CN113397559B - Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium - Google Patents
Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium Download PDFInfo
- Publication number
- CN113397559B CN113397559B CN202110672287.2A CN202110672287A CN113397559B CN 113397559 B CN113397559 B CN 113397559B CN 202110672287 A CN202110672287 A CN 202110672287A CN 113397559 B CN113397559 B CN 113397559B
- Authority
- CN
- China
- Prior art keywords
- signal
- brain
- analysis
- algorithm
- connectivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 108
- 210000004556 brain Anatomy 0.000 claims abstract description 91
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000007781 pre-processing Methods 0.000 claims abstract description 13
- 230000000007 visual effect Effects 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims description 41
- 238000009877 rendering Methods 0.000 claims description 23
- 230000003595 spectral effect Effects 0.000 claims description 18
- 238000012800 visualization Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 13
- 238000012935 Averaging Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 11
- 238000012952 Resampling Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000011218 segmentation Effects 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 6
- 230000000638 stimulation Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 230000003920 cognitive function Effects 0.000 abstract description 3
- 238000000537 electroencephalography Methods 0.000 description 30
- 238000005070 sampling Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000001149 cognitive effect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000004885 white matter Anatomy 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 3
- 210000004884 grey matter Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 208000001654 Drug Resistant Epilepsy Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- HGBLNBBNRORJKI-WCABBAIRSA-N cyclacillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C1(N)CCCCC1 HGBLNBBNRORJKI-WCABBAIRSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000002397 epileptogenic effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
- A61B5/374—Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Signal Processing (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Psychiatry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychology (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域technical field
本发明涉及脑电检测技术领域,特别涉及立体定向脑电图分析方法、装置、计算机设备及存储介质。The invention relates to the technical field of EEG detection, in particular to a stereotactic EEG analysis method, device, computer equipment and storage medium.
背景技术Background technique
难治性癫痫患者为精准定位致痫灶通常需要向大脑深部置入电极—立体定向脑电图(SEEG),获取大脑内部的空间信息,这为认知神经科学领域对大脑认知功能的探索带来了巨大的便利。然而目前针对认知SEEG数据进行处理与分析,通常需要编写大量的代码或者使用多种不同方法来对SEEG进行分析,导致分析效率低下,并且由于采用多种不同方法,这会后续的研究工作带来较多的不便。In order to accurately locate the epileptogenic focus, patients with intractable epilepsy usually need to implant electrodes into the deep part of the brain—stereotactic electroencephalography (SEEG) to obtain spatial information inside the brain. Brings great convenience. However, at present, for the processing and analysis of cognitive SEEG data, it is usually necessary to write a large amount of code or use a variety of different methods to analyze SEEG, resulting in low analysis efficiency, and due to the use of a variety of different methods, this will lead to subsequent research work. more inconvenience.
发明内容Contents of the invention
本发明实施例提供了一种立体定向脑电图分析方法、装置、计算机设备及存储介质,旨在提高对立体定向脑电图的分析效率。Embodiments of the present invention provide a stereotactic electroencephalogram analysis method, device, computer equipment, and storage medium, aiming at improving the analysis efficiency of stereotactic electroencephalogram.
第一方面,本发明实施例提供了一种立体定向脑电图分析方法,包括:In a first aspect, an embodiment of the present invention provides a stereotaxic EEG analysis method, comprising:
获取立体定向脑电图的原始数据,并对所述原始数据进行预处理,提取得到Epoch信号;Obtaining the raw data of the stereotaxic EEG, and preprocessing the raw data, extracting the Epoch signal;
利用多窗口方法或者小波算法对Epoch信号进行时频分析,以及通过连接性分析方法对Epoch信号对应的电极进行连接性分析;Use the multi-window method or wavelet algorithm to analyze the time-frequency of the Epoch signal, and use the connectivity analysis method to analyze the connectivity of the electrodes corresponding to the Epoch signal;
结合时频分析结果和连接性分析结果,通过预先构建的大脑三维模型对立体定向脑电图的位置信息进行可视化,以获取电极所在脑区的信息。Combining the results of time-frequency analysis and connectivity analysis, the position information of stereotaxic EEG was visualized through the pre-built 3D model of the brain to obtain the information of the brain area where the electrodes were located.
第二方面,本发明实施例提供了一种立体定向脑电图分析装置,包括:In a second aspect, an embodiment of the present invention provides a stereotaxic EEG analysis device, comprising:
数据预处理单元,用于获取立体定向脑电图的原始数据,并对所述原始数据进行预处理,提取得到Epoch信号;A data preprocessing unit is used to obtain the raw data of the stereotaxic electroencephalogram, and preprocess the raw data to extract the Epoch signal;
信号分析单元,用于利用多窗口方法或者小波算法对Epoch信号进行时频分析,以及通过连接性分析方法对Epoch信号对应的电极进行连接性分析;The signal analysis unit is used to perform time-frequency analysis on the Epoch signal using a multi-window method or wavelet algorithm, and to perform connectivity analysis on electrodes corresponding to the Epoch signal through a connectivity analysis method;
第一可视化处理单元,用于结合时频分析结果和连接性分析结果,通过预先构建的大脑三维模型对立体定向脑电图的位置信息进行可视化,以获取电极所在脑区的信息。The first visualization processing unit is used to combine the time-frequency analysis results and the connectivity analysis results to visualize the position information of the stereotaxic EEG through the pre-built three-dimensional model of the brain, so as to obtain the information of the brain area where the electrodes are located.
第三方面,本发明实施例提供了一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的立体定向脑电图分析方法。In a third aspect, an embodiment of the present invention provides a computer device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. When the processor executes the computer program, Realize the stereotaxic EEG analysis method as described in the first aspect.
第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的立体定向脑电图分析方法。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the stereotaxic as described in the first aspect is realized. EEG analysis methods.
本发明实施例提供了一种立体定向脑电图分析方法、装置、计算机设备及存储介质,该方法包括:获取立体定向脑电图的原始数据,并对所述原始数据进行预处理,提取得到Epoch信号;利用多窗口方法或者小波算法对Epoch信号进行时频分析,以及通过连接性分析方法对Epoch信号对应的电极进行连接性分析;结合时频分析结果和连接性分析结果,通过预先构建的大脑三维模型对立体定向脑电图的位置信息进行可视化,以获取电极所在脑区的信息。本发明实施例通过对立体定向脑电图的原始数据进行预处理,并对预处理后提取的Epoch信号进行数据分析,即时频分析和连接性分析,同时对分析结果进行可视化展示,可以有效提高对于立体定向脑电图的分析效率,还可以对使用立体定向脑电图进行人脑认知功能的探究带来便利。An embodiment of the present invention provides a stereotactic electroencephalogram analysis method, device, computer equipment, and storage medium, the method comprising: obtaining the original data of the stereotactic electroencephalogram, and preprocessing the original data, extracting and obtaining Epoch signal; use multi-window method or wavelet algorithm to conduct time-frequency analysis on Epoch signal, and conduct connectivity analysis on electrodes corresponding to Epoch signal through connectivity analysis method; combine time-frequency analysis results and connectivity analysis results, through pre-built The three-dimensional model of the brain visualizes the location information of the stereotaxic EEG to obtain the information of the brain area where the electrodes are located. The embodiment of the present invention preprocesses the raw data of the stereotaxic EEG, and performs data analysis on the Epoch signal extracted after the preprocessing, including frequency analysis and connectivity analysis, and visually displays the analysis results at the same time, which can effectively improve the For the analysis efficiency of stereotactic EEG, it can also bring convenience to the exploration of human brain cognitive function using stereotactic EEG.
附图说明Description of drawings
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are some embodiments of the present invention. Ordinary technicians can also obtain other drawings based on these drawings on the premise of not paying creative work.
图1为本发明实施例提供的一种立体定向脑电图分析方法的流程示意图;Fig. 1 is a schematic flow chart of a stereotaxic electroencephalogram analysis method provided by an embodiment of the present invention;
图2为本发明实施例提供的一种立体定向脑电图分析方法的子流程示意图;Fig. 2 is a schematic subflow diagram of a stereotaxic EEG analysis method provided by an embodiment of the present invention;
图3为本发明实施例提供的一种立体定向脑电图分析方法的另一子流程示意图;3 is a schematic diagram of another sub-flow of a stereotaxic EEG analysis method provided by an embodiment of the present invention;
图4为本发明实施例提供的一种立体定向脑电图分析方法中大脑模板的结构示意图;4 is a schematic structural diagram of a brain template in a stereotaxic EEG analysis method provided by an embodiment of the present invention;
图5为本发明实施例提供的一种立体定向脑电图分析装置的示意性框图;FIG. 5 is a schematic block diagram of a stereotactic EEG analysis device provided by an embodiment of the present invention;
图6为本发明实施例提供的一种立体定向脑电图分析方法的子示意性框图;FIG. 6 is a sub-schematic block diagram of a stereotactic EEG analysis method provided by an embodiment of the present invention;
图7为本发明实施例提供的一种立体定向脑电图分析方法的另一子示意性框图。FIG. 7 is another sub-schematic block diagram of a stereotaxic EEG analysis method provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It should be understood that when used in this specification and the appended claims, the terms "comprising" and "comprises" indicate the presence of described features, integers, steps, operations, elements and/or components, but do not exclude one or Presence or addition of multiple other features, integers, steps, operations, elements, components and/or collections thereof.
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。It should also be understood that the terminology used in the description of the present invention is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used in this specification and the appended claims, the singular forms "a", "an" and "the" are intended to include plural referents unless the context clearly dictates otherwise.
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be further understood that the term "and/or" used in the description of the present invention and the appended claims refers to any combination and all possible combinations of one or more of the associated listed items, and includes these combinations .
下面请参见图1,图1为本发明实施例提供的一种立体定向脑电图分析方法的流程示意图,具体包括:步骤S101~S103。Please refer to FIG. 1 below. FIG. 1 is a schematic flowchart of a stereotaxic EEG analysis method provided by an embodiment of the present invention, which specifically includes steps S101 to S103.
S101、获取立体定向脑电图的原始数据,并对所述原始数据进行预处理,提取得到Epoch信号;S101. Obtain the raw data of the stereotaxic EEG, and preprocess the raw data to extract the Epoch signal;
S102、利用多窗口方法或者小波算法对Epoch信号进行时频分析,以及通过连接性分析方法对Epoch信号对应的电极进行连接性分析;S102. Perform time-frequency analysis on the Epoch signal by using a multi-window method or wavelet algorithm, and perform connectivity analysis on electrodes corresponding to the Epoch signal by a connectivity analysis method;
S103、结合时频分析结果和连接性分析结果,通过预先构建的大脑三维模型对立体定向脑电图的位置信息进行可视化,以获取电极所在脑区的信息。S103. Combining the time-frequency analysis results and the connectivity analysis results, visualize the position information of the stereotaxic EEG through the pre-built three-dimensional model of the brain, so as to obtain the information of the brain area where the electrodes are located.
本实施例中,首先对获取的立体定向脑电图(SEEG)的原始数据进行预处理,以提取得到对应的Epoch信号(即时间窗口信号),然后对所述Epoch信号进行时频分析和连接性分析,以探究所述Epoch信号中各个频率成分的功率随时间的变化过程,并确定能量较强的频段,以及获得各个电极之间的相关/相干性,从而获得各个脑区之间的相关/相干性。同时,利用大脑三维模型对SEEG的位置信息进行可视化,以获取电极所在脑区的信息。In the present embodiment, at first the raw data of stereotaxic electroencephalogram (SEEG) that obtains is preprocessed, to extract and obtain corresponding Epoch signal (being time window signal), then carry out time-frequency analysis and connection to described Epoch signal Sexual analysis to explore the power of each frequency component in the Epoch signal over time, and determine the frequency band with stronger energy, and obtain the correlation/coherence between the electrodes, so as to obtain the correlation between the various brain regions / coherence. At the same time, the three-dimensional model of the brain is used to visualize the position information of SEEG to obtain the information of the brain area where the electrodes are located.
本实施例通过对SEEG原始数据进行预处理,并对预处理后提取的Epoch信号进行数据分析,即时频分析和连接性分析,同时对分析结果进行可视化展示,可以有效提高对于立体定向脑电图的分析效率,还可以对使用立体定向脑电图进行人脑认知功能的探究带来便利。This embodiment preprocesses the SEEG raw data, and performs data analysis on the Epoch signals extracted after preprocessing, including frequency analysis and connectivity analysis, and visually displays the analysis results at the same time, which can effectively improve the stereotactic electroencephalogram. It can also bring convenience to the exploration of human brain cognitive function using stereotaxic EEG.
在一实施例中,如图2所示,所述步骤S101包括:步骤S201~S206。In an embodiment, as shown in FIG. 2 , the step S101 includes: steps S201-S206.
S201、采用可视化功能函数对所述原始数据进行可视化处理;S201. Visualize the raw data by using a visualization function;
本步骤中,调用MNE库的SEEG数据显示功能,将获取用户当前所选定的SEEG原始数据,作为参数输入MNE库中,利用其中的可视化功能函数即可得到可视化显示的效果。In this step, the SEEG data display function of the MNE library is invoked to obtain the SEEG raw data currently selected by the user, which is input into the MNE library as a parameter, and the visual display effect can be obtained by using the visualization function therein.
S202、获取用户的目标频段,按照所述目标频段的N倍对可视化处理后的原始数据进行重采样处理;S202. Obtain the target frequency band of the user, and perform resampling processing on the visualized original data according to N times of the target frequency band;
本步骤中,由于临床上获取的SEEG信号通道采样率较高,常见的采样率可达到2000Hz,导致数据体积大,占用较大的存储空间,且会导致后续的数据分析计算量大、分析时间长。而本步骤根据奈奎斯特采样定理,只需保证数据采样率大于目标频段的N倍即可,例如大于目标频段最大值的两倍即可,如此重采样处理后,可大大减小数据量,降低计算成本。例如获取用户设置的新采样率,如1000Hz,若原始信号采样率为2000Hz,则以2为间隔对原始信号进行采样。In this step, due to the high sampling rate of the clinically obtained SEEG signal channel, the common sampling rate can reach 2000 Hz, resulting in large data volume, large storage space, and large amount of calculation and analysis time for subsequent data analysis. long. In this step, according to the Nyquist sampling theorem, it is only necessary to ensure that the data sampling rate is greater than N times the target frequency band, for example, greater than twice the maximum value of the target frequency band. After such resampling, the amount of data can be greatly reduced , reducing the computational cost. For example, to obtain a new sampling rate set by the user, such as 1000 Hz, if the sampling rate of the original signal is 2000 Hz, the original signal is sampled at intervals of 2.
S203、采用FIR滤波器或者IIR滤波器对重采样处理后的原始数据进行滤波处理;S203. Use an FIR filter or an IIR filter to filter the resampled original data;
由于信号采集过程中会受到噪声影响,如工频噪声,因此需要对数据进行滤波处理。对于SEEG信号,由于其较高的信噪比,通常只需滤除工频干扰,再提取感兴趣频段(即所述目标频段)的信号即可。本步骤针对信号滤波分别提供了FIR和IIR两种滤波器。其中,FIR滤波器直接调用scipy库中signal模块的firwin函数,将SEEG原始数据与截止频率作为参数输入该函数便可对进行FIR滤波,窗口使用默认的汉明窗,滤波器长度为最短过渡频带带宽的6.6倍,正反双向滤波设计使滤波器延迟得到补偿,实现信号的零相位滤波;IIR滤波器默认为四阶巴特沃斯滤波器。FIR滤波器具体的工作流程为:获取截止频率;通过截止频率获得过渡频带带宽f;设置傅里叶变换长度为6.6f;对原始数据进行滤波处理。Since the signal acquisition process will be affected by noise, such as power frequency noise, it is necessary to filter the data. For the SEEG signal, due to its high signal-to-noise ratio, it is usually only necessary to filter out the power frequency interference, and then extract the signal of the frequency band of interest (ie, the target frequency band). In this step, FIR and IIR filters are respectively provided for signal filtering. Among them, the FIR filter directly calls the firwin function of the signal module in the scipy library, and the SEEG raw data and cutoff frequency are input into this function as parameters to perform FIR filtering. The window uses the default Hamming window, and the filter length is the shortest transition frequency band. The bandwidth is 6.6 times, and the positive and negative two-way filter design makes the filter delay compensated to realize the zero-phase filtering of the signal; the default IIR filter is the fourth-order Butterworth filter. The specific workflow of the FIR filter is as follows: obtain the cutoff frequency; obtain the transition frequency band bandwidth f through the cutoff frequency; set the Fourier transform length to 6.6f; filter the original data.
S204、获取用户在原始数据中标记的目标通道名,并在滤波处理后的原始数据中清除所述目标通道名对应的通道信号;S204. Obtain the target channel name marked by the user in the raw data, and clear the channel signal corresponding to the target channel name in the filtered raw data;
本步骤旨在去除坏导,即去除信号质量较差的通道。具体而言,首先获取用户标记的目标通道名,同时可以将目标通道名存储于一个列表中,当需要进行去除坏导处理时,从该列表中获取对应的目标通道名,随后清除有关目标通道名的信号。同时,重新构成一个新的Raw类型的原始数据。This step is aimed at removing bad leads, that is, channels with poor signal quality. Specifically, the target channel name marked by the user is obtained first, and the target channel name can be stored in a list at the same time. When it is necessary to remove the bad guide, the corresponding target channel name is obtained from the list, and then the relevant target channel is cleared. name signal. At the same time, the original data of a new Raw type is reconstructed.
S205、利用重参考算法对清除通道信号的原始数据进行重参考处理,得到目标数据;其中,所述重参考算法包括CAR算法、GWR算法、ESR算法、Bipolar算法、Monopolar算法和Laplacian算法;S205. Use a re-reference algorithm to perform re-reference processing on the original data of the clear channel signal to obtain target data; wherein, the re-reference algorithm includes a CAR algorithm, a GWR algorithm, an ESR algorithm, a Bipolar algorithm, a Monopolar algorithm, and a Laplacian algorithm;
对信号进行重参考可以降低与参考电极的相关性,突出差异,避免因通道之间的强相关性导致与任务相关的信号有效成分被湮没。本部中提供了六种重参考算法:CAR、GWR、ESR、Bipolar、Monopolar和Laplacian。具体而言:Re-referencing the signal can reduce the correlation with the reference electrode, highlight the difference, and avoid the effective components of the task-related signal being obliterated due to the strong correlation between channels. Six re-referencing algorithms are provided in this section: CAR, GWR, ESR, Bipolar, Monopolar, and Laplacian. in particular:
CAR算法是对所有通道取平均做参考;The CAR algorithm is to take the average of all channels as a reference;
GWR算法需要提前导入电极MNI坐标信息(以.txt文件为例),通过调用Visbrain对电极进行分区的方法模块,区分电极的灰白质信息,对灰质和白质电极分别取所有灰质信号均值和白质均值为参考,保存计算后的重参考信号;The GWR algorithm needs to import the MNI coordinate information of the electrode in advance (take the .txt file as an example). By calling the method module of Visbrain to partition the electrode, distinguish the gray and white matter information of the electrode, and take the mean value of all gray matter signals and the mean value of white matter for the gray matter and white matter electrodes respectively. As a reference, save the calculated re-reference signal;
ESR算法以同根电极针上的所有信号均值为参考。在SEEG数据中,同根电极针上的电极通常以相同的字母作为电极名称前缀,以此可按电极针划分信号,并实现重参考;The ESR algorithm takes the average of all signals on the same electrode needle as a reference. In SEEG data, electrodes on the same electrode needle are usually prefixed with the same letter as the electrode name, so that the signal can be divided according to the electrode needle, and re-referencing can be realized;
Bipolar算法以同根电极针的上一个电位的电极信号为参考作差分;The Bipolar algorithm uses the electrode signal of the previous potential of the same electrode needle as a reference to make a difference;
Monopolar算法以两个白质电极信号的均值为参考,参考电极可自行选定;The Monopolar algorithm takes the average of the two white matter electrode signals as a reference, and the reference electrode can be selected by yourself;
Laplacian算法以同根电极针上的前后两个电极的均值为参考作差分。The Laplacian algorithm uses the average value of the front and back electrodes on the same electrode needle as a reference to make a difference.
S206、通过预先生成的事件码对所述目标数据提取Epoch信号。S206. Extract an Epoch signal from the target data by using the pre-generated event code.
认知实验中的任务态SEEG通常涉及事件触发。在做认知实验过程中,设备(如笔记本)会根据实验程序在刺激产生时自动进行打码标注,即生成所述事件码,后期分析数据时需要根据该事件码提取出相应的数据段构成Epoch信号,从而针对该刺激事件所在时间段内的Epoch信号进行分析。Task-state SEEG in cognitive experiments often involves event triggering. During the cognitive experiment, the device (such as a notebook) will automatically mark the stimulus when the stimulus is generated according to the experimental program, that is, generate the event code. When analyzing the data later, it is necessary to extract the corresponding data segment composition according to the event code. Epoch signal, so as to analyze the Epoch signal within the time period of the stimulus event.
本实施例通过对原始数据依次进行可视化处理、重采样处理、滤波处理和重参考出路,达到对原始数据进行信号清洗与提取的目的。同时,本实施例支持的数据格式与有EDF、SET与FIF等。In this embodiment, the purpose of performing signal cleaning and extraction on the original data is achieved by sequentially performing visualization processing, re-sampling processing, filtering processing, and re-referencing outlets on the original data. Meanwhile, the data formats supported by this embodiment include EDF, SET, and FIF.
在一实施例中,所述步骤S206包括:In one embodiment, the step S206 includes:
对预先生成的事件码设置对应的时间信息;Set the corresponding time information for the pre-generated event code;
结合所述时间信息对所述目标数据截取对应的目标数据段;Intercepting a corresponding target data segment from the target data in combination with the time information;
基于立体定向脑电图信号采集过程中被试的表现,设置基线时间段;Based on the performance of the subjects during the acquisition of stereotaxic EEG signals, the baseline time period is set;
以所述基线时间段内信号幅值的均值为基准,将所述目标数据段减去所述基准后的信号作为所述Epoch信号。Taking the mean value of the signal amplitude in the baseline time period as a reference, the signal obtained by subtracting the reference from the target data segment is used as the Epoch signal.
认知实验中的任务态SEEG通常涉及事件触发。在做认知实验过程中,设备(如笔记本)会根据实验程序在刺激产生时自动进行打码标注,即生成所述事件码,后期分析数据时需要根据该事件码提取出相应的数据段构成Epoch信号,从而针对该刺激事件所在时间段内的Epoch信号进行分析。Task-state SEEG in cognitive experiments often involves event triggering. During the cognitive experiment, the device (such as a notebook) will automatically mark the stimulus when the stimulus is generated according to the experimental program, that is, generate the event code. When analyzing the data later, it is necessary to extract the corresponding data segment composition according to the event code. Epoch signal, so as to analyze the Epoch signal within the time period of the stimulus event.
本实施例在提取所述Epoch信号时,首先设置设置相对于事件码的时间窗口,如(-0.5,2),并获取该时间信息,然后根据时间信息截取对应的目标数据段,例如截取事件码前0.5秒到后两秒的目标数据段。接着,由于SEEG信号采集过程中会因为被试呼吸、四肢的运动以及硬件原因会产生一定的基线漂移,以此设定基线时间段,并以该基线时间段内的信号幅值的均值作为基准,将截取的目标数据段内的信号减去该基准,降低信号干扰,并得到所述Epoch信号。In this embodiment, when extracting the Epoch signal, first set the time window relative to the event code, such as (-0.5, 2), and obtain the time information, and then intercept the corresponding target data segment according to the time information, such as intercepting the event The target data segment from 0.5 seconds before the code to the next two seconds. Then, because the SEEG signal acquisition process will cause a certain baseline drift due to the subject's breathing, limb movement and hardware reasons, the baseline time period is set, and the average value of the signal amplitude within the baseline time period is used as the benchmark , subtracting the reference from the intercepted signal in the target data segment, reducing signal interference, and obtaining the Epoch signal.
在一实施例中,如图3所示,所述步骤S102包括:步骤S301~S303。In an embodiment, as shown in FIG. 3 , the step S102 includes: steps S301-S303.
S301、利用事件相关电位去除所述Epoch信号中的噪声、突出或者刺激信号;S301. Using an event-related potential to remove noise, highlight or stimulation signal in the Epoch signal;
S302、通过Welch小波方法或者多窗口方法计算所述Epoch信号中的每一通道的功率谱密度;S302. Calculate the power spectral density of each channel in the Epoch signal by Welch wavelet method or multi-window method;
S303、将所有通道的功率谱密度进行相加平均处理,获得所述Epoch信号的总功率谱密度。S303. Perform summing and averaging processing on the power spectral densities of all channels to obtain the total power spectral density of the Epoch signal.
时频分析是SEEG信号常见的分析方法,本实施例提供了事件相关电位(Event-Related Potential,ERP)、ERP Image、时频响应、功率谱密度等功能。Time-frequency analysis is a common analysis method for SEEG signals. This embodiment provides functions such as Event-Related Potential (ERP), ERP Image, time-frequency response, and power spectral density.
事件相关电位是脑电图分析中最常见的方法,该方法将同一事件码的所有数据段进行叠加平均,达到去除噪声、突出与实验刺激相关的信号,从而探究该刺激对大脑产生了何种影响。在计算Epoch信号的功率谱密度时,采用Welch小波和Multitaper方法进行计算,并将所有Epoch所有通道的功率谱密度进行相加平均,获得所有信号的总功率谱密度。Event-related potential is the most common method in EEG analysis. This method superimposes and averages all data segments of the same event code to remove noise and highlight signals related to experimental stimuli, so as to explore what kind of stimulation the stimulus has on the brain. Influence. When calculating the power spectral density of Epoch signals, the Welch wavelet and Multitaper methods are used for calculation, and the power spectral densities of all channels of all Epochs are added and averaged to obtain the total power spectral density of all signals.
时频响应可探究各个频率成分的功率随时间的变化过程,可以帮助查看哪一或者哪些频段的能量较强。计算时频响应时同时可计算试次间相干性,是Epoch信号各个数据段之间相位一致性的度量标准。本实施例使用MNE库的Multitaper、Morlet小波或者Stockwell方法进行时频响应的计算,具体可依据实际情况决定采用何种方法进行计算。The time-frequency response can explore the power variation process of each frequency component with time, and can help to see which or which frequency bands have stronger energy. When calculating the time-frequency response, the inter-trial coherence can be calculated at the same time, which is a measure of the phase consistency between each data segment of the Epoch signal. In this embodiment, the Multitaper, Morlet wavelet or Stockwell method of the MNE library is used to calculate the time-frequency response, which method can be determined according to the actual situation.
在一实施例中,所述步骤S102还包括:In an embodiment, the step S102 further includes:
通过连接性分析方法计算所述Epoch信号的频域信息;Calculate the frequency domain information of the Epoch signal by a connectivity analysis method;
基于所述频域信息,将用户选取的目标频段对应的频域信息的所有连接性进行平均,得到目标频段的平均连接强度;Based on the frequency domain information, averaging all the connectivity of the frequency domain information corresponding to the target frequency band selected by the user to obtain the average connection strength of the target frequency band;
以及基于所述频域信息,利用短时傅里叶变换进行滑窗处理,得到所述Epoch信号各个时间点的连接性结果;或者对所述Epoch信号进行傅里叶变换,得到所述Epoch信号对应的整个时间范围内的平均连接性分析结果。And based on the frequency domain information, utilize short-time Fourier transform to perform sliding window processing to obtain the connectivity results of each time point of the Epoch signal; or perform Fourier transform to the Epoch signal to obtain the Epoch signal Corresponding average connectivity analysis results over the entire time range.
本实施例中,对于频段的处理可分为频段平均或者不平均。频段平均是指将用户所选频段范围(即所述目标频段)的所有连接性进行平均,得到一个结果,表示通道x与通道y在该频段范围内的平均连接强度。对于时间上的处理可分为有滑窗与无滑窗。若需要观察连接性随时间的变化趋势,则使用短时傅里叶变换对Epoch信号进行滑窗处理,计算各个时间点的连接性结果。反之则对整个Epoch信号进行傅里叶变换,得到整个时间范围内的平均连接性分析结果。In this embodiment, the processing for frequency bands may be divided into frequency band averaging or non-averaging. Frequency band averaging refers to averaging all connectivity in the frequency range selected by the user (ie, the target frequency band) to obtain a result representing the average connection strength between channel x and channel y within the frequency range. The time processing can be divided into sliding window and non-sliding window. If it is necessary to observe the change trend of connectivity over time, the short-time Fourier transform is used to perform sliding window processing on the Epoch signal, and the connectivity results at each time point are calculated. Otherwise, Fourier transform is performed on the entire Epoch signal to obtain the average connectivity analysis results in the entire time range.
SEEG信号深入脑区内部,可以获得深部脑区的信息,对SEEG各个电极进行连接性分析可以获得各个电极之间的相关/相干性,从而获得各个脑区之间的相关/相干性。本实施例使用MNE库与spectral_connectivity库计算各个电极之间的连接性。并提供了七种连接性分析方法:Coherence、Imaginary Coherence、Phase-Lag Index、Weighted PLI、Unbiased Squared PLI、Unbiased Squared WPLI和Phase Log Value,每种方法可采用Multitaper或Morlet进行频域信息计算。各个方法的计算公式如下:The SEEG signal goes deep into the brain area to obtain the information of the deep brain area, and the connection analysis of each electrode of SEEG can obtain the correlation/coherence between each electrode, so as to obtain the correlation/coherence between each brain area. In this embodiment, the MNE library and the spectral_connectivity library are used to calculate the connectivity between electrodes. And provides seven connectivity analysis methods: Coherence, Imaginary Coherence, Phase-Lag Index, Weighted PLI, Unbiased Squared PLI, Unbiased Squared WPLI and Phase Log Value, each method can use Multitaper or Morlet for frequency domain information calculation. The calculation formula of each method is as follows:
Coherence:Coherence:
Imaginary Coherence:Imaginary Coherence:
Phase-Lag Index:Phase-Lag Index:
C=|E(sign(Im(Sxy)))|C=|E(sign(Im(S xy )))|
Weighted Phase-Lag Index:Weighted Phase-Lag Index:
Unbiased Squared PLI:Unbiased Squared PLI:
Unbiased Squared WPLI: Unbiased Squared WPLI:
Phase Log Value:Phase Log Value:
C=|E(Sxy/|Sxy|)|C=|E(S xy /|S xy |)|
其中,C表示频域信息,S表示通道x和通道y的互谱密度,E表示求期望。通过上述连接性分析方法,对Epoch信号中每一个数据段的所选通道计算连接性,最后将所有数据段的结果进行平均,获得最终结果。Among them, C represents frequency domain information, S represents the cross-spectral density of channel x and channel y, and E represents expectation. Through the above-mentioned connectivity analysis method, the connectivity is calculated for the selected channels of each data segment in the Epoch signal, and finally the results of all the data segments are averaged to obtain the final result.
在一实施例中,所述步骤S103包括:In one embodiment, the step S103 includes:
创建一用于显示大脑三维模型的画布;Create a canvas for displaying a 3D model of the brain;
当获取到大脑模板的数据文件时,根据所述数据文件构建大脑模板对象,并在所述画布上显示构建结果;When the data file of the brain template is obtained, the brain template object is constructed according to the data file, and the construction result is displayed on the canvas;
获取被试的电极坐标文件,根据所述电极坐标文件对电极进行分组,以获取每一电极所属的电极轴信息,并根据电机轴信息对各电极进行颜色渲染;Obtaining the electrode coordinate file of the subject, grouping the electrodes according to the electrode coordinate file to obtain the electrode axis information to which each electrode belongs, and performing color rendering on each electrode according to the motor axis information;
获取用户选择的感兴趣脑区以及感兴趣脑区对应的坐标信息,并根据坐标信息对感兴趣脑区进行颜色渲染。Obtain the brain region of interest selected by the user and the coordinate information corresponding to the brain region of interest, and perform color rendering on the brain region of interest according to the coordinate information.
本实施例中,结合图4,考虑到不同的研究内容可能需要不同的大脑模板进行显示,因此本实施例提供了B1、B2、B3、inflated和white五种常见的大脑模板。首先自动创建一个VisBrainCanvas画布,使该画布能够显示各种三维模型,然后获取当前选定的大脑模板名称,并读取对应的数据文件,构建BrainObj对象,并添加至VisBrainCanvas进行显示。在获取被试的电极坐标文件(例如.txt格式)后,根据电极名称对电极进行分组,并获取各个电极所属的电极轴信息,随后基于电机轴信息使用Matplotlib提供的颜色进行渲染,从而达到对电极进行区分的作用。同时,还可以获取用户选择的ROI脑区(即所述感兴趣脑区)后,从nii.gz文件中读取对应脑区所对应的坐标信息,并将获取到的坐标信息对应的数据点采用同一颜色进行渲染从而显示该脑区。当然,如果存在多个感兴趣脑区,则可以使用随机采样的方法从Matplotlib库中提供的颜色方案中随机抽取不同的颜色进行渲染,从而达到区分脑区的效果。In this embodiment, referring to FIG. 4 , considering that different research contents may require different brain templates for display, this embodiment provides five common brain templates of B1, B2, B3, inflated and white. First, a VisBrainCanvas canvas is automatically created so that the canvas can display various 3D models, then the name of the currently selected brain template is obtained, and the corresponding data file is read, and a BrainObj object is constructed and added to the VisBrainCanvas for display. After obtaining the electrode coordinate file (such as .txt format) of the subject, the electrodes are grouped according to the electrode name, and the electrode axis information to which each electrode belongs is obtained, and then the color provided by Matplotlib is used for rendering based on the motor axis information, so as to achieve The electrodes perform the distinguishing function. At the same time, after obtaining the ROI brain region selected by the user (that is, the brain region of interest), the coordinate information corresponding to the corresponding brain region can be read from the nii.gz file, and the data points corresponding to the obtained coordinate information Rendered in the same color to show this brain region. Of course, if there are multiple brain regions of interest, random sampling can be used to randomly extract different colors from the color scheme provided in the Matplotlib library for rendering, so as to achieve the effect of distinguishing brain regions.
SEEG电极深入被试大脑内部,其空间位置信息是SEEG技术用于认知神经科学研究的最大优势。为了方便用户对SEEG位置信息进行查看。本发明实施例设计了大脑三维模型显示功能,调用Visbrain的VisBrainCanvas、BrainObj、SourceObj和RoiObj模块实现大脑模板、SEEG电极可视化以及ROI可视化。SEEG electrodes penetrate deep into the brain of the subject, and its spatial position information is the biggest advantage of SEEG technology for cognitive neuroscience research. In order to facilitate users to view SEEG location information. The embodiment of the present invention designs the display function of the three-dimensional model of the brain, and calls the VisBrainCanvas, BrainObj, SourceObj and RoiObj modules of Visbrain to realize the brain template, SEEG electrode visualization and ROI visualization.
在一实施例中,所述步骤S103还包括:In an embodiment, the step S103 also includes:
利用预设的分割模板对大脑模板进行脑区划分;Use the preset segmentation template to divide the brain template into brain regions;
当获取每一电极所属的电极轴信息和/或感兴趣脑区对应的坐标信息时,基于划分的脑区进行颜色渲染。When acquiring the electrode axis information to which each electrode belongs and/or the coordinate information corresponding to the brain region of interest, color rendering is performed based on the divided brain regions.
本实施例通过预先设置的分割模板对大脑模板划分脑区,当对各电极进行颜色渲染或者对感兴趣脑区进行颜色渲染时,便可以依据划分的脑区进行相应渲染,如此可以提高渲染效率以及渲染的准确度,避免在渲染过程中对不相干的脑区不分造成影响。In this embodiment, the brain template is divided into brain regions through the preset segmentation template. When color rendering is performed on each electrode or the brain region of interest, corresponding rendering can be performed according to the divided brain regions, which can improve rendering efficiency. As well as the accuracy of rendering, avoid indiscriminate impact on irrelevant brain regions during rendering.
本实施例提供了Talairach、AAL和Brodmann三种分割模板,每种分割模板对大脑进行了不同的脑区划分。其中,Talairach分割模板由JeanTalairach开发,是最早使用的3D大脑模板,该模板是第一个定义了以AC-PC线与中线矢状平面的交界点为空间坐标原点,左右方向为X轴,前后方向为Y轴,上下方向为Z轴的空间坐标系。AAL全称是AnatomicalAutomatic Labeling,该分区是由Montreal Neurological Institute(MNI)机构提供的,AAL模板一共有116个区域,其中90个属于大脑,剩余26个属于小脑结构。Brodmann分割模板是一个根据细胞结构将大脑皮层划分为一系列解剖区域的系统,神经解剖学中所谓细胞结构,是指在染色的脑组织中观察到的神经元的组织方式。Brodmann分区包括每个半球的52个区域,其中一些区域今天已经被细分,例如23区被分为23a和23b区等。当导入电极的MNI坐标后,便可通过比对分割模板各个脑区的坐标信息与电极坐标信息,获取电极所处脑区的位置。This embodiment provides three segmentation templates of Talairach, AAL and Brodmann, each of which divides the brain into different brain regions. Among them, the Talairach segmentation template was developed by Jean Talairach and is the earliest 3D brain template used. This template is the first to define the origin of space coordinates at the junction of the AC-PC line and the midline sagittal plane, the left and right directions are the X axis, and the front and back The direction is the Y axis, and the up and down direction is the space coordinate system of the Z axis. The full name of AAL is AnatomicalAutomatic Labeling, which is provided by the Montreal Neurological Institute (MNI). The AAL template has a total of 116 regions, 90 of which belong to the brain, and the remaining 26 belong to the cerebellum. The Brodmann segmentation template is a system that divides the cerebral cortex into a series of anatomical regions based on cellularity, which in neuroanatomy refers to the organization of neurons as observed in stained brain tissue. The Brodmann division consists of 52 regions in each hemisphere, some of which have been subdivided today, e.g. region 23 is divided into regions 23a and 23b, etc. After the MNI coordinates of the electrodes are imported, the position of the brain region where the electrode is located can be obtained by comparing the coordinate information of each brain region of the segmentation template with the electrode coordinate information.
图5为本发明实施例提供的一种立体定向脑电图分析装置500的示意性框图,该装置500包括:FIG. 5 is a schematic block diagram of a stereotaxic EEG analysis device 500 provided by an embodiment of the present invention. The device 500 includes:
数据预处理单元501,用于获取立体定向脑电图的原始数据,并对所述原始数据进行预处理,提取得到Epoch信号;The data preprocessing unit 501 is used to obtain the raw data of the stereotactic EEG, and preprocess the raw data to extract the Epoch signal;
信号分析单元502,用于利用多窗口方法或者小波算法对Epoch信号进行时频分析,以及通过连接性分析方法对Epoch信号对应的电极进行连接性分析;Signal analysis unit 502, for utilizing multi-window method or wavelet algorithm to carry out time-frequency analysis to Epoch signal, and carry out connectivity analysis to the electrode corresponding to Epoch signal by connectivity analysis method;
第一可视化处理单元503,用于结合时频分析结果和连接性分析结果,通过预先构建的大脑三维模型对立体定向脑电图的位置信息进行可视化,以获取电极所在脑区的信息。The first visualization processing unit 503 is configured to combine the results of the time-frequency analysis and the results of the connectivity analysis to visualize the position information of the stereotaxic EEG through the pre-built three-dimensional model of the brain, so as to obtain the information of the brain region where the electrodes are located.
在一实施例中,如图6所示,所述数据预处理单元501包括:In one embodiment, as shown in FIG. 6, the data preprocessing unit 501 includes:
第二可视化处理单元601,用于采用可视化功能函数对所述原始数据进行可视化处理;The second visualization processing unit 601 is configured to perform visualization processing on the raw data by using a visualization function;
重采样处理单元602,用于获取用户的目标频段,按照所述目标频段的N倍对可视化处理后的原始数据进行重采样处理;A resampling processing unit 602, configured to acquire the user's target frequency band, and perform resampling processing on the visualized original data according to N times the target frequency band;
滤波处理单元603,用于采用FIR滤波器或者IIR滤波器对重采样处理后的原始数据进行滤波处理;A filter processing unit 603, configured to perform filter processing on the resampled original data by using an FIR filter or an IIR filter;
去除坏导单元604,用于获取用户在原始数据中标记的目标通道名,并在滤波处理后的原始数据中清除所述目标通道名对应的通道信号;Remove the bad guide unit 604, for obtaining the target channel name marked by the user in the raw data, and clear the channel signal corresponding to the target channel name in the filtered raw data;
重参考处理单元605,用于利用重参考算法对清除通道信号的原始数据进行重参考处理,得到目标数据;其中,所述重参考算法包括CAR算法、GWR算法、ESR算法、Bipolar算法、Monopolar算法和Laplacian算法;The re-reference processing unit 605 is used to perform re-reference processing on the original data of the clear channel signal by using a re-reference algorithm to obtain target data; wherein, the re-reference algorithm includes CAR algorithm, GWR algorithm, ESR algorithm, Bipolar algorithm, Monopolar algorithm and the Laplacian algorithm;
信号提取单元606,用于通过预先生成的事件码对所述目标数据提取Epoch信号。A signal extracting unit 606, configured to extract an Epoch signal from the target data through a pre-generated event code.
在一实施例中,所述信号提取单元606包括:In one embodiment, the signal extraction unit 606 includes:
时间信息设置单元,用于对预先生成的事件码设置对应的时间信息;A time information setting unit, configured to set corresponding time information for pre-generated event codes;
数据段截取单元,用于结合所述时间信息对所述目标数据截取对应的目标数据段;A data segment interception unit, configured to intercept a corresponding target data segment of the target data in combination with the time information;
时间段设置单元,用于基于立体定向脑电图信号采集过程中被试的表现,设置基线时间段;The time period setting unit is used to set the baseline time period based on the performance of the subject during the stereotaxic EEG signal acquisition process;
数据段处理单元,用于以所述基线时间段内信号幅值的均值为基准,将所述目标数据段减去所述基准后的信号作为所述Epoch信号。The data segment processing unit is configured to use the mean value of the signal amplitude in the baseline time period as a reference, and use the signal obtained by subtracting the reference from the target data segment as the Epoch signal.
在一实施例中,如图7所示,所述信号分析单元502包括:In one embodiment, as shown in FIG. 7, the signal analysis unit 502 includes:
信号处理单元701,用于利用事件相关电位去除所述Epoch信号中的噪声、突出或者刺激信号;A signal processing unit 701, configured to use an event-related potential to remove noise, highlights or stimulation signals in the Epoch signal;
功率谱密度计算单元702,用于通过Welch小波方法或者多窗口方法计算所述Epoch信号中的每一通道的功率谱密度;A power spectral density calculation unit 702, configured to calculate the power spectral density of each channel in the Epoch signal by a Welch wavelet method or a multi-window method;
相加平均单元703,用于将所有通道的功率谱密度进行相加平均处理,获得所述Epoch信号的总功率谱密度。The adding and averaging unit 703 is configured to add and average the power spectral densities of all channels to obtain the total power spectral density of the Epoch signal.
在一实施例中,所述信号分析单元502还包括:In an embodiment, the signal analysis unit 502 further includes:
频域信息计算单元,用于通过连接性分析方法计算所述Epoch信号的频域信息;A frequency domain information calculation unit, used to calculate the frequency domain information of the Epoch signal by a connectivity analysis method;
连接性平均单元,用于基于所述频域信息,将用户选取的目标频段对应的频域信息的所有连接性进行平均,得到目标频段的平均连接强度;A connectivity averaging unit, configured to average all the connectivity of the frequency domain information corresponding to the target frequency band selected by the user based on the frequency domain information, to obtain the average connection strength of the target frequency band;
傅里叶变换单元,用于以及基于所述频域信息,利用短时傅里叶变换进行滑窗处理,得到所述Epoch信号各个时间点的连接性结果;或者对所述Epoch信号进行傅里叶变换,得到所述Epoch信号对应的整个时间范围内的平均连接性分析结果。The Fourier transform unit is used for and based on the frequency domain information, utilizes the short-time Fourier transform to perform sliding window processing, and obtains the connectivity results of each time point of the Epoch signal; or performs Fourier on the Epoch signal leaf transformation, to obtain the average connectivity analysis result in the whole time range corresponding to the Epoch signal.
在一实施例中,所述第一可视化处理单元503包括:In an embodiment, the first visualization processing unit 503 includes:
画布创建单元,用于创建一用于显示大脑三维模型的画布;a canvas creating unit, configured to create a canvas for displaying a three-dimensional model of the brain;
对象构建单元,用于当获取到大脑模板的数据文件时,根据所述数据文件构建大脑模板对象,并在所述画布上显示构建结果;The object construction unit is used to construct the brain template object according to the data file when the data file of the brain template is obtained, and display the construction result on the canvas;
第一渲染单元,用于获取被试的电极坐标文件,根据所述电极坐标文件对电极进行分组,以获取每一电极所属的电极轴信息,并根据电机轴信息对各电极进行颜色渲染;The first rendering unit is configured to obtain the electrode coordinate file of the subject, group the electrodes according to the electrode coordinate file to obtain the electrode axis information to which each electrode belongs, and perform color rendering on each electrode according to the motor axis information;
第二渲染单元,用于获取用户选择的感兴趣脑区以及感兴趣脑区对应的坐标信息,并根据坐标信息对感兴趣脑区进行颜色渲染。The second rendering unit is configured to acquire the brain region of interest selected by the user and coordinate information corresponding to the brain region of interest, and perform color rendering on the brain region of interest according to the coordinate information.
在一实施例中,所述第一可视化处理单元503还包括:In an embodiment, the first visualization processing unit 503 further includes:
脑区划分单元,用于利用预设的分割模板对大脑模板进行脑区划分;A brain region division unit, configured to divide the brain template into brain regions using a preset segmentation template;
第三渲染单元,用于当获取每一电极所属的电极轴信息和/或感兴趣脑区对应的坐标信息时,基于划分的脑区进行颜色渲染。The third rendering unit is configured to perform color rendering based on the divided brain regions when obtaining the electrode axis information to which each electrode belongs and/or the coordinate information corresponding to the brain region of interest.
由于装置部分的实施例与方法部分的实施例相互对应,因此装置部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。Since the embodiment of the device part corresponds to the embodiment of the method part, please refer to the description of the embodiment of the method part for the embodiment of the device part, and details will not be repeated here.
本发明实施例还提供了一种计算机可读存储介质,其上存有计算机程序,该计算机程序被执行时可以实现上述实施例所提供的步骤。该存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。An embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed, the steps provided in the above-mentioned embodiments can be realized. The storage medium may include various media capable of storing program codes such as a U disk, a removable hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk.
本发明实施例还提供了一种计算机设备,可以包括存储器和处理器,存储器中存有计算机程序,处理器调用存储器中的计算机程序时,可以实现上述实施例所提供的步骤。当然计算机设备还可以包括各种网络接口,电源等组件。An embodiment of the present invention also provides a computer device, which may include a memory and a processor. A computer program is stored in the memory. When the processor invokes the computer program in the memory, the steps provided in the above embodiments can be implemented. Of course, the computer equipment may also include components such as various network interfaces and power supplies.
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。Each embodiment in the description is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part. It should be pointed out that those skilled in the art can make some improvements and modifications to the application without departing from the principles of the application, and these improvements and modifications also fall within the protection scope of the claims of the application.
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的状况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should also be noted that in this specification, relative terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations There is no such actual relationship or order between the operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110672287.2A CN113397559B (en) | 2021-06-17 | 2021-06-17 | Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110672287.2A CN113397559B (en) | 2021-06-17 | 2021-06-17 | Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113397559A CN113397559A (en) | 2021-09-17 |
CN113397559B true CN113397559B (en) | 2023-08-18 |
Family
ID=77684743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110672287.2A Active CN113397559B (en) | 2021-06-17 | 2021-06-17 | Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113397559B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113925517B (en) * | 2021-09-22 | 2022-08-26 | 北京脑陆科技有限公司 | Cognitive disorder recognition method, device and medium based on electroencephalogram signals |
CN116392144B (en) * | 2022-12-07 | 2023-11-24 | 天津大学 | A brain signal acquisition system, method and medium |
CN116011506B (en) * | 2023-03-28 | 2023-06-09 | 同心智医科技(北京)有限公司 | Method for constructing stereo electroencephalogram electrode signal decoding model and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109771033A (en) * | 2019-03-22 | 2019-05-21 | 中山大学 | A kind of stereotaxic EEG electrode surgery planning method and system |
CN112162634A (en) * | 2020-09-24 | 2021-01-01 | 华南理工大学 | Digital input brain-computer interface system based on SEEG signal |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3048174A1 (en) * | 2016-02-29 | 2017-09-01 | Univ Aix Marseille | METHOD FOR DETECTING ELEMENTS OF INTEREST IN ELECTROPHYSIOLOGICAL SIGNALS AND DETECTOR |
TWI680744B (en) * | 2018-10-04 | 2020-01-01 | 臺北榮民總醫院 | Method and system for locating intracranial electrode |
-
2021
- 2021-06-17 CN CN202110672287.2A patent/CN113397559B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109771033A (en) * | 2019-03-22 | 2019-05-21 | 中山大学 | A kind of stereotaxic EEG electrode surgery planning method and system |
CN112162634A (en) * | 2020-09-24 | 2021-01-01 | 华南理工大学 | Digital input brain-computer interface system based on SEEG signal |
Non-Patent Citations (1)
Title |
---|
Harvey Huang et al.A canonical visualization tool for SEEG electrodes.2021,第6175-6178页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113397559A (en) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113397559B (en) | Stereotactic electroencephalogram analysis method, device, computer equipment and storage medium | |
Mahjoory et al. | Consistency of EEG source localization and connectivity estimates | |
Luckhoo et al. | Inferring task-related networks using independent component analysis in magnetoencephalography | |
Michelmann et al. | Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA) | |
Dähne et al. | SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters | |
Picton et al. | The recording and analysis of event-related potentials | |
Haufe et al. | Dimensionality reduction for the analysis of brain oscillations | |
Marzetti et al. | The use of standardized infinity reference in EEG coherency studies | |
CN110074774B (en) | Analysis method, system, medium and terminal for heart ventricular septal abnormality based on magnetocardiogram | |
CN109924990A (en) | A kind of EEG signals depression identifying system based on EMD algorithm | |
US20070225932A1 (en) | Methods, systems and computer program products for extracting paroxysmal events from signal data using multitaper blind signal source separation analysis | |
JP6831944B1 (en) | How to extend ECG data and its devices, electronic devices and media | |
Duc et al. | Microstate functional connectivity in EEG cognitive tasks revealed by a multivariate Gaussian hidden Markov model with phase locking value | |
CN111920399A (en) | Analysis method and device for heart rate variability | |
CN109480832A (en) | The removing method of Muscle artifacts in a kind of single pass EEG signals | |
Hidalgo-Muñoz et al. | Spectral turbulence measuring as feature extraction method from EEG on affective computing | |
CN111820876A (en) | A Dynamic Construction Method of EEG Spatial Filter | |
CN112294340A (en) | Method, system, storage medium and computer device for fast and automatic removal of EMG artifacts | |
CN111973179A (en) | Brain wave signal processing method, brain wave signal processing device, electronic device, and storage medium | |
CN103720471A (en) | Factor analysis based ocular artifact removal method | |
CN118356201B (en) | Epileptic electroencephalogram index extraction method, device, electronic device and storage medium | |
CN105395185A (en) | Physiological signal detection system based on multi-channel flexible integration | |
Zouridakis et al. | Estimation of individual evoked potential components using iterative independent component analysis | |
CN109522873A (en) | Synchronism analysis method, apparatus and storage medium between a kind of brain | |
JP7585655B2 (en) | Waveform generation identification method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |