CN113400316B - 建筑垃圾分拣机械手抓取控制方法及装置 - Google Patents

建筑垃圾分拣机械手抓取控制方法及装置 Download PDF

Info

Publication number
CN113400316B
CN113400316B CN202110777414.5A CN202110777414A CN113400316B CN 113400316 B CN113400316 B CN 113400316B CN 202110777414 A CN202110777414 A CN 202110777414A CN 113400316 B CN113400316 B CN 113400316B
Authority
CN
China
Prior art keywords
grabbing
actual
force
expected
grabbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110777414.5A
Other languages
English (en)
Other versions
CN113400316A (zh
Inventor
许春权
戚博峰
孙杳如
刘钦源
魏永起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202110777414.5A priority Critical patent/CN113400316B/zh
Publication of CN113400316A publication Critical patent/CN113400316A/zh
Application granted granted Critical
Publication of CN113400316B publication Critical patent/CN113400316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manipulator (AREA)

Abstract

本发明提供一种建筑垃圾分拣机械手抓取控制方法及装置,包括以下步骤:获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度。本发明的建筑垃圾分拣机械手抓取控制方法及装置不但确保抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化时仍可作出自适应调整以实现稳定抓取;而且保证了待抓取物的分拣效率。

Description

建筑垃圾分拣机械手抓取控制方法及装置
技术领域
本发明涉及智能抓取控制领域,特别是涉及一种建筑垃圾分拣机械手抓取控制方法及装置。
背景技术
随着智能制造的发展,越来越多的领域应用到机械手等抓取控制装置完成抓取操作,比如,建筑领域应用机械手抓取建筑垃圾,由于建筑垃圾材质多样,表面刚度各异,当机械手的抓取力较小时,建筑垃圾易滑脱;当机械手的抓取力较大时,建筑垃圾易损坏。因此,抓取控制装置对抓取的控制是其中的关键点。
现有技术中,抓取控制装置对抓取的控制主要采用阻抗控制法,该方法根据设定的目标阻抗模型调节机械手末端执行器的位置和接触力的动态关系,广泛用于果蔬抓取、患肢康复、工作表面打磨、轴孔装配等方面;在建筑领域中,当应用阻抗控制法进行抓取分拣时,若待抓取物的位置和表面刚度都能精确获得,则可以实现既快又稳的抓取;但实际应用中,由于抓取控制装置通过传感器预估的待抓取物的位置和表面刚度等信息往往带有偏差;并且在抓取过程中待抓取物的表面刚度也可能发生变化,这时应用阻抗控制法并不能得到良好的控制效果;反而会影响待抓取物的分拣效率。
因此,抓取控制装置如何更精确地进行抓取是一个亟待解决的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种建筑垃圾分拣机械手抓取控制方法及装置,用于解决现有技术中存在的未能更精确地进行抓取的问题。
为实现上述目的及其他相关目的,本发明提供一种抓取控制方法,包括以下步骤:获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
于本发明的一实施例中,所述基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置,包括:基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。
于本发明的一实施例中,所述逆运动学计算法的公式表达式为:
Figure BDA0003156187430000021
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。
于本发明的一实施例中,所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出。
对应地,本发明提供一种抓取控制装置,包括获取模块,用于获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;第一处理模块,用于基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;第二处理模块,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;关节角度计算模块,用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
于本发明的一实施例中,所述第二处理模块,具体用于:基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。
于本发明的一实施例中,所述逆运动学计算法的公式表达式为:
Figure BDA0003156187430000022
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。
于本发明的一实施例中,所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出。
本发明提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的抓取控制方法。
本发明提供一种抓取控制设备,其特征在于,包括:抓取控制模块、前端传感器、位置传感器、力传感器、角度传感器、阻抗控制器、参数估计器、比例积分微分控制器;所述前端传感器,用于获取待抓取物的位置点信息、待抓取物的期望抓取力,并反馈至所述抓取控制模块;所述位置传感器,用于获取所述抓取控制设备的抓取端的实际位置,并反馈至所述抓取控制模块;所述力传感器,用于获取所述抓取端的实际抓取力,并反馈至所述抓取控制模块;所述角度传感器,用于获取所述抓取控制设备的关节处的实际角度,并反馈至所述抓取控制模块;所述阻抗控制器,用于基于所述实际抓取力和所述期望抓取力,确定待抓取物的位置修正量,并反馈至所述抓取控制模块;所述参数估计器,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,确定待抓取物的期望位置,并反馈至所述抓取控制模块;所述抓取控制模块,用于基于所述位置点信息和所述期望抓取力,控制抓取控制设备移动至所述待抓取物处以准确抓取操作;还用于将所述实际抓取力和所述期望抓取力输入所述阻抗控制器;还用于将所述实际位置、所述实际抓取力以及所述期望抓取力输入所述参数估计器;还用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;并将所述期望角度、所述实际角度输入所述比例积分微分控制器;所述比例积分微分控制器,用于基于所述期望角度、所述实际角度,确定所述抓取控制设备的角度调整量;并反馈至所述抓取控制模块;所述抓取控制模块,还用于根据所述角度调整量控制所述抓取控制设备完成抓取操作。
如上所述,本发明的建筑垃圾分拣机械手抓取控制方法及装置,具有以下有益效果:
(1)参数估计算法的应用,确保了抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化时仍可作出自适应调整以实现稳定抓取。
(2)将阻抗控制算法和参数估计算法结合,显著提高了算法的鲁棒性,保证了待抓取物的分拣效率。
附图说明
图1显示为本发明的抓取控制方法于一实施例中的流程图。
图2显示为本发明的抓取控制方法于一实施例中的简化模型的坐标示意图。
图3显示为本发明的抓取控制方法于一实施例中的工作流程实例图。
图4显示为本发明的抓取控制方法于一实施例中的预估的待抓取物的位置和表面刚度都没有偏差时的抓取力变化示意图。
图5显示为本发明的抓取控制方法于一实施例中的预估的待抓取物的表面刚度有偏差时的抓取力变化示意图。
图6显示为本发明的抓取控制方法于一实施例中的预估的待抓取物的位置有偏差时的抓取力变化示意图。
图7显示为本发明的抓取控制方法于一实施例中的抓取过程中待抓取物的表面刚度有变化时的抓取力变化示意图。
图8显示为本发明的抓取控制装置于一实施例中的结构示意图。
图9显示为本发明的抓取控制装置于一实施例中的抓取控制设备。
元件标号说明
81 获取模块
82 第一处理模块
83 第二处理模块
84 关节角度计算模块
91 抓取控制模块
92 前端传感器
93 位置传感器
94 力传感器
95 角度传感器
96 阻抗控制器
97 参数估计器
98 比例积分微分控制器
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明的建筑垃圾分拣机械手抓取控制方法及装置应用参数估计算法,确保抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化时仍可作出自适应调整以实现稳定抓取;并且将阻抗控制算法和参数估计算法结合,显著提高了算法的鲁棒性,保证了待抓取物的分拣效率。
如图1所示,于本实施例中,本发明的抓取控制方法包括以下步骤:
步骤S1、获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力。
具体地,抓取控制装置设置有前端传感器,通过前端传感器获取待抓取物的位置点信息和待抓取物的期望抓取力;此外,前端传感器还能获取待抓取物的体积、材质信息;根据获取的待抓取物的位置点信息,抓取控制装置移动至待抓取物的附近;同时,抓取控制装置的抓取端设置有力传感器、位置传感器和角度传感器,通过力传感器测出抓取端与抓取物之间的实际抓取力;通过位置传感器测出抓取端的实际位置;通过角度传感器测出抓取控制装置的关节处的实际角度。
步骤S2、基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量。
具体地,将实际抓取力和期望抓取力进行比较,得到抓取力误差;对抓取力误差应用阻抗控制算法,确定出待抓取物的位置修正量,这里的阻抗控制算法的应用可以采用阻抗控制器的形式。
进一步具体的,定义实际抓取力为F,期望抓取力为Fd,阻抗控制算法的应用过程如下。
第一步,将抓取控制装置的抓取端与环境系统等效为线性弹簧,公式表达式为:
Figure BDA0003156187430000051
其中:X表示抓取控制装置的抓取端的实际位置;Xe表示待抓取物的位置;Ke表示待抓取物的刚度。
第二步,设置目标阻抗控制模型,公式表达式为:
Figure BDA0003156187430000061
其中:X、
Figure BDA0003156187430000062
分别表示抓取控制装置的抓取端的实际位置、实际速度、实际加速度;Xd
Figure BDA0003156187430000063
分别表示抓取控制装置的抓取端的目标位置、目标速度、目标加速度;md表示目标惯性;bd表示目标阻尼;kd表示目标刚度。阻抗控制的目的就是选用主动控制参数来实现理想的目标阻抗。
第三步,定义位置修正向量ΔX=X-Xd,抓取力误差Ef=Fd-F,由公式表达式(2)得出位置修正量ΔX与抓取力误差Ef满足的公式表达式为:
Figure BDA0003156187430000064
第四步,对公式表达式(3)进行拉普拉斯变换,得到阻抗控制器的传递函数为:
Figure BDA0003156187430000065
公式表达式(4)得到的即为待抓取物的位置修正量。
步骤S3、基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置。
具体地,基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。定义实际位置为X、位置估计值为
Figure BDA0003156187430000066
刚度估计值为
Figure BDA0003156187430000067
以及期望位置为Xd,这里参数估计算法的应用可以采用参数估计器的形式。
进一步具体地,参数估计算法的应用过程如下。
第一步,根据公式表达式(1),定义期望位置Xd的公式表达式为:
Figure BDA0003156187430000068
定义预测抓取力
Figure BDA0003156187430000069
的公式表达式为:
Figure BDA00031561874300000610
在实际操作中,期望位置Xd和预测值
Figure BDA00031561874300000611
可根据当前时刻的待抓取物的刚度估计值
Figure BDA00031561874300000612
和位置估计值
Figure BDA00031561874300000613
实时计算得到。
第二步,预先定义的关系等式的公式表达式为:
Figure BDA0003156187430000071
φ=[φk φx]T (7)
其中,
Figure BDA0003156187430000072
为待抓取物的刚度估计值和刚度的差值;
Figure BDA0003156187430000073
为待抓取物的位置估计值和位置的差值乘以刚度估计值;
Figure BDA0003156187430000074
为由
Figure BDA0003156187430000075
Figure BDA0003156187430000076
组成的一维数组的转置。
再将公式表达式(6)与公式表达式(1)的第一式相减,并应用公式表达式(7)中的
Figure BDA0003156187430000077
进行表示,得到预测抓取力和实际抓取力的误差的公式表达式为:
Figure BDA0003156187430000078
这里根据误差调整待抓取物的刚度估计值
Figure BDA0003156187430000079
和位置估计值
Figure BDA00031561874300000710
使得当时间t→∞时
Figure BDA00031561874300000711
即预测抓取力能够收敛于实际抓取力。
进一步具体地,由于预设的实际抓取力、预测抓取力以及期望抓取力三者之间的关系为:若能够证明
Figure BDA00031561874300000712
可以收敛于F,则F→Fd,即在预测抓取力收敛于实际抓取力的条件下,实际抓取力是能够趋向于期望抓取力的。因此,基于抓取力三者之间的关系,使用李亚普诺夫稳定性定理构造的能量函数V的公式表达式为:
V=φTΠφ (9)
其中,Π为给定的二阶正定矩阵,
Figure BDA00031561874300000713
Figure BDA00031561874300000714
的转置。
假设对
Figure BDA00031561874300000715
求导的
Figure BDA00031561874300000716
的公式表达式为:
Figure BDA00031561874300000717
综合上述公式表达式(8)、(9)、(10)得到的对能量函数V求导的
Figure BDA00031561874300000718
的公式表达式为:
Figure BDA00031561874300000719
其中,
Figure BDA00031561874300000720
是一个半负定矩阵;结合半负定矩阵的概念可知,如果φ能够满足公式表达式式(10),那么当t→∞时,
Figure BDA00031561874300000721
能够收敛于F,从而F→Fd
第三步,结合上述公式和证明结论,得到的对
Figure BDA00031561874300000722
的求导
Figure BDA00031561874300000723
和对
Figure BDA00031561874300000724
的求导
Figure BDA00031561874300000725
的公式表达式为:
Figure BDA0003156187430000081
其中,ξ1和ξ2为正常数。
第四步,综合上述三步中公式表达式,得到的完整参数估计的公式表达式为:
Figure BDA0003156187430000082
其中,
Figure BDA0003156187430000083
Figure BDA0003156187430000084
分别为t=0时刻,待抓取物的刚度估计值和位置估计值,都为预设值。
通过上述步骤S3中的参数估计算法的应用,能够对待抓取物的刚度和位置进行在线估计,得到待抓取物的刚度估计值和位置估计值,进而根据这些估计值实时计算得到待抓取物的期望位置。
步骤S4、基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
具体地,所述逆运动学计算法的公式表达式为:
Figure BDA0003156187430000085
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。如图2所示,于本实施例中,本发明的简化模型的坐标示意图,图中的抓取控制装置的抓取端是二指两自由度平面机械手的模式,设定机械手两指和待抓取物均关于Y轴对称,因此只对左、右侧中的单侧进行分析即可。
进一步具体地,所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出,比如在考虑一维模式的抓取情况下,y可以保持不变。
进一步具体地,在确定出抓取控制装置的期望角度后,将期望角度和实际角度相减得到角度误差,再应用比例积分微分控制法,实时确定各关节处的控制量,从而保证抓取端能够无静差地根据各关节的期望角度,并按照确定的控制量实时进行抓取调整,以使得实际抓取力达到期望抓取力,从而达到自适应地对出现的抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化的情况下的灵活调整以更精确地完成抓取操作。比如在建筑领域,通过上述方法抓取建筑垃圾后,能够按照预设的轨迹移动到指定位置以释放建筑垃圾,从而完成一次分拣任务。
通过上述步骤S1-S4的方法,不但确保抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化时仍可作出自适应调整以实现稳定抓取;而且保证了待抓取物的分拣效率;如图3所示,于本实施例中,本发明的工作流程实例图。
如图4所示,于本实施例中,本发明的预估的待抓取物的位置和表面刚度都没有偏差时的抓取力变化示意图;仿真结果表明,这种条件设定下,抓取控制装置快速稳定地完成了抓取任务。
如图5所示,于本实施例中,本发明的预估的待抓取物的表面刚度有偏差时的抓取力变化示意图;这里设定的条件为待抓取物的位置信息没有偏差,而表面刚度信息存在3000N/m的偏差;仿真结果表明,这种条件设定下,抓取控制装置通过上述方法的自适应参数调节,抓取力的超调量略微增大,但同样能够快速稳定地完成抓取任务。
如图6所示,于本实施例中,本发明的预估的待抓取物的位置有偏差时的抓取力变化示意图;这里设定的条件为待抓取物的刚度信息没有偏差,而位置信息存在0.1mm的偏差;仿真结果表明,这种条件设定下,抓取控制装置通过上述方法的自适应参数调节,抓取力的超调量增加明显且抓取时间有所延长,但两者都在允许范围内,同样能够快速稳定地完成抓取任务。
如图7所示,于本实施例中,本发明的抓取过程中待抓取物的表面刚度有变化时的抓取力变化示意图;这里设定的条件为在抓取控制装置稳定抓取待抓取物时,待抓取物的刚度发生突变,比如在1.5s至1.6s内刚度增加3000N/m,仿真结果表明,这种条件设定下,抓取控制装置通过上述方法的自适应参数调节能够迅速反应并及时调整,使抓取力快速稳定至期望值上。
如图8所示,于一实施例中,本发明的抓取控制装置包括:
获取模块81,用于获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;
第一处理模块82,用于基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;
第二处理模块83,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;
关节角度计算模块84,用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
其中,所述第二处理模块83,具体用于:
基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;
基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。
所述逆运动学计算法的公式表达式为:
Figure BDA0003156187430000101
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出。
本实施例的抓取控制装置具体实现的技术特征与实施例1中抓取控制方法中的各步骤的原理基本相同,方法和装置之间可以通用的技术内容不作重复赘述。
本发明的存储介质上存储有计算机程序,该程序被处理器执行时实现上述的抓取控制方法。
如图9所示,于一实施例中,本发明的抓取控制设备包括:
抓取控制模块91、前端传感器92、位置传感器93、力传感器94、角度传感器95、阻抗控制器96、参数估计器97、比例积分微分控制器98;
所述前端传感器92,用于获取待抓取物的位置点信息、待抓取物的期望抓取力,并反馈至所述抓取控制模块;
所述位置传感器93,用于获取所述抓取控制设备的抓取端的实际位置,并反馈至所述抓取控制模块;
所述力传感器94,用于获取所述抓取端的实际抓取力,并反馈至所述抓取控制模块;
所述角度传感器95,用于获取所述抓取控制设备的关节处的实际角度,并反馈至所述抓取控制模块;
所述阻抗控制器96,用于基于所述实际抓取力和所述期望抓取力,确定待抓取物的位置修正量,并反馈至所述抓取控制模块;
所述参数估计器97,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,确定待抓取物的期望位置,并反馈至所述抓取控制模块;
所述抓取控制模块91,用于基于所述位置点信息和所述期望抓取力,控制抓取控制设备移动至所述待抓取物处以准确抓取操作;还用于将所述实际抓取力和所述期望抓取力输入所述阻抗控制器;还用于将所述实际位置、所述实际抓取力以及所述期望抓取力输入所述参数估计器;还用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;并将所述期望角度、所述实际角度输入所述比例积分微分控制器;
所述比例积分微分控制器98,用于基于所述期望角度、所述实际角度,确定所述抓取控制设备的角度调整量;并反馈至所述抓取控制模块;
所述抓取控制模块91,还用于根据所述角度调整量控制所述抓取控制设备完成抓取操作。
综上所述,本发明的建筑垃圾分拣机械手抓取控制方法及装置,应用参数估计算法,确保了抓取控制装置在预估待抓取物的位置和表面刚度有偏差或抓取过程中待抓取物的表面刚度有变化时仍可作出自适应调整以实现稳定抓取;并且将阻抗控制算法和参数估计算法结合,显著提高了算法的鲁棒性,保证了待抓取物的分拣效率。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种抓取控制方法,其特征在于,所述抓取控制方法包括以下步骤:
获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;
基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;
基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;参数估计的公式表达式为:
Figure FDA0003961708650000011
其中,
Figure FDA0003961708650000012
Figure FDA0003961708650000013
分别为t=0时刻,待抓取物的刚度估计值和位置估计值;ξ1和ξ2为正常数;
Figure FDA0003961708650000014
为刚度估计值和
Figure FDA0003961708650000015
为位置估计值;
Figure FDA0003961708650000016
为预测抓取力,F为实际抓取力,Fd为期望抓取力,X为实际位置,Xd为目标位置;
基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
2.根据权利要求1所述的方法,其特征在于,所述基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置,包括:
基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;
基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。
3.根据权利要求1所述的方法,其特征在于,所述逆运动学计算法的公式表达式为:
Figure FDA0003961708650000017
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。
4.根据权利要求3所述的方法,其特征在于,所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出。
5.一种抓取控制装置,其特征在于,包括:
获取模块,用于获取抓取控制装置的实际抓取力、实际角度、实际位置以及待抓取物的期望抓取力;
第一处理模块,用于基于所述实际抓取力和所述期望抓取力,应用阻抗控制算法,确定待抓取物的位置修正量;
第二处理模块,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,应用预设的参数估计算法,确定待抓取物的期望位置;
参数估计的公式表达式为:
Figure FDA0003961708650000021
其中,
Figure FDA0003961708650000022
Figure FDA0003961708650000023
分别为t=0时刻,待抓取物的刚度估计值和位置估计值;ξ1和ξ2为正常数;
Figure FDA0003961708650000024
为刚度估计值和
Figure FDA0003961708650000025
为位置估计值;
Figure FDA0003961708650000026
为预测抓取力,F为实际抓取力,Fd为期望抓取力,X为实际位置,Xd为目标位置;
关节角度计算模块,用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;所述期望角度用于和所述实际角度比对以调整所述抓取控制装置的实际角度从而完成抓取操作。
6.根据权利要求5所述的装置,其特征在于,所述第二处理模块,具体用于:
基于所述实际抓取力、所述实际位置,应用预设的参数估计算法,确定待抓取物的位置估计值、刚度估计值;
基于所述位置估计值、所述刚度估计值以及所述期望抓取力,确定待抓取物的期望位置。
7.根据权利要求5所述的装置,其特征在于,所述逆运动学计算法的公式表达式为:
Figure FDA0003961708650000031
其中,θ1为抓取控制装置单侧的第一关节处的关节角度,θ2为抓取控制装置单侧的第二关节处的关节角度;l1为所述第一关节处和所述第二关节处的连接长度;l2为第二关节处至抓取端的连接长度;x为以所述第一关节处为原点的二维坐标的横坐标值;y为以所述第一关节处为原点的二维坐标的纵坐标值。
8.根据权利要求7所述的装置,其特征在于,所述x根据所述位置修正量和所述期望位置求和得出;所述y根据所述实际位置得出。
9.一种计算机存储介质,存储有程序指令,其中,所述程序指令被执行时实现如权利要求1至权利要求4任一项所述的抓取控制方法的步骤。
10.一种抓取控制设备,其特征在于,包括:
抓取控制模块、前端传感器、位置传感器、力传感器、角度传感器、阻抗控制器、参数估计器、比例积分微分控制器;
所述前端传感器,用于获取待抓取物的位置点信息、待抓取物的期望抓取力,并反馈至所述抓取控制模块;
所述位置传感器,用于获取所述抓取控制设备的抓取端的实际位置,并反馈至所述抓取控制模块;
所述力传感器,用于获取所述抓取端的实际抓取力,并反馈至所述抓取控制模块;
所述角度传感器,用于获取所述抓取控制设备的关节处的实际角度,并反馈至所述抓取控制模块;
所述阻抗控制器,用于基于所述实际抓取力和所述期望抓取力,确定待抓取物的位置修正量,并反馈至所述抓取控制模块;
所述参数估计器,用于基于所述实际抓取力、所述实际位置以及所述期望抓取力,确定待抓取物的期望位置,并反馈至所述抓取控制模块;参数估计的公式表达式为:
Figure FDA0003961708650000041
其中,
Figure FDA0003961708650000042
Figure FDA0003961708650000043
分别为t=0时刻,待抓取物的刚度估计值和位置估计值;ξ1和ξ2为正常数;
Figure FDA0003961708650000044
为刚度估计值和
Figure FDA0003961708650000045
为位置估计值;
Figure FDA0003961708650000046
为预测抓取力,F为实际抓取力,Fd为期望抓取力,X为实际位置,Xd为目标位置;
所述抓取控制模块,用于基于所述位置点信息和所述期望抓取力,控制抓取控制设备移动至所述待抓取物处以准确抓取操作;还用于将所述实际抓取力和所述期望抓取力输入所述阻抗控制器;还用于将所述实际位置、所述实际抓取力以及所述期望抓取力输入所述参数估计器;还用于基于所述位置修正量和所述期望位置,应用逆运动学计算法,确定抓取控制装置的期望角度;并将所述期望角度、所述实际角度输入所述比例积分微分控制器;所述比例积分微分控制器,用于基于所述期望角度、所述实际角度,确定所述抓取控制设备的角度调整量;并反馈至所述抓取控制模块;
所述抓取控制模块,还用于根据所述角度调整量控制所述抓取控制设备完成抓取操作。
CN202110777414.5A 2021-07-09 2021-07-09 建筑垃圾分拣机械手抓取控制方法及装置 Active CN113400316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110777414.5A CN113400316B (zh) 2021-07-09 2021-07-09 建筑垃圾分拣机械手抓取控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110777414.5A CN113400316B (zh) 2021-07-09 2021-07-09 建筑垃圾分拣机械手抓取控制方法及装置

Publications (2)

Publication Number Publication Date
CN113400316A CN113400316A (zh) 2021-09-17
CN113400316B true CN113400316B (zh) 2023-01-20

Family

ID=77685846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110777414.5A Active CN113400316B (zh) 2021-07-09 2021-07-09 建筑垃圾分拣机械手抓取控制方法及装置

Country Status (1)

Country Link
CN (1) CN113400316B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277039A (ja) * 2003-03-13 2004-10-07 Toyoda Mach Works Ltd パワーアシスト装置
CN102363301A (zh) * 2011-10-19 2012-02-29 浙江工业大学 机器人拟人手指自适应指尖力跟踪控制方法
CN103390101A (zh) * 2013-07-15 2013-11-13 哈尔滨工程大学 串联形式机器人的逆运动学通用求解方法
CN110202574A (zh) * 2019-06-05 2019-09-06 南京航空航天大学 基于环境刚度估计的机器人自适应混合阻抗/导纳控制方法
CN111198581A (zh) * 2020-01-17 2020-05-26 同济大学 虚拟被动行走机器人速度调节方法及装置、存储介质终端
CN111230870A (zh) * 2020-01-21 2020-06-05 上海电气集团股份有限公司 机器人控制方法、计算装置和存储介质
CN111752151A (zh) * 2020-06-17 2020-10-09 华中科技大学 一种工业叶片磨抛加工自适应力跟踪与补偿方法及系统
CN113009819A (zh) * 2021-02-09 2021-06-22 南京航空航天大学 一种基于力控制的椭圆振动切削加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130165945A9 (en) * 2007-08-14 2013-06-27 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
CN106965173A (zh) * 2017-03-06 2017-07-21 浙江大学 一种小型工业机械手的学习控制方法
CN108324503A (zh) * 2018-03-16 2018-07-27 燕山大学 基于肌骨模型和阻抗控制的康复机器人自适应控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277039A (ja) * 2003-03-13 2004-10-07 Toyoda Mach Works Ltd パワーアシスト装置
CN102363301A (zh) * 2011-10-19 2012-02-29 浙江工业大学 机器人拟人手指自适应指尖力跟踪控制方法
CN103390101A (zh) * 2013-07-15 2013-11-13 哈尔滨工程大学 串联形式机器人的逆运动学通用求解方法
CN110202574A (zh) * 2019-06-05 2019-09-06 南京航空航天大学 基于环境刚度估计的机器人自适应混合阻抗/导纳控制方法
CN111198581A (zh) * 2020-01-17 2020-05-26 同济大学 虚拟被动行走机器人速度调节方法及装置、存储介质终端
CN111230870A (zh) * 2020-01-21 2020-06-05 上海电气集团股份有限公司 机器人控制方法、计算装置和存储介质
CN111752151A (zh) * 2020-06-17 2020-10-09 华中科技大学 一种工业叶片磨抛加工自适应力跟踪与补偿方法及系统
CN113009819A (zh) * 2021-02-09 2021-06-22 南京航空航天大学 一种基于力控制的椭圆振动切削加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水下机械手阻抗控制技术研究;陈萍;《中国优秀硕士学位论文全文数据库 信息科技辑》;20091115;正文摘要和第8-9,13-19,27-46,54-65页 *

Also Published As

Publication number Publication date
CN113400316A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
Lee et al. Relative impedance control for dual-arm robots performing asymmetric bimanual tasks
Li et al. Learning object-level impedance control for robust grasping and dexterous manipulation
CN110076772B (zh) 一种机械臂的抓取方法及装置
Mendes et al. An optimal fuzzy-PI force/motion controller to increase industrial robot autonomy
Kumar et al. A low cost linear force feedback control system for a two-fingered parallel configuration gripper
JP3765713B2 (ja) ロボットの協調制御方法及び協調制御装置
CN106965187B (zh) 一种仿生手抓取物体时生成反馈力向量的方法
CN113400316B (zh) 建筑垃圾分拣机械手抓取控制方法及装置
CN108189037B (zh) 一种基于扰动观测器的机械手主次协调控制方法
CN112668190A (zh) 一种三指灵巧手控制器构建方法、系统、设备及存储介质
Xue et al. Gripping a kitchen knife on the cutting board
Chattaraj et al. Grasp mapping for dexterous robot hand: A hybrid approach
CN106003049B (zh) 人-机协作系统的控制方法
Ueki et al. Adaptive coordinated control of multi-fingered robot hand
Mouri et al. Teleoperated humanoid hand robot using force feedback
Zhao et al. Vision-based neural network control for constrained robots with constraint uncertainty
Dukor et al. A survey: Robot grasping
Abou Elyazed et al. Trajectory planning of five DOF manipulator: dynamic feed forward controller over computed torque controller
Mesgari et al. Application of MAG index for optimal grasp planning
Iwasaki et al. Adaptive force control for unknown environment using sliding mode controller with variable hyperplane
Ueki et al. Adaptive coordinated control of multi-fingered hands with rolling contact
Xue et al. Dynamic finger gaits via pivoting and adapting contact forces
CN113492409B (zh) 配网带电作业机器人抓线方法、装置、电子设备及介质
Wei et al. Research on human upper limb endpoint mechanical impedance with multi-task environment
TWI790408B (zh) 抓取裝置及抓取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant