gatgaaggga ggaactctgg gtctggcggc 780
gagggtcagt ctccgtctgt gtccggtgcc ggtggaggcg gaggagatag tggacatacg 840
caaggtggag gggagtcgtg cgggatggtt atgtacagtt gtcatttgcc ctctgatgta 900
atctgggcac ccactgctag gccaccaccg ccctactga 939
<210> 2
<211> 312
<212> PRT
<213> cassava (Manihot esculenta)
<400> 2
Met Lys Gly Glu Tyr Val Glu Ala His His Pro Pro Lys His Glu Asn
1 5 10 15
Val Thr Pro Met Asn Met Phe Ser Lys Leu His Pro His Pro His His
20 25 30
Gln Leu Pro Phe Ser Gln His Phe Gln Leu Ser Arg Glu Ser Glu Asp
35 40 45
Asp Glu Thr Arg Ser Thr Gly Ala Ala Ala Val Thr Thr Pro Ser Pro
50 55 60
Asn Thr Asn Pro Ala Thr Thr Thr Thr Pro Ser Gln Lys Gln Lys Pro
65 70 75 80
Thr Glu Pro Asn Ser Ser Ala Gly Thr Asp Gly Ala Ser Ile Glu Val
85 90 95
Val Arg Arg Pro Arg Gly Arg Pro Pro Gly Ser Lys Asn Arg Pro Lys
100 105 110
Pro Pro Val Val Ile Thr Arg Asp Pro Glu Pro Ala Met Ser Pro Tyr
115 120 125
Ile Leu Glu Val Pro Gly Gly Ser Asp Val Val Glu Ser Ile Ser Arg
130 135 140
Phe Cys Arg Arg Lys Asn Ile Gly Ile Cys Val Leu Thr Gly Ser Gly
145 150 155 160
Ala Val Thr Asn Val Thr Leu Arg Gln Pro Ser Thr Thr Pro Gly Ser
165 170 175
Thr Ile Thr Phe His Gly Ser Phe Asp Ile Leu Ser Leu Ser Ala Thr
180 185 190
Phe Met Pro Gln Pro Val Ser His Pro Val Pro Asn Thr Phe Thr Ile
195 200 205
Ser Leu Ala Gly Pro Gln Gly Gln Ile Val Gly Gly Phe Val Ala Gly
210 215 220
Ser Leu Val Ala Ala Gly Thr Val Tyr Val Ile Ala Ala Thr Phe Asn
225 230 235 240
Asn Pro Ser Tyr His Arg Leu Pro Gly Glu Asp Glu Gly Arg Asn Ser
245 250 255
Gly Ser Gly Gly Glu Gly Gln Ser Pro Ser Val Ser Gly Ala Gly Gly
260 265 270
Gly Gly Gly Asp Ser Gly His Thr Gln Gly Gly Gly Glu Ser Cys Gly
275 280 285
Met Val Met Tyr Ser Cys His Leu Pro Ser Asp Val Ile Trp Ala Pro
290 295 300
Thr Ala Arg Pro Pro Pro Pro Tyr
305 310
<210> 3
<211> 1000
<212> DNA
<213> cassava (Manihot esculenta)
<400> 3
tatctcttat attaattctt ttgatataaa tttatatgtt tattttaatt ttattaattt 60
tcttgatata aatttgtatg tttattttaa ttttaacttt ttatcgtaca tccaaagctt 120
gaatatgttt ttctatgaat tgtactgttt tttctcattc tatgaaattt cctttatttt 180
tagggaaaaa aaaaaaagag cctgagtgtt tttgaatgtg ttttcatttt caatatacga 240
aatgggtgtt caaggctggc tttctctcta gagactacta gaaatggaaa atttgaaaag 300
ccatgatgat ggaatagtga tagagagaga aattgaaaat tagagagaag atgcataaag 360
agcattcccc cataacccga atgataaaac atcaacttgt cattgtcaat ccactcggtc 420
ggggatgctc taaaggactc ttcacatttg ctttctcttc ttactctcct ttaaatttca 480
ataattcttc agagaaaata aaaaaaaaaa aaaaaccaga tcatctgttt ctaatcaatc 540
tttttataat ctactaataa aaccaaaatc ctctaaggcc aaagggggta agtgctttga 600
gttagctaac caaatctgtc tcttcgtgga ccctaccctt caacagttct accttcccaa 660
ttccagcggc gctattagtc tttacttggt ttccaagttc acccaccttc tctttaactc 720
ttctcccact tcacatttac aattacaccc acctcttcct ctccttaaat tctttaaaca 780
tatctaagaa ccatccttct cttttcttcc tcgttgccca tcctcatcct cttccatatc 840
tatccatctt tgtaatttat cttcttcttc ttcttcttct tcttcttctt ccattttttt 900
attatttatt attgatcttg tccgaccaag caatttgcaa atatcctrcc aattataagc 960
catacttgcc aaaaatagag attataaaat aacgcaaaac 1000

Claims (2)

1. The application of a promoter of a cassava disease resistance related gene MeAHL17 or MeAHL17 in preventing and treating cassava bacterial wilt; wherein the CDS nucleotide sequence of MeAHL17 is shown as SEQ ID No. 1; the nucleotide sequence of the promoter of MeAHL17 is shown in SEQ ID No. 3.
2. The application of a promoter of a cassava disease resistance related gene MeAHL17 or MeAHL17 in cassava cultivation; wherein the CDS nucleotide sequence of MeAHL17 is shown as SEQ ID No. 1; the nucleotide sequence of the promoter of MeAHL17 is shown in SEQ ID No. 3.
CN202110585700.1A 2021-05-27 2021-05-27 Cassava disease-resistant related gene MeAHL17 and application thereof Active CN113403324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110585700.1A CN113403324B (en) 2021-05-27 2021-05-27 Cassava disease-resistant related gene MeAHL17 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110585700.1A CN113403324B (en) 2021-05-27 2021-05-27 Cassava disease-resistant related gene MeAHL17 and application thereof

Publications (2)

Publication Number Publication Date
CN113403324A CN113403324A (en) 2021-09-17
CN113403324B true CN113403324B (en) 2022-08-23

Family

ID=77674779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110585700.1A Active CN113403324B (en) 2021-05-27 2021-05-27 Cassava disease-resistant related gene MeAHL17 and application thereof

Country Status (1)

Country Link
CN (1) CN113403324B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277168B (en) * 2021-12-31 2023-08-18 海南大学 Cassava FRK1 similar gene and application thereof
CN114480476B (en) * 2022-01-05 2024-02-06 海南大学 Application of protein capable of being used for improving disease resistance of cassava and encoding gene
CN114703197B (en) * 2022-03-25 2024-02-06 海南大学 MeHsf23 gene for improving disease resistance of cassava and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3048581A1 (en) * 2017-01-16 2018-07-19 Evogene Ltd. Isolated polynucleotides and polypeptides associated with plants resistance to pathogenic fungi
CN113061554A (en) * 2021-04-16 2021-07-02 中国热带农业科学院热带生物技术研究所 Bacillus belgii for preventing and treating banana wilt and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166996A1 (en) * 2012-05-11 2013-11-14 中国科学院上海生命科学研究院 Gene improving the stress resistance of plants and use thereof
US20180127769A1 (en) * 2015-02-06 2018-05-10 New York University Transgenic plants and a transient transformation system for genome-wide transcription factor target discovery
EP3340799A2 (en) * 2015-08-28 2018-07-04 Agbiome, Inc. Compositions and methods for controlling plant disease
GB201903520D0 (en) * 2019-03-14 2019-05-01 Tropic Biosciences Uk Ltd Modifying the specificity of non-coding rna molecules for silencing genes in eukaryotic cells
CN110592100B (en) * 2019-10-08 2022-08-02 海南大学 Cassava CAMTA gene and construction and disease-resistant application of suppression expression vector thereof
CN110747208B (en) * 2019-11-28 2022-04-22 海南大学 Cassava nitrate reductase gene and construction and disease-resistant application of overexpression vector thereof
CN113293170B (en) * 2021-05-27 2022-10-18 中国热带农业科学院热带生物技术研究所 Gene MeTIR1 for regulating and controlling cassava starch content and application thereof
CN114480476B (en) * 2022-01-05 2024-02-06 海南大学 Application of protein capable of being used for improving disease resistance of cassava and encoding gene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3048581A1 (en) * 2017-01-16 2018-07-19 Evogene Ltd. Isolated polynucleotides and polypeptides associated with plants resistance to pathogenic fungi
CN113061554A (en) * 2021-04-16 2021-07-02 中国热带农业科学院热带生物技术研究所 Bacillus belgii for preventing and treating banana wilt and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Asr基因家族的研究进展;杨晔等;《作物杂志》;20130615(第03期);全文 *
AT-hook蛋白的最新研究进展;王元元等;《基因组学与应用生物学》;20200225(第02期);全文 *
一株木薯拮抗内生细菌CEB33的鉴定及田间防效初步测定;陈奕鹏等;《热带作物学报》;20161225(第12期);全文 *
陆地棉基因GhWRKY40-1的克隆及表达分析;司爱君等;《棉花学报》;20170315(第02期);全文 *

Also Published As

Publication number Publication date
CN113403324A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
CN113403324B (en) Cassava disease-resistant related gene MeAHL17 and application thereof
Liu et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize
Wu et al. A large‐scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments
Lesur et al. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release
Xing et al. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne
AU3221699A (en) A method for obtaining a plant with a genetic lesion in a gene sequence
Zhou et al. Pedigree‐based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding
González et al. Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy
Jia et al. Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica
Wang et al. Natural sequence variations and combinations of GNP1 and NAL1 determine the grain number per panicle in rice
Cao et al. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance
Lian et al. De novo chromosome‐level genome of a semi‐dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature‐sensitive semi‐dwarf trait and PpB3‐1 for flower type and size
CN106755371B (en) Method for detecting sheep PCNP gene single nucleotide polymorphism by PCR-RFLP and application thereof
Sha et al. Elite sd1 alleles in japonica rice and their breeding applications in northeast China
Raggi et al. Molecular polymorphism related to flowering trait variation in a Phaseolus vulgaris L. collection
CN113106110A (en) SiSD1 gene, application thereof in controlling millet plant height character and genotype identification method
Yang et al. Genetic mapping and regional association analysis revealed a CYTOKININ RESPONSE FACTOR 10 gene controlling flowering time in Brassica napus L.
CN109706154B (en) CsPR3 gene and application thereof in cucumber fusarium wilt resistance
CN113293170B (en) Gene MeTIR1 for regulating and controlling cassava starch content and application thereof
CN113046466B (en) SNP locus obviously associated with wheat powdery mildew resistance and application of SNP locus in genetic breeding
Zhang et al. Fine mapping and candidate gene prediction of the quantitative trait locus qPL8 for panicle length in rice.
CN112538487B (en) Tomato irregular fruit cracking key regulatory gene and identification method and application thereof
Wang et al. Genome variation and LTR-RT analyses of an ancient peach landrace reveal mechanism of blood-flesh fruit color formation and fruit maturity date advancement
CN112899289A (en) sisd1 gene, application thereof in controlling dwarf characteristics of millet and genotype identification method
CN112522290A (en) Calcineurin B-like interacting protein kinase gene related to sea island cotton fiber quality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant