CN113393433A - 一种通用的医学影像灌注参数预测方法及装置 - Google Patents

一种通用的医学影像灌注参数预测方法及装置 Download PDF

Info

Publication number
CN113393433A
CN113393433A CN202110647285.8A CN202110647285A CN113393433A CN 113393433 A CN113393433 A CN 113393433A CN 202110647285 A CN202110647285 A CN 202110647285A CN 113393433 A CN113393433 A CN 113393433A
Authority
CN
China
Prior art keywords
perfusion
contrast agent
image data
medical image
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110647285.8A
Other languages
English (en)
Other versions
CN113393433B (zh
Inventor
史睿琼
刘昱
沈骏蒝
佘燚临
吴振洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ande Yizhi Technology Co ltd
Original Assignee
Beijing Ande Yizhi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Ande Yizhi Technology Co ltd filed Critical Beijing Ande Yizhi Technology Co ltd
Priority to CN202110647285.8A priority Critical patent/CN113393433B/zh
Publication of CN113393433A publication Critical patent/CN113393433A/zh
Application granted granted Critical
Publication of CN113393433B publication Critical patent/CN113393433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Pulmonology (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本公开涉及一种通用的医学影像灌注参数预测方法及装置、电子设备和存储介质,包括:根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。本公开实施例可以提高模拟的医学影像数据的真实性,提高对医学影像数据的CT灌注参数进行预测的准确率。

Description

一种通用的医学影像灌注参数预测方法及装置
技术领域
本公开涉及计算机技术领域,尤其涉及一种通用的医学影像灌注参数预测方法及装置、电子设备和存储介质。
背景技术
随着图像分析技术的发展,该技术已在医疗领域得到广泛应用。毋庸置疑,医疗领域对于图像分析的精度有着较高的要求。
在相关技术中,可以通过医学影像设备扫描得到医学影像数据,对于基于灌注成像技术得到的医学影像数据,可以通过图像分析技术对医学影像数据进行分析,得到医学影像的灌注参数。例如,对电子计算机断层扫描(Computed Tomography,CT)灌注影像数据、核磁灌注影像数据进行准确的分析,将对脑组织的血流情况的判断提供有力支持。
然而,相关技术中无法对临床的医学影像数据建立灌注参数的金标准数据,那么便无法从临床获得验证灌注参数预测结果的准确数据,所以无法验证计算灌注参数的准确性,无法对医学影像数据进行准确分析。
发明内容
有鉴于此,本公开提出了一种通用的医学影像灌注参数预测技术方案。
根据本公开的一方面,提供了一种通用的医学影像灌注参数预测方法,包括:
根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
在一种可能的实现方式中,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;
根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;
根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个连续变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个离散变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。
在一种可能的实现方式中,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值;
利用得到的所述亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。
在一种可能的实现方式中,所述影像数据包括:CT灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;
根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。
在一种可能的实现方式中,所述影像数据包括:核磁灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;
根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。
根据本公开的另一方面,提供了一种通用的医学影像灌注参数预测装置,其特征在于,包括:
数据生成单元,用于根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
预测单元,用于基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
优化单元,用于利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
在一种可能的实现方式中,所述数据生成单元,包括:
第一造影剂浓度确定单元,用于根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;
第二造影剂浓度确定单元,用于根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;
模拟单元,用于根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个连续变量,所述数据生成单元,包括:
第一生成单元,用于根据所述第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个离散变量,所述数据生成单元,包括:
第一生成单元,用于根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。
在一种可能的实现方式中,所述数据生成单元,用于根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值;利用得到的所述亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。
在一种可能的实现方式中,所述影像数据包括:CT灌注影像数据,所述数据生成单元,用于根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。
在一种可能的实现方式中,所述影像数据包括:核磁灌注影像数据,所述数据生成单元,用于根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。
根据本公开的另一方面,提供了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现本公开提供的任意一项所述的方法。
在本公开实施例中,通过根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;然后基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。造影剂在被注入到人体内后,由于人体内循环,造影剂在体内会发生循环,即多次通过扫描区域,因此,通过对造影剂多次通过扫描区域的情况进行模拟,能够准确地模拟医学设备扫描的医学影像数据。由此,基于该医学影像数据所训练的神经网络的准确率较高。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开实施例的通用的医学影像灌注参数预测方法的流程图。
图2a示出根据本公开实施例的一种医学影像数据的示意图。
图2b示出根据本公开实施例的又一种医学影像数据的示意图。
图3示出根据本公开实施例的通用的医学影像灌注参数预测装置图。
图4示出根据本公开实施例的电子设备的框图。
图5示出根据本公开实施例的电子设备的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
在一种可能的实现方式中,本公开提供的CT灌注参数预测方法可以由终端设备或服务器等电子设备执行,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等,所述方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。或者,可通过服务器执行所述方法。
图1示出根据本公开实施例的通用的医学影像灌注参数预测方法的流程图,如图1所示,所述通用的医学影像灌注参数预测方法包括:
在步骤S11中,根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据。
医学影像数据可以是基于医学影像设备扫描得到的医学影像中的数据,具体可以医学影像本身,或者是医学影像中体素/像素的影像参数,例如亮度值、灰度值等影像参数。
本公开实施例中的医学影像数据,例如可以是电子计算机断层扫描(ComputedTomography,CT)设备扫描得到的CT影像,或者核磁共振成像(Magnetic ResonanceImaging,MRI)设备扫描得到的MRI影像,当然,该医学影像数据还可以是其它医学影像设备扫描得到的医学影像数据,此处不做一一赘述。
灌注参数可以量化反映局部组织血流灌注量。灌注参数可以包括以下至少一种:血流量(Blood Flow,BF)、血容量(Blood Volume,BV)、造影剂平均通过时间(Mean TransitTime,MTT)、到达峰值时间(Time To Peak,TTP)、到达脉冲剩余函数峰值时间(Peak Time,Tmax)、造影剂信号强度(浓度)、不同位置的动脉中造影剂相对于采样处的造影剂到达时间δ、以及用来表征一个组织区域的动脉造影剂从动脉中转移到组织中毛细血管所需的时间τ,本公开实施例对此不做限定。
在真实是灌注成像过程中,会基于造影剂具有的弥散特点,通过静脉团注造影剂,然后利用医学影像设备对注射造影剂后的同一区域进行快速图像扫描,得到体素的亮度值随时间的变化(即得到医学影像数据);然后根据扫描的亮度值和采样时间等参数,建立体素的造影剂的时间-浓度曲线,即造影剂浓度与时间的映射关系,依据该映射关系即可得到不同时间的造影剂浓度;然后,依据各位置的造影剂的时间-浓度曲线,得到灌注参数。
而在本公开实施例中,可以由给定的灌注参数,来模拟医学影像设备扫描得到的医学影像数据,为方便描述,这里将给定的灌注参数称为第一灌注参数。也就是说,可以根据给定的第一灌注参数,来反推包含亮度值等信息的医学影像数据,此过程中的医学影像数据并非通过医学影像设备扫描得到,而是由第一灌注参数计算得到。
具体在根据第一灌注参数模拟医学影像设备扫描得到的医学影像数据的过程中,可以根据第一灌注参数确定各体素的造影剂的时间-浓度曲线,进而可以根据各体素的造影剂的时间-浓度曲线来模拟医学影像设备扫描得到的医学影像数据。
造影剂在被注入到人体内后,由于人体内循环,造影剂在体内会发生循环,也就是说,造影剂在被注射后,会多次通过扫描区域,那么,在进行模拟时,可以对一次注射的造影剂多次通过扫描区域的情况进行模拟,这样模拟的医学影像数据更加真实。
该过程不依赖于医学影像设备扫描,而是根据给定的第一灌注参数来模拟医学影像设备扫描得到的医学影像数据,因此得到的医学影像数据的灌注参数是准确的,不受设备和实验误差干扰。得到的医学影像数据可以作为后续神经网络的训练样本,其中,医学影像数据的标注即为第一灌注参数。
在步骤S12中,基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数。
人工神经网络(Artificial Neural Networks,ANNs)也简称为神经网络或称作连接模型(Connection Model),它能够模仿动物神经网络行为特征,对输入的信息进行处理。
在本公开实施例中,将S11获得的医学影像数据作为神经网络的输入,经过神经网络的预测,即可获得神经网络预测的灌注参数,为便于描述,这里将神经网络对S11中的医学影像数据预测得到的灌注参数称为第二灌注参数,对于神经网络的具体预测过程,此处不做赘述。可以理解的是,本公开实施例中的“第一”和“第二”用于区分所描述的对象,而不应当理解为对描述对象的次序等其它限定。
在神经网络的多层中会包含网络的参数,通过训练对参数进行调优,能够使得神经网络的预测结果更加准确,神经网络的初始参数可以任意设定,步骤S12中的神经网络的权重参数可以是未经训练的神经网络的初始参数,也可以是经过一定次数的迭代训练进行优化后的参数,本公开对此不作具体限定。
在步骤S12中,无论神经网络的参数是初始参数,还是经优化过的参数,均可对医学影像数据进行预测,得到第二灌注参数。然后可以利用得到的第二灌注参数对神经网络的参数进行优化。
在步骤S13中,利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
在神经网络的训练过程中,会利用训练样本经过网络计算得到输出值,输出值与标签值进行损失计算,然后根据损失计算的结果即损失值更新计算权重,将上述过程进行重复,直至损失值达到预期效果。
在本公开实施例中,神经网络的输出值即为第二灌注参数;标签值也可称为标注值,即为第一灌注参数,那么,神经网络的损失值即为第二灌注参数与第一灌注参数之间的差异,该差异能够反映神经网络中的参数是能够进一步优化的,因此,通过调节神经网络的参数,以使得该差异足够小,即可对神经网络中的参数进行优化。
在本公开实施例中,通过根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;然后基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。造影剂在被注入到人体内后,由于人体内循环,造影剂在体内会发生循环,即多次通过扫描区域,因此,通过对造影剂多次通过扫描区域的情况进行模拟,能够准确地模拟医学设备扫描的医学影像数据。由此,基于该医学影像数据所训练的神经网络的准确率较高。
在一种可能的实现方式中,第一灌注参数可以是用户输入的,或者,也可以是自动生成的。一方面,第一灌注参数各参数的取值范围越大,模拟医学影像设备扫描得到的医学影像数据越丰富,为神经网络提供的样本越充足,这将有助于神经网络的训练。另一方面,医学影像数据是模拟医学影像设备对目标对象在不同实际状态下的扫描结果。所以,第一灌注参数的取值需要贴合实际。综上所述,第一灌注参数的各参数预设范围可以依据实际经验得出,在一种示例中,第一灌注参数的各参数预设范围如下:
BF的预设范围可以是动脉点BF的0~4.3倍,其中,在动脉血管中测量造影剂的时间-浓度曲线(Arterial Input Function,AIF)时,选取的动脉上的一点,作为测量的位置,该位置叫做动脉点;
MTT的取值范围可以是0.8至无穷大;
τ的取值范围可以是-3~3s。
在预设范围内,第一灌注参数各个参数取值可以随机组合,以模拟医学影像设备扫描,得到医学影像数据。这样使得神经网络得到了充足的训练样本,提高训练后神经网络的预测准确度。
医学影像数据,包括下述至少一种:采样时间点、感兴趣区域ROI中动脉区域以外的体素的亮度值、所述ROI的动脉区域的体素的亮度值。
造影剂从静脉注入体内之后进入动脉,通过动脉再进入其他区域。由于进入动脉的时间与进入动脉以外区域的时间不同、模拟动脉区域和动脉以外的区域CT灌注影像数据的方式不同,所以ROI被划分成两个区域:ROI动脉区域和ROI动脉区域以外区域。
如前文描述,医学影像数据可以包括体素的亮度值随时间的变化。体素的亮度值是在不同的采样时间点对目标对象进行采样得到的,也就是说,每一个采样时间点会对应一个ROI动脉区域体素亮度值和一个ROI动脉区域以外区域体素亮度值,它们均为医学影像数据。
在一种可能的实现方式中,第一灌注参数中包含多个连续变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据所述第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。
第一灌注参数中包含多个连续变量,这多个连续变量的取值可以是连续的,例如取值连续变大或连续变小。这多个连续变量用于生成一个医学影像,得到一个医学影像数据。
那么,在根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟的过程中,可以根据第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。由此,模拟得到的医学影像,其图像中像素值的变化也是连续的,例如,可以得到沿着某个图像坐标轴或坐标点连续变化的灰度值。这样,能够产生连续梯度的图像以增加测试数据覆盖的检验范围。此外,还可以在生成的医学影像数据中增加适当噪声点,以模仿真实情况。
图2a示出一种基于第一灌注参数中的多个连续变量模拟得到的医学影像数据,其灰度值是连续变化的,以右下角为中心,其灰度值逐渐变小。同时,该图像中还包含适当的噪声点。
在一种可能的实现方式中,所述第一灌注参数中包含多个离散变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。
第一灌注参数中包含多个离散变量,这多个离散变量的取值是随机的。
那么,在根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟的过程中,可以根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。由此,模拟得到的医学影像,其图像中像素值的变化也是离散的,例如,得到的医学影像中的亮度值可以是在图像中随机分布的。这样使得神经网络得到了充足的训练样本,提高训练后神经网络的预测准确度。
图2b示出一种基于第一灌注参数中的多个离散变量模拟得到的医学影像数据,其灰度值是离散变化的。同时,该图像中还包含适当的噪声点。
在一种可能的实现方式中,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。
造影剂从静脉注入体内之后进入动脉,通过动脉再进入其他区域。然后经人体内循环后,会再次通过已经通过的区域。在该实现方式中,会对造影剂第一次经过扫描区域时造影剂的分布进行模拟,此外,还会对造影剂第二次经过扫描区域时造影剂的分布进行模拟。
下面,先对造影剂经过扫描区域时的模拟过程进行简单说明:
由于进入动脉的时间与进入动脉以外区域的时间不同、模拟动脉区域和动脉以外的区域医学影像数据的方式不同,所以ROI被划分成两个区域:ROI动脉区域和ROI动脉区域以外区域。
如前文描述,医学影像数据可以包括体素的亮度值随时间的变化。体素的亮度值是在不同的采样时间点对目标对象进行采样得到的,也就是说,每一个采样时间点会对应一个ROI动脉区域体素亮度值和一个ROI动脉区域以外区域体素亮度值,它们均为医学影像数据。
在一种可能的实现方式中,可以根据第一灌注参数确定体素的造影剂的时间-浓度曲线,再根据体素的造影剂的时间-浓度曲线来模拟获得体素的亮度值。
要想获得ROI动脉区域的体素亮度值,可以先建立ROI动脉区域的造影剂浓度与时间的映射关系。该映射关系可以通过密度分布函数来表示,由于本公开实施例中用来模拟造影剂两次通过扫描区域的情况,因此可以通过两个密度分布函数来表示造影剂浓度与时间的映射关系,具体可以使用一个泛伽马密度分布函数来表示ROI动脉区域的造影剂第一次经过时的此映射关系,然后为了模拟第二次循环,再加上另一个伽马分布密度函数。
该映射关系如公式1所示。
Figure BDA0003110465990000121
其中,ca(t)表示ROI动脉区域的造影剂浓度,其中,造影剂第一次经过扫描区域时,每一个扫描条件可以用形态参数α1、速率参数β1、缩放参数γ1来表示,造影剂第二次经过扫描区域时,每一个扫描条件可以用形态参数α2、速率参数β2、缩放参数γ2来表示;e为自然常数,t'为应采样时间点经过AIF延迟时间修正过的时间,t′=max{t-δ,0},其中δ为AIF延迟参数,t为采样时间点。
在本公开实施例中,根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。由此,可以通过两个密度分布函数,来分别得到造影剂两次通过扫描区域时扫描区域体素的造影剂浓度,然后根据这两个造影剂的浓度,即可得到模拟的医学影像数据。
根据第一造影剂浓度和第二造影剂浓度得到模拟的医学影像数据时,可以是将两个造影剂浓度进行相加,或者也可以是将两个造影剂浓度进行加权,按照一定的权重比例进行相加,本公开对具体过程不作限定。
如前文所述,本公开实施例中提供的医学影像数据可以是CT灌注影像数据,还可以是核磁灌注影像数据。针对这两种医学影像数据,本公开实施例中提供了两种根据第一灌注参数得到医学影像数据的实现方式,具体如下:
在一种可能的实现方式中,所述影像数据包括:CT灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。
作为一种示例,ROI动脉区域的亮度值Sa(t)与ROI动脉区域的第三造影剂浓度ca(t)之间的关系可参见公式2,从公式2中可以看出,所述ROI动脉区域的亮度值Sa(t)与ROI动脉区域的第三造影剂浓度ca(t)正相关。
Sa(t)=ca(t)+Sa,0a(t) (2)
其中,Sa,0为ROI动脉区域基础亮度值,εa(t)为ROI动脉区域噪声值。在模拟各种医学影像设备扫描时,由于不同品牌的设备会有一个基础亮度值和一个噪声值,所以,在计算体素亮度值时需要将基础亮度值和噪声值加入。
与ROI动脉区域亮度值模拟过程相同,建立ROI动脉区域以外区域的造影剂浓度c(t)与时间的映射关系,是获得ROI动脉区域以外区域体素亮度值的前提。这一映射关系是通过对ROI动脉血液中造影剂浓度函数和剩余函数进行卷积再乘以BF来表示,如公式3所示。
Figure BDA0003110465990000141
剩余函数r(t)是通过构建一系列满足约束条件的基础剩余函数ri(t),然后通过线性组合的方式生成,在公式3中,r(t)的取值为1-t′。
剩余函数可以参见公式4。
r(t)=∑iwi ri(t) (4)
其中,wi为权重,∑iwi=1并且wi≥0。权重wi可以从狄利克雷分布中抽选以满足对wi的限制。
剩余函数可以遵循以下约束条件:
剩余函数在时间的积分的结果应等于MTT;
对于小于延迟时间τ的时间点,剩余函数r(t)为0;
在时间点刚好为延迟时间τ时,剩余函数r(t)为1;
对于所有延迟时间τ之后的时间点,剩余函数r(t)值大于0;
对于所有延迟时间τ之后的时间点,剩余函数的值可不随时间推进而增加。
在建立ROI动脉区域以外区域的造影剂浓度与时间的映射关系之后,ROI中动脉区域以外区域的体素的亮度值即可获得。具体可参见公式5,ROI中动脉区域以外区域体素的亮度值S(t)与ROI动脉区域以外区域的造影剂浓度c(t)正相关。
S(t)=c(t)+S0+ε(t) (5)
其中,S0为ROI动脉区域以外区域基础亮度值,ε(t)为ROI动脉区域以外区域噪声值。
在本公开实施例中,在影像数据为CT灌注影像数据的情况下,建立适用于CT灌注影像数据的医学影像数据生成方法。根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。由此,该实现方式更加适配于CT成像原理,因此生成的CT灌注影像数据更加真实。
在一种可能的实现方式中,所述影像数据包括:核磁灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。
根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度的过程,可以与根据第一灌注参数,得到第三造影剂浓度的过程相同,也就是说,第四造影剂浓度和第三造影剂浓度可以相同。
作为一种示例,由于第三造影剂浓度与第四造影剂浓度的获取方式可以相同,因此,在该示例中,ROI动脉区域的第四造影剂浓度也用ca(t)表示,ROI动脉以外区域的第四造影剂浓度也用c(t)表示。
在该示例中,ROI动脉区域的亮度值Sa′(t)与ROI动脉区域的第四造影剂浓度ca(t)之间的关系可参见公式6。
Figure BDA0003110465990000151
其中,e为自然指数,对于其它符号的说明,可参见前文的相关描述。
在建立ROI动脉区域以外区域的造影剂浓度与时间的映射关系之后,ROI中动脉区域以外区域的体素的亮度值S′(t)与ROI动脉以外区域的第四造影剂浓度c(t)的关系可参见公式7。
S′(t)=S0e-c(t)+ε(t) (7)
在本公开实施例中,在影像数据为核磁灌注影像数据的情况下,建立适用于核磁灌注影像数据的医学影像数据生成方法。根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。由此,该实现方式更加适配于核磁共振成像原理,因此生成的核磁灌注影像数据更加真实。
在一种可能的实现方式中,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值;利用得到的所述亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。
在该实现方式中,可以依据真实扫描的医学影像数据作为背景,得到模拟的医学影像数据,可以根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值,然后利用得到的亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。即将生成的ROI中的图像覆盖到真实扫描的医学影像的ROI中。
本公开实施例中,通过将真实扫描的医学影像中的ROI的亮度值,更新为模拟的ROI感兴趣区域的亮度值,由此生成的医学影像数据更加真实,以提高训练的神经网络的精度。
需要说明的是,尽管以多种可能的实现方式作为示例介绍了通用的医学影像灌注参数预测方法如上,但本领域技术人员能够理解,本公开应不限于此。事实上,用户完全可根据个人喜好和/或实际应用场景灵活设定各实现方式的组合方式,均应在本公开的保护范围之内。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
此外,本公开还提供了通用的医学影像灌注参数预测装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种通用的医学影像灌注参数预测方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。
图3示出根据本公开实施例的通用的医学影像灌注参数预测装置的框图,如图3所示,所述装置30包括:
数据生成单元301,用于根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
预测单元302,用于基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
优化单元303,用于利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
在一种可能的实现方式中,所述数据生成单元301,包括:
第一造影剂浓度确定单元,用于根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;
第二造影剂浓度确定单元,用于根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;
模拟单元,用于根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个连续变量,所述数据生成单元302,包括:
第一生成单元,用于根据所述第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。
在一种可能的实现方式中,所述第一灌注参数中包含多个离散变量,所述数据生成单元302,包括:
第一生成单元,用于根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。
在一种可能的实现方式中,所述数据生成单元302,用于根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值;利用得到的所述亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。
在一种可能的实现方式中,所述影像数据包括:CT灌注影像数据,所述数据生成单元302,用于根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。
在一种可能的实现方式中,所述影像数据包括:核磁灌注影像数据,所述数据生成单元302,用于根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是易失性或非易失性计算机可读存储介质。
本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
本公开实施例还提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
电子设备可以被提供为终端、服务器或其它形态的设备。
图4是根据一示例性实施例示出的一种用于通用的医学影像灌注参数预测的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图4,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由装置800的处理器820执行以完成上述方法。
图5是根据一示例性实施例示出的一种通用的医学影像灌注参数预测装置1900的框图。例如,装置1900可以被提供为一服务器。参照图5,装置1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
装置1900还可以包括一个电源组件1926被配置为执行装置1900的电源管理,一个有线或无线网络接口1950被配置为将装置1900连接到网络,和一个输入输出(I/O)接口1958。装置1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,MacOS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由装置1900的处理组件1922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是(但不限于)电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

1.一种通用的医学影像灌注参数预测方法,其特征在于,包括:
根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
2.根据权利要求1所述方法,其特征在于,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据第一灌注参数,通过第一密度分布函数对造影剂初次通过扫描区域时的情况进行模拟,得到扫描区域体素的第一造影剂浓度;
根据第一灌注参数,通过第二密度分布函数对造影剂再次通过扫描区域时的情况进行模拟,得到扫描区域体素的第二造影剂浓度;
根据所述第一造影剂浓度和第二造影剂浓度,得到模拟的医学影像数据。
3.根据权利要求1所述的方法,其特征在于,所述第一灌注参数中包含多个连续变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数中的多个连续变量,模拟得到扫描区域中造影剂浓度连续变化的医学影像数据。
4.根据权利要求3所述的方法,其特征在于,所述第一灌注参数中包含多个离散变量,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数中的多个离散变量,模拟得到扫描区域中造影剂浓度离散变化的医学影像数据。
5.根据权利要求1所述的方法,其特征在于,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据第一灌注参数,得到感兴趣区域ROI中体素的亮度值;
利用得到的所述亮度值,更新真实扫描的医学影像中ROI中体素的亮度值,得到模拟的医学影像数据。
6.根据权利要求1所述的方法,其特征在于,所述影像数据包括:CT灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数,得到所述扫描区域中体素的第三造影剂浓度;
根据所述第三造影剂浓度,确定扫描区域中体素的CT灌注影像的亮度值,其中,所述CT灌注影像的亮度值与所述第三造影剂浓度正相关。
7.根据权利要求1所述的方法,其特征在于,所述影像数据包括:核磁灌注影像数据,所述根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据,包括:
根据所述第一灌注参数,得到所述扫描区域中体素的第四造影剂浓度;
根据所述第四造影剂浓度,确定扫描区域中体素的核磁灌注影像的亮度值,其中,所述核磁灌注影像的亮度值与自然指数e的N次幂正相关,N与所述第四造影剂浓度负相关。
8.一种通用的医学影像灌注参数预测装置,其特征在于,包括:
数据生成单元,用于根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
预测单元,用于基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
优化单元,用于利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
9.一种电子设备,其特征在于,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据第一灌注参数,对造影剂多次通过扫描区域的情况进行模拟,得到模拟的医学影像设备扫描的医学影像数据;
基于神经网络对所述医学影像数据的灌注参数进行预测,得到预测的第二灌注参数;
利用所述第二灌注参数与所述第一灌注参数之间的差异,对所述神经网络进行训练,得到用于对所述医学影像设备真实扫描得到的医学影像数据进行灌注参数预测的神经网络。
10.一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至7中任意一项所述的方法。
CN202110647285.8A 2021-06-10 2021-06-10 一种通用的医学影像灌注参数预测方法及装置 Active CN113393433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110647285.8A CN113393433B (zh) 2021-06-10 2021-06-10 一种通用的医学影像灌注参数预测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110647285.8A CN113393433B (zh) 2021-06-10 2021-06-10 一种通用的医学影像灌注参数预测方法及装置

Publications (2)

Publication Number Publication Date
CN113393433A true CN113393433A (zh) 2021-09-14
CN113393433B CN113393433B (zh) 2022-03-01

Family

ID=77620104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110647285.8A Active CN113393433B (zh) 2021-06-10 2021-06-10 一种通用的医学影像灌注参数预测方法及装置

Country Status (1)

Country Link
CN (1) CN113393433B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115222805A (zh) * 2022-09-20 2022-10-21 威海市博华医疗设备有限公司 一种基于肺癌影像的预期成像方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103186895A (zh) * 2013-04-15 2013-07-03 武汉大学 一种基于神经网络模型的ct灌注医疗图像智能融合方法
CN104036107A (zh) * 2013-03-04 2014-09-10 西门子公司 确定狭窄的功能性严重程度
CN104287764A (zh) * 2014-09-11 2015-01-21 沈阳东软医疗系统有限公司 一种ct灌注成像方法和设备
CN107787202A (zh) * 2015-04-02 2018-03-09 哈特弗罗公司 用于从生理学、解剖学和患者特征预测灌注缺陷的系统和方法
CN111062963A (zh) * 2019-12-16 2020-04-24 上海联影医疗科技有限公司 一种血管提取方法、系统、设备及存储介质
CN111991020A (zh) * 2020-09-02 2020-11-27 广州海兆印丰信息科技有限公司 造影剂注射方法、装置、计算机设备和存储介质
CN112237436A (zh) * 2019-07-16 2021-01-19 西门子医疗有限公司 针对医学成像中的灌注的深度学习
CN112435212A (zh) * 2020-10-15 2021-03-02 杭州脉流科技有限公司 基于深度学习的脑部病灶区域体积得到方法、装置、计算机设备和存储介质
CN112862916A (zh) * 2021-03-11 2021-05-28 首都医科大学附属北京天坛医院 Ct灌注功能图量化参数处理设备及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036107A (zh) * 2013-03-04 2014-09-10 西门子公司 确定狭窄的功能性严重程度
CN103186895A (zh) * 2013-04-15 2013-07-03 武汉大学 一种基于神经网络模型的ct灌注医疗图像智能融合方法
CN104287764A (zh) * 2014-09-11 2015-01-21 沈阳东软医疗系统有限公司 一种ct灌注成像方法和设备
CN107787202A (zh) * 2015-04-02 2018-03-09 哈特弗罗公司 用于从生理学、解剖学和患者特征预测灌注缺陷的系统和方法
CN112237436A (zh) * 2019-07-16 2021-01-19 西门子医疗有限公司 针对医学成像中的灌注的深度学习
CN111062963A (zh) * 2019-12-16 2020-04-24 上海联影医疗科技有限公司 一种血管提取方法、系统、设备及存储介质
CN111991020A (zh) * 2020-09-02 2020-11-27 广州海兆印丰信息科技有限公司 造影剂注射方法、装置、计算机设备和存储介质
CN112435212A (zh) * 2020-10-15 2021-03-02 杭州脉流科技有限公司 基于深度学习的脑部病灶区域体积得到方法、装置、计算机设备和存储介质
CN112862916A (zh) * 2021-03-11 2021-05-28 首都医科大学附属北京天坛医院 Ct灌注功能图量化参数处理设备及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RICHARD MCKINLEY ET AL.: ""A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR"", 《ORIGINAL RESEARCH》 *
UMBERTO GAVA ET AL.: ""Neural Network-derived perfusion maps: a Model-free approach to computed tomography perfusion in patients with acute ischemic stroke"", 《MEDRXIV - RADIOLOGY AND IMAGING》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115222805A (zh) * 2022-09-20 2022-10-21 威海市博华医疗设备有限公司 一种基于肺癌影像的预期成像方法及装置

Also Published As

Publication number Publication date
CN113393433B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN111310764B (zh) 网络训练、图像处理方法及装置、电子设备和存储介质
CN109858524B (zh) 手势识别方法、装置、电子设备及存储介质
RU2577188C1 (ru) Способ, аппарат и устройство для сегментации изображения
CN109308469B (zh) 用于生成信息的方法和装置
CN109543537B (zh) 重识别模型增量训练方法及装置、电子设备和存储介质
CN110598504B (zh) 图像识别方法及装置、电子设备和存储介质
CN112541928A (zh) 网络训练方法及装置、图像分割方法及装置和电子设备
CN109410276B (zh) 关键点位置确定方法、装置及电子设备
CN109360197B (zh) 图像的处理方法、装置、电子设备及存储介质
CN112115894B (zh) 手部关键点检测模型的训练方法、装置及电子设备
CN112967291B (zh) 图像处理方法及装置、电子设备和存储介质
CN113034491B (zh) 一种冠脉钙化斑块检测方法及装置
CN111640114B (zh) 图像处理方法及装置
CN112749801A (zh) 神经网络训练和图像处理方法及装置
JP7316456B2 (ja) 点群マップ構築方法及びその装置、電子機器、記憶媒体並びにプログラム
CN109886211B (zh) 数据标注方法、装置、电子设备及存储介质
CN113012816B (zh) 脑分区风险预测方法及装置、电子设备和存储介质
CN113393433B (zh) 一种通用的医学影像灌注参数预测方法及装置
CN113160947A (zh) 医学图像的展示方法及装置、电子设备和存储介质
CN109903252B (zh) 图像处理方法及装置、电子设备和存储介质
CN112396119A (zh) 一种图像处理方法及装置、电子设备和存储介质
CN115512116B (zh) 图像分割模型优化方法、装置、电子设备及可读存储介质
CN113034438B (zh) 一种ct灌注参数预测方法及装置、电子设备和存储介质
CN112802032A (zh) 图像分割网络的训练和图像处理方法、装置、设备及介质
CN109978759B (zh) 图像处理方法及装置和图像生成网络的训练方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A general method and device for predicting perfusion parameters of medical images

Effective date of registration: 20221115

Granted publication date: 20220301

Pledgee: Beijing Jiahesen Health Technology Co.,Ltd.

Pledgor: BEIJING ANDE YIZHI TECHNOLOGY Co.,Ltd.

Registration number: Y2022990000806

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20220301

Pledgee: Beijing Jiahesen Health Technology Co.,Ltd.

Pledgor: BEIJING ANDE YIZHI TECHNOLOGY Co.,Ltd.

Registration number: Y2022990000806

PC01 Cancellation of the registration of the contract for pledge of patent right