CN113388676B - Probe set for detecting tuberous sclerosis gene mutation and kit thereof - Google Patents

Probe set for detecting tuberous sclerosis gene mutation and kit thereof Download PDF

Info

Publication number
CN113388676B
CN113388676B CN202110666461.2A CN202110666461A CN113388676B CN 113388676 B CN113388676 B CN 113388676B CN 202110666461 A CN202110666461 A CN 202110666461A CN 113388676 B CN113388676 B CN 113388676B
Authority
CN
China
Prior art keywords
dna
artificial sequence
library
kit
probe set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110666461.2A
Other languages
Chinese (zh)
Other versions
CN113388676A (en
Inventor
陈爽
李妍珂
刘永初
刘超
吕佩涛
刘阳
李阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yaji Technology Co ltd
Original Assignee
Shenzhen Yaji Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yaji Technology Co ltd filed Critical Shenzhen Yaji Technology Co ltd
Priority to CN202110666461.2A priority Critical patent/CN113388676B/en
Publication of CN113388676A publication Critical patent/CN113388676A/en
Application granted granted Critical
Publication of CN113388676B publication Critical patent/CN113388676B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

A probe set for detecting tuberous sclerosis gene mutation and a kit thereof. The probe set can specifically capture at least one of TSC1 gene fragment and TSC2 gene fragment. The probe set has the advantages of high coverage, high capture efficiency, high sequencing depth, high detection sensitivity and low detection cost, and can detect the possibly pathogenic new point mutation, copy number variation and chimeric mutation with a certain proportion.

Description

Probe set for detecting tuberous sclerosis gene mutation and kit thereof
Technical Field
The invention relates to the field of molecular biology, in particular to a probe set for detecting tuberous sclerosis gene mutation and a kit thereof.
Background
Tuberous sclerosis (tuberous sclerosis complex, TSC), an autosomal dominant inherited disease, has a neonatal morbidity of 1/6000 to 1/10000 and an adult of about 1/8000. Tuberous sclerosis can lead to uncontrolled proliferation and differentiation of cells, affecting almost all organs and systems, especially brain, skin, kidneys, heart, with prominent manifestations and pathological changes being hamartomas. TSC1 or TSC2 are two important genes responsible for tuberous sclerosis. TSC1 is located on chromosome 9 q34, comprising 23 exons, encoding the hamartin consisting of 1164 amino acids. TSC2 is located on chromosome 16, p13.3, encoding Tuberin, a nodular protein consisting of 1807 amino acids. The Hamartin protein and the Tuberin protein form heterodimer (heterodur) on the Golgi body, namely a Tuberin-Hamartin complex which has the function of GTP Activating Protein (GAP), negatively regulates downstream Rheb protein under the regulation of P13K/AKT signal transduction pathway and Ras/Mitogen Activating Protein Kinase (MAPK) signal transduction pathway, inhibits mTOR protein-mediated signal transduction, plays an important regulation role on cell metabolism, proliferation and cytoskeletal movement, and has an anti-tumor effect. The TSC gene mutation causes abnormal activation of mTOR signal transduction pathway, the activity of mTORCL protein is enhanced, the phosphorylation of downstream S6K1 protein and 4E-BP protein is promoted, the activation of upstream AKT protein is inhibited by negative feedback, meanwhile, the activation of AKT protein mediated by mTORC2 protein is also inhibited by the function deficiency of TSC protein, and the combination of the two results in the increase of protein synthesis and cell proliferation, so that pathological changes such as hamartoma and the like occur.
About 2/3 of the tuberous sclerosis is caused by sporadic TSC gene variation, wherein the TSC2 gene mutation rate is about 3 times that of the TSC1 gene; about 1/3 of tuberous sclerosis is inherited autosomally dominant, and mutations in the TSC1 gene are common in families. The second international TSC consensus conference of 2012, 6, updated the diagnostic criteria for the disease. The gene diagnosis standard is as follows: as long as the pathogenic mutation of TSC1 or TSC2 is confirmed, the disease can be clearly diagnosed, but 10% -25% of TSC patients have negative TSC1 or TSC2 mutation detection, so that the gene detection is insufficient to exclude TSC diagnosis, and the clinical characteristics are still diagnostic conditions of TSC. It is also emphasized that if the diagnostic result is other types of mutations and is not confirmed to be pathogenic, it cannot be determined that it affects the function of the TSC1/2 complex and cannot be used as a standard for definitive diagnosis of TSC. Despite the clear clinical diagnostic criteria, there are certain difficulties in practical application. For young patients, typical clinical symptoms are lacking, or severe clinical symptoms are present but lack specificity. The TSC chimeric type is more, parents of a forerunner are likely to be patients, and the parents may not have any TSC related symptoms, gene detection can help to determine pathogenic gene sources, genetic consultation and prenatal diagnosis of a diseased family are facilitated, and the TSC chimeric type TSC has great significance in reducing birth defects, so that gene detection is still the first choice method for TSC diagnosis.
In patients clinically diagnosed with TSC, about 85% of the gene mutations, often known as point mutations, can be detected by Sanger sequencing. But Sanger sequencing is limited by the methodological limitation, mutation with mutation frequency below 10% is difficult to detect, deletion or repeated mutation cannot be accurately detected, the length of a detection product is limited, and the PCR (polymerase chain reaction) and sequencing are required to be carried out on each detection site, so that the workload is high.
If the sequencing data of negative patients are subjected to exon unit and copy number variation analysis, the detection rate can reach 90%, but about 10-15% still fail to detect abnormality. The existing analysis method for large-fragment abnormality in the market adopts multiple ligation dependent probe amplification (MLPA) technology, has high sensitivity, but can only detect known pathogenic gene mutation, and MLPA has the limitation that when a mutation or polymorphic region approaches to a probe ligation region or ligation site, hybridization and ligation of probes are prevented to generate false positive results, and each known pathogenic region needs to be designed to synthesize a specific probe, so that the workload is high and the price is high.
There are also gene detection companies that capture TSC1/2 gene with WES probe and library-build sequencing, because there is no specific capture of TSC1/2 gene, resulting in a great reduction in the depth of sequencing of TSC1/2 gene, if the patient's TSC1/2 gene mutation is chimeric, the frequency of gene mutation will be very low, and many times this low frequency mutation will be treated as a false positive result, although there are also companies on the market that detect low frequency chimeric mutation by ddPCR, this method can only detect known pathogenic mutation, and design primers for each mutation is required to do PCR, and the workload is great.
Disclosure of Invention
According to a first aspect, in one embodiment a set of probes is provided that specifically capture at least one of a TSC1 gene fragment, a TSC2 gene fragment.
According to a second aspect, in one embodiment there is provided a kit comprising a set of probes according to the first aspect.
According to a third aspect, there is provided in an embodiment the use of a probe set according to the first aspect, or a kit according to the second aspect, for the preparation of a disease-related diagnostic reagent.
According to a fourth aspect, there is provided in one embodiment a library construction method comprising: mixing and reacting the probe set in the first aspect with a library to be detected to obtain a hybridization captured library.
The probe set for detecting tuberous sclerosis gene mutation and the kit thereof according to the above embodiments. The probe set has the advantages of high coverage, high capture efficiency, high sequencing depth, high detection sensitivity and low detection cost, and can detect the possibly pathogenic new point mutation, copy number variation and chimeric mutation with a certain proportion.
Drawings
FIG. 1 shows a flow chart of an embodiment;
FIG. 2 is a schematic representation of a streptavidin magnetic bead capture hybridization fragment according to one example;
Fig. 3 is a graph showing the quality control result of step 6 of example 1.
Fig. 4 is a graph showing the quality control result of step 13 of example 1.
Detailed Description
The invention will be described in further detail below with reference to the drawings by means of specific embodiments. Wherein like elements in different embodiments are numbered alike in association. In the following embodiments, numerous specific details are set forth in order to provide a better understanding of the present application. However, one skilled in the art will readily recognize that some of the features may be omitted, or replaced by other elements, materials, or methods in different situations. In some instances, some operations associated with the present application have not been shown or described in the specification to avoid obscuring the core portions of the present application, and may not be necessary for a person skilled in the art to describe in detail the relevant operations based on the description herein and the general knowledge of one skilled in the art.
Furthermore, the described features, operations, or characteristics of the description may be combined in any suitable manner in various embodiments. Also, various steps or acts in the method descriptions may be interchanged or modified in a manner apparent to those of ordinary skill in the art. Thus, the various orders in the description and drawings are for clarity of description of only certain embodiments, and are not meant to be required orders unless otherwise indicated.
The numbering of the components itself, e.g. "first", "second", etc., is used herein merely to distinguish between the described objects and does not have any sequential or technical meaning. The terms "coupled" and "connected," as used herein, are intended to encompass both direct and indirect coupling (coupling), unless otherwise indicated.
In view of the drawbacks of the prior art, there is a need for a gene detection method with a comprehensive detection range and higher sensitivity.
Herein, tuberous sclerosis gene mutations include, but are not limited to, point mutations, copy number variations, and a proportion of chimeric mutations.
In order to solve the defects of limited sensitivity, low flux, high detection cost and the like of the existing detection method, in some embodiments, a novel TSC1 and TSC2 gene detection method is provided, according to the base complementary pairing principle, firstly, specific probe design is carried out on the whole gene sequences of two genes of TSC1 and TSC2, then, library construction is carried out on fragmented DNA, specific probe hybridization with proper concentration is adopted to capture TSC1 and TSC2 gene fragments in the library, and then, the captured fragments are amplified and sequenced. The high coverage probe pool, the capture efficiency of more than 70% and the sequencing depth of more than 3000 x enable the invention to achieve high sensitivity and low detection cost, and further, the invention can detect the new point mutation, copy number mutation and chimeric mutation with a certain proportion which are possibly pathogenic.
According to a first aspect, in some embodiments, a probe set is provided that specifically captures at least one of the following TSC1 gene fragments, TSC2 gene fragments.
In some embodiments, each probe in the set of probes has a length of 110nt to 120nt.
In some embodiments, the targeted capture region of the probes in the probe set shown covers all of the TSC1 gene, exons of the TSC2 gene, and exon-intron interface regions.
In some embodiments, the set of probes contains 394 probes that can specifically capture the TSC1 gene and 297 probes that can specifically capture the TSC2 gene.
In some embodiments, the probe that specifically captures a fragment of the TSC1 gene comprises at least one of the nucleotide sequences set forth in SEQ ID NO. 1-SEQ ID NO.394 or the complement thereof.
In some embodiments, the probe that specifically captures a fragment of the TSC2 gene comprises at least one of the nucleotide sequences set forth in SEQ ID NO. 395-SEQ ID NO.691 or the complement thereof.
In some embodiments, the probe set comprises at least one of the nucleotide sequences set forth in SEQ ID NO.1 through SEQ ID NO.691 or the complement thereof.
In some embodiments, the probe set comprises the nucleotide sequences set forth in SEQ ID NO.1 through SEQ ID NO.691 or the complement thereof.
In some embodiments, the probe set is in the form of a solution, typically dissolved in a buffer.
According to a second aspect, in some embodiments, there is provided a kit comprising a set of probes according to the first aspect.
In some embodiments, the kit further comprises a buffer for dissolving the probe set.
In some embodiments, the buffer includes, but is not limited to, a TE buffer.
According to a third aspect, in some embodiments there is provided the use of a probe set according to the first aspect, or a kit according to the second aspect, for the preparation of a disease-related diagnostic reagent.
In some embodiments, the disease comprises tuberous sclerosis.
According to a fourth aspect, in some embodiments, there is provided a library construction method comprising: performing hybrid capture on the target sequence by using the probe set in the first aspect to obtain a hybrid captured library. The target sequence is a library which is subjected to a series of treatments such as breaking, fragment screening, end repair and A adding reaction, joint connection, product purification, library amplification, amplified library purification, quality control quantification, library concentration and the like.
In some embodiments, the method further comprises the steps of breaking, fragment screening, end repair and A reaction, adaptor connection, product purification, library amplification, amplified library purification, quality control quantification and library concentration of the DNA sample in sequence before the target sequence is subjected to hybrid capture, so as to obtain a library to be detected, and then performing target sequence hybrid capture on the library to be detected.
In some embodiments, after obtaining the hybridization captured library, the library can be obtained by sequentially performing magnetic bead capture hybridization fragments, library amplification and enrichment, library purification, quality control quantification, denaturation treatment, single-strand cyclization, digestion product purification and quality control quantification to obtain a library which can be used for sequencing on the machine.
In some embodiments, the detection range of the probe set covers the whole gene sequences of two genes TSC1 and TSC2, and can accurately detect SNP mutation, copy number variation and chimeric mutation with a certain mutation proportion.
Example 1
As shown in fig. 1, a detection flow chart of the present embodiment is shown in the following specific experimental flow:
1. probe design and dilution
A set of DNA capture probes is designed according to the liquid phase hybridization capture technique. The length of the TSC1 gene is 53359bp, 394 probes are designed in total, the length of each probe is about 110 nt-120 nt, and the length of most probes is 120nt; the TSC2 gene length is 41241bp, 297 probes are designed, each probe is about 110 nt-120 nt in length, most probes are 120nt in length, and the probes cover all exons and exon-intron boundary areas.
The dry powder of the probe synthesized by Integrated DNATechnologies is diluted to working solution with the concentration of 100 amol/mu L by adopting an IDTE Buffer, and the specific dilution method is as follows:
After the probe dry powder is centrifuged, 100 mu L of IDTE (a diluent prepared by Integrated DNA Technologies) is added in a cover, and after the probe dry powder is fully and uniformly mixed, the probe dry powder is left standing overnight at 4 ℃ to obtain Storage Stock with the concentration of 0.01 pmol/. Mu.L; mu.L of Storage Stock was taken and 36. Mu.L of IDTE was added thereto, whereby a concentration of 1 fmol/. Mu.L of the division Stock was obtained; mu.L of the division Stock was taken and 18. Mu.L of IDTE was added thereto, and at this time, a panel of 100 amol/. Mu.L was obtained; freezing Storage Stock, division Stock and panel at-20deg.C, and diluting with division Stock after 100 amol/. Mu.L panel is used up.
TABLE 1
/>
/>
/>
The sequence shown in SEQ ID No. 1-SEQ ID No.394 is a probe sequence capable of capturing TSC1 gene fragment, the captured TSC1 gene fragment is located on chromosome 9, the sequence shown in SEQ ID No. 395-SEQ ID No.691 is a probe sequence capable of capturing TSC2 gene fragment, and the captured TSC2 gene fragment is located on chromosome 16.
TABLE 2
/>
/>
/>
In Table 2, the first 108 sequences (i.e., the sequences shown in the Code columns as "remove" and "risk") are discarded sequences, and the last 10 probe sequences designed for this example are intended to exemplify the positions of the capture regions of a portion of the probes on the corresponding genes.
2. DNA sample fragmentation
1. Mu.g of a quality-checked gDNA (genomic DNA) sample was fragmented using Covaris M220 to obtain a 250-350bp DNA fragment, and the final library of this example was sequenced using an MGISEQ2000 sequencer with a double-ended read length of 200-300bp, thus requiring a double-selected DNA size of 250-350bp.
3. Fragment screening
Adopting Agencourt AMPure XP Beads to carry out fragment screening on the DNA fragment obtained in the last step to obtain a DNA fragment with the size of 250-350bp, detecting the concentration, requiring the concentration range of the DNA to be 1.25-6.25 ng/. Mu.L, and controlling the quality of the concentration of the DNA to ensure that the fragment screening is successful, wherein Agencourt AMPure XP Beads can reach 15% recovery efficiency, and if the concentration is too low, the fragment screening operation may fail.
4. End repair & addition A
Since both ends of the DNA obtained by the ultrasonic disruption in the previous step are provided with 5 'or 3' protruding sticky ends, the ends must be repaired first in order to connect the adaptors, 3'-5' exonuclease in the mixed enzyme system in this step can excise the protruding 3 'ends, DNA polymerase can fill up the protruding 5' ends, and PNK enzyme phosphorylates the 5 'ends, thereby repairing double-stranded DNA into flat ends, and then the mixed enzyme adds A to the 3' ends of the DNA, so that the adaptor connection in the next step is facilitated.
5. Joint ligation and ligation product purification
The T4 DNA ligase can carry out TA connection, a connector with T at the 5 'end is connected to double-stranded DNA with A at the 3' end, a universal sequencing connector can be effectively connected to two ends of the DNA, the universal connector is not only beneficial to the amplification by taking index as a primer in the next step, but also beneficial to the rapid identification of the sequence of an inserted fragment in the later biological information analysis data, and the purification step of a connection product is to remove redundant connectors, enzymes and salt ions in a system, so that the amplification system in the next step is not influenced.
6. Library amplification
The index primer with the identity tag sequence is mixed with the library sample for PCR amplification by base complementary pairing with the universal adaptor specific sequence, so that the library is uniquely tagged with the index tag, even if a plurality of different samples are mixed together for sequencing, and finally, the bioinformatic analysis can distinguish the sequence into different samples according to the different index attached to each DNA.
7. Amplified library purification and quality control quantification
The amplified product is purified by adopting NanoPrep SP Beads magnetic beads, enzyme and salt ions in a system are removed, the concentration of a library is required to be not lower than 12.5 ng/. Mu.L after the Qubit is quantified, the fragment size of the library is detected by using an Agilent 2100 bioanalyzer, the fragment size of the library is required to be 270-370 bp, the library meeting the two quality control standards only shows that the DNA is effectively connected with a linker, and the fragment size is within the effective sequencing range of an MGISEQ2000 sequencer.
8. Library mix concentration
Multiple (no more than 12) libraries can be mixed, and Human Cot DNA (Nanodigmbio) can be added to the mixed libraryUniv ersal Blockers-TS Mix (Nanodigmbio), vacuum concentrating to liquid at 60deg.C with Eppendorf Concentrator plus vacuum centrifugal concentrator, evaporating to dryness, and concentrating Human Cot DNA to obtain highly repetitive sequence, wherein the repetitive sequence of genome can be blocked, and concentrating>Universal Blockers-TS Mix can block library joints, and the two components can reduce non-specific binding between joints and between repeated sequences, thereby reducing off-target rate and improving the effective capture data proportion.
9. Library hybridization
TSC1, TSC2 probes (the set of probes comprises the exons and intronic junction regions of the TSC1, TSC2 genes) diluted to 100 amol/. Mu.L were mixed with the library concentrated in the previous step and hybridized overnight at 65 ℃.
10. Preparation of washing buffer and Capture magnetic beads
The steps include diluting the multiple Wash buffers to 1 Xfor use, rinsing with Bead Wash buffers to remove Beads preservative fluid (which may be Dynabeads) TM M-270Streptavidin Beads) and then re-suspending the beads with a bead suspension and incubating at 65℃for use.
11. Capturing hybridization fragments
As shown in FIG. 2, dynabeads is used TM M-270Streptavidin Beads removes the capture probe, the probe is provided with biotin label, the streptavidin magnetic beads can be effectively combined with the probe, and the probe is combined with the target gene through hybridization, so that the aim of capturing the target gene is achieved.
12. Washing away unbound DNA fragments
Because some nonspecific binding is unavoidable in the hybridization capturing process, but the nonspecific binding is weak, a plurality of rinsing buffers (Wash buffers) are used for rinsing the captured streptavidin magnetic beads in sequence, and nonspecific DNA fragments which are weak in binding are removed, so that specific target DNA is obtained.
13. Post-capture library amplification enrichment
The amount of DNA obtained after the capture of the probe is relatively small, and PCR amplification is needed to enrich the captured specific DNA.
14. Library purification and quantification
The library is purified to remove enzyme and redundant primers in the system, and the concentration of the amplified and enriched purified product is measured by using Qubit, so that the concentration of the library is required to be not lower than 5.8 ng/. Mu.L (the minimum concentration for ensuring that the library can be cyclized once); the fragment size of the library was measured using an Agilent 2100 bioanalyzer (manufacturer Agilent technologies Co., ltd., foreign name: agilent Technologies Inc.), requiring a library fragment size of 270-370 bp.
15. Obtaining single-stranded DNA and quality control thereof
Denaturing the purified amplified product at 95deg.C for 3min to double-strand melt the DNA, performing single-strand cyclization reaction with DNA Rapid enzyme, performing digestion reaction to remove unsuccessfully cyclized DNA, and purifying the digested productUsingThe ssDNA Assay Kit is used for quantifying the products after digestion and purification according to the operation instructions of the quantification Kit. The required product yield (ssDNA)/PCR input (dsDNA) was 7% or more, i.e., greater than 0.60 ng/. Mu.L. Such cyclization is successful and can be sequenced on-machine.
In some embodiments, the detection method of the invention can be used for detecting TSC1 and TSC2 total gene point mutation, copy number variation and chimeric mutation, and a part of typical results are selected for detailed description.
Example 2
A previous positive sample A1 (peripheral blood) was provided by Shenzhen Anjikanol medical test laboratory, and subjects of this sample repeatedly had a corrugated road for 6 years, focused on the investigation of tuberous sclerosis gene, and Nanodigmbio was used by Anjikanol medical test laboratoryThe detection result of the whole exon detection technology made by the Hybrid Capture Re agents kit is that the TSC1 gene is mutated, the mutation site is NM_000368.4:c.1757del, and the detection is carried out by the method of the embodiment, as shown in the detection flow chart of FIG. 1, the specific detection method is as follows:
1DNA sample fragmentation
1.1 use ofdsDNA HS Assay Kit fluorescent quantitative kit according to the quantitative kit operation to detect the concentration of the sample, 1 μg quality-qualified gDNA sample is taken, and 1 xTE buffer (10 mM Tris-HCl, 1mM EDTA, pH=8.0) is used to dilute the sample to the standard volume of the covaries breaking tube.
1.2 transferring the diluted sample into a breaking tube, using an automatic focusing ultrasonic breaker Covaris M220 breaking instrument to fragment the sample gDNA, and transferring the sample into a 0.2mL PCR tube by using a pipette after the fragmentation.
2 fragment screening
2.1 taking out Agencourt AMPure XP Beads in advance, balancing at room temperature for 30min, and then uniformly mixing by vortex for use.
2.2 sub-packaging 72 mu L Agencourt AMPure XP Beads into PCR tube, adding 90 mu L of fragmented product (when the volume is insufficient, using TE buffer to supplement the fragmented product) into the PCR tube, vortex oscillating for 5s or using a pipette to gently blow for 10 times, fully and uniformly mixing, standing at room temperature for 5min, standing at room temperature for 2-5min until the liquid is completely clarified after short centrifugation, and placing the PCR tube on a magnetic rack at room temperature.
2.3 sub-packaging 30 mu L Agencourt AMPure XP Beads into PCR tube, taking 150 mu L supernatant from the previous step into the PCR tube by using a liquid-transferring device, vortex oscillating or lightly blowing 10 times by using the liquid-transferring device to fully mix the supernatant, standing for 5min, placing the PCR tube on a magnetic rack after short centrifugation, standing for 2-5min at room temperature until the liquid is completely clear, and sucking the supernatant by using the liquid-transferring device.
2.4 Add 150. Mu.L of 80vol% ethanol slowly along the side wall of the PCR tube, note that the beads were not disturbed, let stand for 30s and pipette the removed supernatant using a pipette, repeat the procedure once.
2.5 cover the tube, spin the PCR tube instantaneously, cover the tube on a magnetic rack, remove a small amount of residual ethanol using a 10. Mu.L tip. The cover is kept open, and the magnetic frame is dried at room temperature for about 2 to 5 minutes until the ethanol is completely volatilized, the surfaces of the magnetic beads have no reflection, and the magnetic beads are not excessively dried until cracking.
2.6 to the PCR tube 43. Mu.L nuclease free water (Nuclease Free Water) from Invitrogen was added, the PCR tube was removed from the magnet holder, and the beads were suspended uniformly by vortexing or gently swiping 10 times using a pipette and incubated for 5min.
2.7 the PCR tube was centrifuged transiently and placed on a magnetic rack for 2-5min until the liquid was completely clear, 41. Mu.L of supernatant was pipetted using a pipette and transferred to a new PCR tube. 1 mu L of the mixture is taken and useddsDNA HS Assay Kit fluorescent quantitative kit, the concentration is 1.58 ng/. Mu.L, the next step of operation is carried out within the required DNA concentration range of 1.25-6.25 ng/. Mu.L, the following step 3 is carried out6 are all according to Nanodigmbio +.>DNA universal library construction kit procedure.
3 terminal repair & addition A
And 3.1, taking out the End Repair & A-stirring Buffer, melting at normal temperature, uniformly mixing, centrifuging briefly, placing on an ice box for standby, taking out the End Re pair & A-stirring Enzyme, centrifuging briefly, and placing on ice for standby.
3.2 preparation of the reaction system was carried out in a 0.2mL PCR tube placed on ice according to the addition requirements of the following table.
TABLE 3 Table 3
Component (A) Single reaction volume (μL)
Fragment-screened DNA 40
ERA buffer 6
ERA Enzyme 4
Total volume of 50
3.3 adding the mixed solution prepared according to Table 3 into the DNA sample after fragment screening, uniformly mixing, centrifuging briefly, and centrifugally collecting the reaction solution to the bottom of the tube.
3.4 the following reaction procedure was started on the PCR apparatus, and when the isothermal stability was reached to 20 ℃, the reaction tube was placed in the PCR apparatus for reaction, and the reaction procedure was as shown in Table 4.
TABLE 4 Table 4
/>
4-linker ligation and ligation product purification
And 4.1, taking out the Ligation buffer, melting at normal temperature, uniformly mixing, performing instantaneous centrifugation, and placing on ice for standby. Taking out DNA Ligase, naturally thawing on ice, mixing, and instantaneous centrifuging.
4.2 taking out the reaction tube from the PCR instrument after finishing the finishing step, placing the reaction tube on ice, adding 2 mu L of NanoPrep M-Adapter into ERA product according to the following table, adding the prepared Ligation buffer and DNA Ligation mixture into the end repair & addition A reaction product, and preparing a joint connection reaction system as follows:
TABLE 5
4.3, uniformly mixing, and instantly centrifuging to make all the reaction liquid be placed at the bottom of the PCR tube.
4.4 the following reaction procedure was started on the PCR instrument and the reaction tube was placed into the PCR instrument when the isothermal stability was 20 ℃):
TABLE 6
4.5 taking out NanoPrep SP Beads in advance, balancing at room temperature for 30min, and uniformly mixing by vortex for use.
4.6 40. Mu. L NanoPrep SP Beads was added to the ligation reaction product, vortexed for 5s or gently beaten 10 times with a pipette and thoroughly mixed, and left to stand at room temperature for 5min.
4.7 the PCR tube was centrifuged transiently and placed on a magnetic rack for 2-5 min until the liquid was completely clear, and the supernatant was pipetted off (no more than 5. Mu.L of liquid could be left to prevent blotting to the magnetic beads).
4.8 slowly add 150. Mu.L 80vol% ethanol along the side wall of the PCR tube, note not to disturb the beads, stand for 30s, pipette the removed supernatant with a pipette, and repeat the procedure once.
4.9 cover the tube, spin the PCR tube instantaneously, cover the tube on a magnetic rack, remove a small amount of residual ethanol using a 10. Mu.L tip. The cover is kept open, and the magnetic frame is dried at room temperature for about 2 to 5 minutes until the ethanol is completely volatilized, the surfaces of the magnetic beads have no reflection, and the magnetic beads are not excessively dried until cracking.
4.10 removing the PCR tube on the magnetic rack, adding 23 mu L of nuclease-free water into the tube, and carrying out vortex oscillation for 5s or lightly blowing 10 times by using a pipette to fully mix, and standing for 5min at room temperature.
4.11 after the PCR tube was centrifuged briefly, it was placed on a magnetic rack for 2-5 min until the liquid was completely clear, and 20. Mu.L of supernatant was pipetted into a new PC R tube.
5 library amplification
5.1 removal of 2X HiFi PCR Master Mix, nanoPrep TM The M-index Primer Mix is placed on ice for natural melting, uniformly mixed and instantaneously centrifuged for standby.
5.2 preparation of the reaction system was carried out in a PCR tube placed on ice according to the system shown in Table 7 below, and index numbers added to each well were recorded on a task sheet.
TABLE 7
Component (A) Single reaction volume (μL)
After purificationIs a product of the linker ligation of (2) 20
NanoPrep M-index Primer Mix 5
2X HiFi PCR Master Mix 25
Totals to 50
5.3 placing the PCR tube into a PCR instrument started the procedure shown in Table 8 below.
TABLE 8
6 amplification library purification and quality control quantification
6.1 after amplification was completed, 50. Mu. L NanoPrep SP Beads was added to the amplified product, vortexed for 5s or gently beaten 10 times with a pipette and thoroughly mixed, and left at room temperature for 5min.
6.2, the PCR tube is placed on a magnetic rack after instantaneous centrifugation for 2-5 min until the liquid is completely clarified, and the supernatant is sucked and removed by using a pipette (not more than 5 mu L of liquid can be remained to prevent sucking the magnetic beads).
6.3 Add 150. Mu.L of 80vol% ethanol slowly along the side wall of the PCR tube, take care not to disturb the beads, stand for 30s, and pipette the removed supernatant.
6.4 repeat step 6.3 once.
6.5, covering the tube cover, instantly centrifuging the PCR tube, placing the cover on a magnetic rack, and removing a small amount of residual ethanol by using a 10 mu L suction head. The cover is kept open, and the magnetic frame is dried at room temperature for about 2 to 5 minutes until the ethanol is completely volatilized, the surfaces of the magnetic beads have no reflection, and the magnetic beads are not excessively dried until cracking.
6.6 removing the PCR tube on the magnetic rack, adding 43 mu L of nuclease-free water into the tube, and carrying out vortex oscillation for 5s or lightly blowing 10 times by using a pipette for fully and uniformly mixing, and standing for 5min at room temperature.
6.7 after brief centrifugation, the solution was placed on a magnetic rack for 2-5min until the solution was completely clear, and 41. Mu.L of the supernatant was pipetted into a 1.5mL centrifuge tube.
6.8 usedsDNAHS Assay Kit fluorescent quantitative kit is used for measuring the concentration of the purified product after library amplification, wherein the concentration is 91.8 ng/. Mu.L; the library was quality controlled using an Agilent 2100 bioanalyzer, as shown in fig. 3, where the abscissa in fig. 3 refers to fragment length in bp and the ordinate refers to Fluorescence value Fluorescence, and the library fragment size was found to be centered at 250-450bp.
7 library mix concentrate
7.1 starting up the Eppendorf Concentrator plus vacuum centrifugal concentrator, and preheating for 15min under the program of selecting the temperature of 60 ℃ in a V-AQ mode.
7.2 calculation of the library concentration the volume to be added at 500ng per library, 1-12 libraries of different index were added to the same 1.5mL centrifuge tube and mixed.
7.3 after library mixing, 5. Mu.L of Human Cot DNA (Nanodigmbio) and 2. Mu.L of each mixed library were addedUniversal Bl ockers-TS Mix (Nanodigmbio), the specific hybridization library mixing method is shown in Table 9.
TABLE 9
7.4 blow-mixing the library mixture with a pipette under 20 or vortex mixing for 10s, instantaneous centrifuging, placing the mixed library centrifuge tube into a vacuum concentrator preheated to 60 ℃, and balancing.
7.5 set up concentrator program: time (time): 80min; temperature (temp): 60 ℃; mode (mode/vent): V-AQ.
7.6, operating the concentrator, after the operation time is over, observing whether the library is evaporated to dryness, if not, continuing concentrating according to the above procedure, wherein the operation time is set according to the actual volume of the library, and other procedures are unchanged.
7.7 after the complete evaporation of the liquid and complete drying, the next reaction is continued.
8 library hybridization
8.1 during library concentration, the kit purchased from Nanodigmbio corporation was removedReagents 2X Hybridization Buffer and Hybridization Buffer Enhancer in Hybrid Capture Reagents were thawed at room temperature for use.
8.2 the TS1/TS2 panel probe diluted to 100 amol/. Mu.L was removed and naturally thawed on ice.
8.3 preparing hybridization reaction liquid according to the following table, uniformly mixing by using a liquid transfer device, adding the mixture into the bottom of a centrifuge tube which is concentrated and dried in vacuum, gently blowing and sucking the mixture by using the liquid transfer device, uniformly mixing for 20 times, performing instantaneous centrifugation, and incubating for 5 minutes at room temperature.
Table 10
Reagent name Single reaction volume (μL)
2×Hybridization Buffer 8.5
Hybridization Buffer Enhancer 2.7
Nuclease Free Water 1.8
TS1/TS2 panel(100amol/μL) 4
Total volume of 17
The dry powder library is prevented from adhering to the pipe wall around the bottom of the blowing and sucking pipe.
8.4 preparation of a skirted 96 well PCR plate during incubation, the center position was selected as the library addition position, and labeling was done in advance on the outer edge of the wells.
8.5 vortex mixing hybridization reaction mixture, after instantaneous centrifugation, transferring all 17 mu L hybridization reaction mixture in a centrifuge tube into a prepared PCR plate, covering 2 layers of PCR films, pressing and sealing the films after film pasting, instantaneous centrifugation, placing into a PCR instrument, and starting a hybridization program shown in the following table 11 to carry out hybridization reaction:
TABLE 11
/>
9 preparation of washing buffer and Capture magnetic beads
9.1 on the next day the hybridization reaction is near or has been completed, dynabeads are removed TM M-270Streptavidin Beads, and balancing at room temperature for 30min. Kit purchased from Nanodigmbio corporation was removed Reagents 2X Bead Wash Buffer, 10 XWash Buffer I, 10 XWash Buffer II, 10 XWash Buffer III and 10X Stringent Wash Buffer and 2X Hybridization Buffer and Hybridization Buffer Enhancer in Hybrid Capture Reagents were thawed at room temperature.
9.2 preparation of magnetic bead suspension
The required magnetic bead suspension was prepared according to the system shown in table 12 below and mixed well and centrifuged instantaneously for use.
Table 12
Reagent name Single reaction volume (μL)
2×Hybridization Buffer 8.5
Hybridization Buffer Enhancer 2.7
Nuclease Free Water 5.8
Total 17
9.3 preparation of cleaning Buffer
According to the system amounts shown in Table 13 below, a 1 Xworking solution of a wash Buffer for each hybridization reaction was prepared:
TABLE 13
Prepared 1× Stringent Wash Buffer was dispensed into 0.2mL PC R tubes at 2 parts of 160. Mu.L and 1×Wash Buffer I at 1 part of 110. Mu.L, and the mixture was placed in a 65℃PCR apparatus for 1 hour and incubated, and the remaining volume and other buffers were placed at room temperature for use.
9.4 streptavidin magnetic bead washing
9.4.1 Dynabeads is provided with TM M-270Streptavidin Beads was vortexed for 15s to ensure complete mixing. 50 μ L M270 beads were pipetted into 1 0.2mL low adsorption PCR tube.
9.4.2 to the tube was added 100. Mu.L of 1 XBead Wash Buffer, gently sucked and mixed for 10 times, centrifuged instantaneously, placed on a magnetic rack for 5min, and after the liquid was completely clarified, the supernatant was removed using a pipette. The centrifuge tube was removed from the magnet holder.
9.4.3 the above steps are repeated twice.
9.4.4 17. Mu.L of the magnetic bead suspension was added, gently sucked and mixed, and incubated on a PCR instrument for 5min according to the following procedure.
TABLE 14
Temperature (DEG C) Time Description of the invention
65 45min Thermal elution, setting the temperature of the thermal cover at 70 DEG C
10 Capture of hybridization fragments
10.2 the reaction system after hybridization was added rapidly to the incubated beads (during which the beads were placed on a PCR apparatus at 65 ℃) and gently sucked 10 times with a pipette for mixing.
10.3, continuing to incubate for 45min at 65 ℃, and rapidly and gently swirling once every 11min or blowing and sucking 10 times of magnetic beads, so as to ensure complete resuspension and avoid generating bubbles.
11 washing away unbound DNA fragments
After the capturing of the magnetic beads is finished, 100 mu L of 1 XWash Buffer I at 65 ℃ is added into a capturing system on a PCR instrument at 65 ℃ and is blown and mixed uniformly for 10 times, so that bubbles are avoided. Taking down, standing the magnetic rack for 1min, and rapidly discarding the supernatant.
11.2 putting the sample back to the 65 ℃ PCR instrument, immediately adding 150 mu L of 1X Stringent Wash Buffer with the temperature of 65 ℃ into the sample, blowing and mixing for 10 times, avoiding generating bubbles, covering a hot cover, standing for 5 minutes, taking down, standing for 1min on a magnetic rack, and rapidly discarding the supernatant.
11.3 repeating the previous step.
11.4 removing the PCR tube, adding 150 mu L of room temperature 1 XWash Buffer I in room temperature environment, incubating for 2min at room temperature, standing for 30s by vortex 30s, alternately conducting, carrying out instantaneous centrifugation after incubation, standing for 1min on a magnetic rack, and sucking and removing the supernatant.
11.5 removing the PCR tube, adding 150 mu L of 1 XWash Buffer II at room temperature, incubating for 2min at room temperature, standing for 30s by vortex 30s in the period of time, alternately conducting, and standing for 1min on a magnetic rack after the incubation is completed by instantaneous centrifugation, and sucking and removing the supernatant.
11.6 removing the PCR tube, adding 150 mu L of 1 XWash Buffer III at room temperature, incubating for 2min at room temperature, standing for 30s by vortex 30s in the period of time, alternately conducting, and standing for 1min on a magnetic rack after the incubation is completed by instantaneous centrifugation, and sucking and removing the supernatant.
11.7 cover the tube, place the PCR tube on a magnetic rack for 1min after instantaneous centrifugation again, and remove a small amount of residual Buffer by replacing a 10. Mu.L suction head after the liquid is completely clarified.
11.8 remove the PCR tube, add 22.5. Mu.L nuclease free water (NF water, also known as Nuclease Free Water), gently blow and suck 10 times with a pipette to ensure uniform mixing, transfer all liquid to a new 0.2mL PCR tube, and carry out the next reaction with magnetic beads.
Library amplification enrichment after 12 capture
12.1 removal of the kit from Nanodigmbio CorpIn Capture ReagentsReagents 2X HiFi PCR Mast er Mix and NanoPrep of (E) TM M-Amplification Primer Mix is naturally dissolved on ice, and is gently and uniformly mixed by a pipette or a vortex mixer, and is instantly centrifuged for standby.
12.1 the reaction system was formulated in a PCR tube placed on ice according to the following system.
TABLE 15
Reagent name Single reaction volume (μL)
2×HiFi PCR Master Mix 25
Amplifcation Primer Mix 2.5
Capturing DNA with magnetic beads 22.5
Total volume of 50
12.2 the PCR tube was placed in a PCR instrument and the following procedure was initiated, the hot cap temperature was set to 105℃and amplification enrichment of the library after capture was performed.
Table 16
13 purification of enriched library and quality control quantification
13.1 after completion of the PCR reactionThe reaction product was removed and 60. Mu.L of NanoPrep was added to each sample TM SP beams are blown and evenly mixed under 20 or mixed by a vortex mixer for 10s to ensure even mixing, and the mixture is kept stand for 5min at room temperature.
13.2, the PCR tube is placed on a magnetic rack for 5min after instantaneous centrifugation, and after the liquid is completely clarified, a pipettor is used for sucking and discarding the supernatant.
13.3 Add 150. Mu.L of 80vol% ethanol slowly along the side wall of the PCR tube, take care not to disturb the beads, stand for 1min, and pipette the removed supernatant.
13.4 repeating the above steps once.
13.5 cover the tube and remove the transient centrifugation and place on a magnetic rack and remove residual ethanol using a 10. Mu.L pipette.
13.6, keeping the cover open, drying the mixture on a magnetic frame at room temperature for about 2-5 min until the ethanol volatilizes completely, and taking care not to excessively dry the magnetic beads until the magnetic beads crack.
13.7 remove PCR tube from magnetic rack, add 42. Mu.L TE buffer (i.e. TE Solution), blow with pipettor more than 20 times or vortex mix for 10s to suspend the beads uniformly, incubate for 5 minutes at room temperature.
13.8 the PCR tube was centrifuged transiently and placed on a magnetic rack for 2min, after the liquid was completely clarified, 40. Mu.L of supernatant was transferred to a 1.5mL centrifuge tube.
13.9 use ofdsDNA HS Assay Kit fluorescence quantitative kit for measuring the concentration of the amplified and enriched purified product, wherein the library concentration is 8.86 ng/. Mu.L; the library was quality controlled using an Agilent 2100 bioanalyzer, as shown in fig. 4, where the abscissa indicates fragment length in bp and the ordinate indicates Fluorescence value Fluorescence, and the library fragment size was found to be centered at 250-450bp. The following steps 14-17 were performed according to the MGIEasy cyclization kit manufactured by Hua Dazhi, from which reagents were derived.
14 denaturation
14.1 based on the concentration of amplified purified product after hybridization, 1pmol (about 215 ng) of the qualified purified product was taken into a new 0.2mL PCR tube and supplemented with TE Buffer (TE Buffer) to a total volume of 48. Mu.L.
14.2 the PCR tube was placed on a PCR instrument and the reaction was performed according to the conditions shown in the following table.
TABLE 17
Temperature (temperature) Time
Thermal cover (105 ℃ C.) On
95℃ 3min
14.3 immediately after the reaction, the step PCR tube was transferred to ice and was allowed to stand for 2min and then centrifuged instantaneously.
15 Single Strand cyclization
15.1 taking out the DNA Rapid Ligase in the MGIEasy cyclization module and placing the DNA Rapid Ligase on ice for standby. Taking out the Splint Buffer, melting at room temperature, then swirling for 5s, mixing uniformly, centrifuging instantly, placing on ice for standby, preparing single-chain cyclization reaction liquid on ice according to the following table, blowing for 10 times, mixing uniformly, centrifuging instantly, and collecting the reaction liquid to the bottom of a tube:
TABLE 18
Component (A) Single reaction volume (μL)
Splint Buffer 11.6
DNA Rapid Ligase 0.5
Total volume of 12.1
15.2 sucking 12.1. Mu.L of the prepared single-stranded cyclization reaction solution into a PCR tube, vortex shaking 3 times for 3s each time, and collecting the reaction solution to the bottom of the tube by instantaneous centrifugation.
15.3 the PCR tube was placed on a PCR instrument and the reaction was performed according to the conditions shown in the following table.
TABLE 19
Temperature (temperature) Time
Heat cover (50 ℃ C.) On
37℃ 30min
4℃ Hold
15.4 after the reaction, the PCR tube was centrifuged instantaneously and placed on ice, immediately followed by the next reaction.
16 enzyme digestion
16.1 preparing enzyme digestion reaction liquid on ice in advance according to the table, blowing and beating for 10 times, uniformly mixing, and collecting the reaction liquid to the bottom of a tube by instantaneous centrifugation.
Table 20
Component (A) Single reaction volume (μL)
Digestion Buffer 1.4
Digestion Enzyme 2.6
Total volume of 4
16.2 sucking 4 mu L of the prepared digestion reaction liquid, adding the digestion reaction liquid into a PCR tube, vortex vibrating for 3 times, and collecting the reaction liquid to the bottom of the tube by instantaneous centrifugation for 3s each time.
16.3 the PCR tube was placed on a PCR instrument and the reaction was performed according to the conditions shown in the following table.
Table 21
Temperature (temperature) Time
Heat cover (42 ℃ C.) On
37℃ 30min
4℃ Hold
16.4 after the reaction, the reaction mixture was collected to the bottom of the tube by instantaneous centrifugation.
16.5 immediately add 7.5. Mu.L digestion stop buffer (Digestion Stop Buffer) to the PCR tube, vortex 3 times, each 3s, spin the reaction to the bottom of the tube, aspirate all reaction and transfer to a new 1.5mL centrifuge tube.
17 enzyme digestion product purification and quality control quantification
17.1 taking out DNA Clean Beads 30min in advance, placing at room temperature, and fully shaking and uniformly mixing before use.
17.2 sucking 170 mu L DNA Clean Beads into the digested product, gently pipetting with a pipette at least 10 times or vortexing for 5s until all beads are suspended, the last pipetting ensuring that all liquid and beads in the pipette tip are driven into the centrifuge tube.
17.3 incubation for 10min at room temperature.
17.4 centrifuging the centrifuge tube instantaneously, placing the centrifuge tube on a magnetic rack, standing for 2-5min until the liquid is clear, carefully sucking the supernatant by a pipette and discarding the supernatant.
17.5 keep the centrifuge tube on a magnetic rack, add 500. Mu.L of freshly prepared 80vol% ethanol along the tube wall to rinse the beads and tube wall, let stand for 30s, carefully aspirate the supernatant and discard.
17.6 repeating the previous step, sucking up the liquid in the tube as much as possible, centrifuging the centrifuge tube instantaneously when a small amount of liquid remains on the tube wall, separating on a magnetic frame, and sucking up the liquid at the bottom of the tube by using a 10 mu L or 20 mu L pipette.
17.7, keeping the centrifuge tube on the magnetic frame, opening the tube cover of the centrifuge tube, and drying at room temperature until the surface of the magnetic beads has no reflection and no cracking.
17.8 the tube was removed from the magnet rack, 25. Mu.L TE Buffer was added for DNA elution, and the beads were gently pipetted at least 10 times until all beads were suspended.
17.9 incubation for 10min at room temperature.
17.10 the tube was centrifuged instantaneously, placed on a magnetic rack, left to stand for 2-5min until the liquid clarified, and 23. Mu.L of supernatant was pipetted into a new 1.5mL centrifuge tube.
17.11 useThe ssDNA Assay Kit is used for quantifying the products after digestion and purification according to the operation instructions of the quantification Kit. The product concentration was 1.85 ng/. Mu.L.
18 results description
After MGISEQ2000 sequencer uses MGISEQ2000RS high-flux sequencing reagent kit sequencing and bioinformatics analysis, it is found that a mutation exists in the TSC1 gene of the sample A1, the mutation site is NM_000368.4:c.1757del, and the result is consistent with clinical diagnosis result and whole exon sequencing result.
Table 22
Detection method Sequencing quantity Sequencing depth
Full exon sequencing 10G 150×
Example 2 2G 3000×
The sequencing amount and sequencing depth of example 2 of the present invention are shown in Table 2, and it can be seen that the sequencing amount of example 2 is 2G, which is far less than 10G for whole exon sequencing, while the sequencing depth of example 2 reaches 3000X, and the whole exon sequencing depth is only 150X. The sequencing amount of example 2 was significantly reduced and the sequencing depth was significantly increased.
Example 3
A previous positive sample A2 provided by shenzhen angekang medical test laboratory, the subject of which was admitted to the hospital 1 day of fever due to repeated tics for more than 5 years, physical examination: a brown rash of about 3cm was seen on the neck, a shark skin was changed, and multiple depigmentation spots were seen throughout the body. The primary diagnosis is tuberous sclerosis. The Shenzhen Anji Karl medical test laboratory uses Nanodigmbio corporationThe detection result of the whole exon detection technology made by the Hybrid Capture Reagents kit is negative, the detection is carried out by adopting the method of the example 1, and the detection result shows that the TSC2 gene of the sample A2 has mutation in an intron region, and the mutation site is NM_000548.3:c.848+281C>T (intron_variant), intron9/40, was used to verify this site in the family samples using Sanger sequencing, and the sequencing results were consistent with the results of the test in this example.
Example 4
A previous positive sample A3 provided by an Anjikaner medical test laboratory, wherein a subject of the sample is admitted for 'heating for half a day, convulsion for 1 day', and scattered on a plurality of places of pigment despeckle>3) wherein the neck is largest, about 2 x 1.5cm. Skull CT: multiple abnormal density foci under the frontal lobe and the ependymal tract on both sides, considered nodular sclerosis. The Shenzhen Anji Karl medical test laboratory uses Nanodigmbio corporation The detection technology of the whole exon by the Hybrid Capture Reagents kit detects that the TSC2 gene has a 5kb large fragment deletion. High throughput sequencing assays were performed using the method of example 1, and the results showed that the samples wereThe deletion of exons 33 to 44 of the TSC2 gene of A3 is consistent with clinical diagnosis and whole exon sequencing.
Example 5
A past positive sample A4 provided by the angekol medical test laboratory, the subject of which had first onset, symptoms, at 1 year old: the teeth biting and the limb convulsion are well controlled by eating oxcarbazepine, no attack exists, and the electroencephalogram is normal at present. Clinically diagnosed as tuberous sclerosis, applied by the medical test laboratory of Shenzhen Anji Kang Er with Nanodigmbio companyThe detection of the whole exon detection technology by the Hybrid Capture Reagents kit is negative, the detection is carried out by adopting the method of the example 1, and the detection result shows that a heterozygous mutation which is possibly pathogenic is found on the TSC2 gene, and the mutation site is NM_000548.5:c.3610+1G>A, after the same detection is carried out on a parent family sample, the parent family sample is found to be a new mutation, the parent family sample does not belong to family inheritance, sanger sequencing is adopted to verify the site of the family sample, and the sequencing result is consistent with the detection result of the embodiment.
Example 6
A previous positive sample A5 is provided by an Anji kang medical test laboratory, and a test subject of the sample has coffee spots, dizziness and normal electroencephalogram. 9.5MR right basal segment, right thalamus, bilateral cerebellum, brain stem multiple lesions. Subject mother complaints: dizziness, heaviness and heaviness are frequent after the patient ages 6-7 years old. Clinical diagnosis of tuberous sclerosis was carried out by Shenzhen Anji Kang Er medical laboratory of NanodigmbioFull exon detection by Hybrid Capture Reagents kit found a possibly pathogenic heterozygous mutation NM-000548.5:c.1372C on TSC2 gene>T (p.Arg 458 Ter) was detected by the method of example 1, and from the detection result, a heterozygous mutation was found in the TSC2 gene at a mutation site of NM-000548.5:c.1372C>T(p.Arg458Ter), the parent family sample is subjected to the same detection, and then pathogenic mutation is found to be derived from the mother, the parent belongs to family inheritance, and the detection result of the embodiment is consistent with the clinical diagnosis result.
Example 6
A past positive sample A6 provided by the angekang medical test laboratory, the subjects of which were intermittently twitched for more than 2 years, mental retardation, and visible depigmentation spots on the limbs. The brain CT can see the large ventricle, the calcification focus can be seen under the ventricle tube membrane, the clinical diagnosis is that the nodular sclerosis is caused, and the ddPCR detection is adopted to find that the chimeric mutation NM_000548.5:c.3610+34C > T exists in the TSC2 gene, and the chimeric proportion is 0.5 percent. The detection was performed by the method of example 1, and the detection result showed that there was a heterozygous mutation in the TSC2 gene, the mutation site was NM-000548.5:c.3610+34C > T, the chimeric mutation was chimeric, the chimeric ratio was 0.43%, and the detection result of this example was consistent with the ddPCR detection result.
The foregoing description of the invention has been presented for purposes of illustration and description, and is not intended to be limiting. Several simple deductions, modifications or substitutions may also be made by a person skilled in the art to which the invention pertains, based on the idea of the invention.
SEQUENCE LISTING
<110> Anji Karl (Shenzhen) technology Co., ltd
<120> A probe set for detecting tuberous sclerosis gene mutation and kit therefor
<130> 20I30966
<160> 691
<170> PatentIn version 3.3
<210> 1
<211> 120
<212> DNA
<213> artificial sequence
<400> 1
tgtttggcag gcagcttctc aaatgatgag ctgagtctgt cacttcaaga taaacaactg 60
acagtatttg ttgccaacaa taaaagtcaa ctctcaggtg gaaatcaaga tattaaaaaa 120
<210> 2
<211> 120
<212> DNA
<213> artificial sequence
<400> 2
tgagaatcca gctgtctttc atgaagccat atattaaaga gatggcaaaa atgttccatt 60
cttctcacta aatttatttt tatttcggga aatatagttt tttaataaga atatgtaatt 120
<210> 3
<211> 120
<212> DNA
<213> artificial sequence
<400> 3
aaagaaaaac aacaacacat atgtttactt ttgcaattac atatctgtgg ggccccagat 60
tttctttata cacttcagtc aaaataacat attgcaacag actgaatgta gaggtagata 120
<210> 4
<211> 113
<212> DNA
<213> artificial sequence
<400> 4
acagtgccaa ctatttggaa ggctgaaata ggaggattgc ttgagctcag aagttctaga 60
ccaagcctaa caatatccaa aaaaacaaca aaaacaaaaa gcactcaact ggc 113
<210> 5
<211> 120
<212> DNA
<213> artificial sequence
<400> 5
atttggaata tttgaatagc ttgaggagcc aatattttca gagtgtccaa tgtatgatac 60
gttgcagaat catgcatagg taaaaagtac attcaaagta caaagcaggc tgggcgcagt 120
<210> 6
<211> 120
<212> DNA
<213> artificial sequence
<400> 6
agcagtaacc attattaatt ttattaaatc ttagcccttg agaacatgta tgtgtaatat 60
tcttcgtggc aaaatagaaa atatgcataa ggcacatgta ctgcatacca gggtatgatg 120
<210> 7
<211> 120
<212> DNA
<213> artificial sequence
<400> 7
gttttctctg tctttccttc tagaaatcca gttcatccct gcaccacata atgacatttc 60
agtcaatgat gggctccata gatgatagtg gttctgcgag attataccac cacatcttta 120
<210> 8
<211> 120
<212> DNA
<213> artificial sequence
<400> 8
atcagagtgg acagtgacac cctcatttcc tgttccacac tggttttcct tgtggtgctt 60
tgtatcactg cacccaaaaa aacccggctt cacaaagacg tcatccacag acacagcatc 120
<210> 9
<211> 120
<212> DNA
<213> artificial sequence
<400> 9
ttatgatcgg gacttttgtc aaaacttagc aagattgact aattttattg taagcaaatt 60
atgccatact aacacgttga tttaaaaaat catgccttca gctgggcatg gtcatggctt 120
<210> 10
<211> 120
<212> DNA
<213> artificial sequence
<400> 10
cacagcttgt aatggaaaga agaaataacc caaagttcaa ccaaagggtt atattctata 60
gaataactat tattacaccc cctgaaaaag catgctttta gcagatcgat agttgcaaga 120
<210> 11
<211> 120
<212> DNA
<213> artificial sequence
<400> 11
caaagtgctg ggattacagg ctcacttctg tatgtacgtc aagacataca acagtgttca 60
gcacagcaca gcttgtaatg gaaagaagaa ataacccaaa gttcaaccaa agggttatat 120
<210> 12
<211> 120
<212> DNA
<213> artificial sequence
<400> 12
ggcaaccatc gatctgctaa aagcatgctt tttcaggggg tgtaataata gttattctat 60
aaaatatatc cctttggttg aactttgggt tatttccttt cttctttcca ttacaagctg 120
<210> 13
<211> 120
<212> DNA
<213> artificial sequence
<400> 13
tggtataatt tgcttacaat aaaattaatc aattttgcta agttttgaca aaaatcccaa 60
tcataataaa gaacacttcc atcatcccaa aagttccttt gtgtctcttc ccccacttct 120
<210> 14
<211> 120
<212> DNA
<213> artificial sequence
<400> 14
ttgaaggata tgagtttcca gattgaaggg gcttacctgg tgcccagcta aatcaataaa 60
aaagaatgcc accaggtctc aatattgtaa aagtttatag taccagggat taacctttca 120
<210> 15
<211> 120
<212> DNA
<213> artificial sequence
<400> 15
atctaaatgg attgatgaga atataatcta aatggattgg tgagaatata atctaaatgg 60
attgatgaga atataatcta attttgaggc acatcattta gttcagattg caaaacactt 120
<210> 16
<211> 120
<212> DNA
<213> artificial sequence
<400> 16
gtattataaa aacatgcatt taattcagaa aaaataggaa cagttttaac aacttaatgt 60
tttttaaaca aatggattga tgagaatata atctaattaa tggattggtg agaatataat 120
<210> 17
<211> 120
<212> DNA
<213> artificial sequence
<400> 17
aaataaaaat ttattgtttt gcactactct gctgtgtgga catggagtgg cttacactgg 60
ccttggcagg cttacaggtc aagcagggga ctggtccaaa gatacaaagc cttagggtct 120
<210> 18
<211> 120
<212> DNA
<213> artificial sequence
<400> 18
tatgaactgc aggataaaat ggtacaatct tagtgaatgg gaattggaat caaaagagtt 60
tgctgtcctt cttagaatgt tctaaaatgt caaggcagtt gcttgtgttt aactgtgaac 120
<210> 19
<211> 120
<212> DNA
<213> artificial sequence
<400> 19
tgattttttt taacggactg cttttagtta aattgaagaa agtcagctct tgtcaaaagg 60
tctaaacttt cccgcctcaa tcctaaaagc atgtcaacaa tccacatcag atgccataaa 120
<210> 20
<211> 120
<212> DNA
<213> artificial sequence
<400> 20
cacaaatata ttacggagga acagattttg ctaagacata atctagtttt ataactcaat 60
catgaatgaa ccatgtgtgg caaacttgca gtttaaaggg gtcccatcag tgaaagaaac 120
<210> 21
<211> 120
<212> DNA
<213> artificial sequence
<400> 21
gtttggacag gagggtatgg tgctgctctg tgtagcaagt actttggctt atgaaagagg 60
cagccacgca ttttgcacta ggaagaatca gtaatcactt ttcagaagac ttctatggac 120
<210> 22
<211> 120
<212> DNA
<213> artificial sequence
<400> 22
tatccatcct ctgagataag taggctggtt taaccattgg aatggacctt tcagtggaaa 60
ccctgagagt ctgagaaccc ccagaccaac ccttccctcc ctttccccac ctcttacagt 120
<210> 23
<211> 120
<212> DNA
<213> artificial sequence
<400> 23
gtagctgtag ctacaaggga agcctgcctg gaagagccga gcacctgtgc ccatggcttc 60
tggtcatgaa acgagttaat gatggcagag gagcttcctc cccacttcgc agcgccacat 120
<210> 24
<211> 120
<212> DNA
<213> artificial sequence
<400> 24
tgtgaccctt gtcccatgtg gcttgtttgc ctgtccggga ctcttcgatg tgcccagggg 60
agcgtgttcc tgtctcttcc atgccgtcct gcagtcctta tctgctcgcc tgagggaaga 120
<210> 25
<211> 120
<212> DNA
<213> artificial sequence
<400> 25
ctgtgacaca tgccccccag attgctgcaa agatcccaag gcattgattg cacttgatta 60
agcttttgtc tgtaggtgaa agaacaagtt taggtcgagg actggcccct aggctgctgc 120
<210> 26
<211> 120
<212> DNA
<213> artificial sequence
<400> 26
gtatacctat ctgctgcacc ttcactctcc agggtacatg ctttaaaacc gacccgcaac 60
aagtattgga aaaatgtatc cagtctgaag atgtttgtgt atctgtttac atccagagtt 120
<210> 27
<211> 120
<212> DNA
<213> artificial sequence
<400> 27
aggaccttgg tgagatgggg tgccgcccac ctcctgcgga tactcttgga gagttgttcc 60
cccagggggc tctgccccac ctggagaagg aagctgcctg gtgtggagtg actcaaatca 120
<210> 28
<211> 120
<212> DNA
<213> artificial sequence
<400> 28
accgaagagc aaacaaaagt tctgcgtaat gagactcacc ttttctcgct gaaagcacta 60
agaggtggga ggaggcctgc acaggctgga ggagggtttg ggcagagcga agacccggcc 120
<210> 29
<211> 120
<212> DNA
<213> artificial sequence
<400> 29
actgttaaga atagaaaact gggtatgcgt ttcatgtagc cagcagaact gaagtgtgct 60
gtgacaagcc aatgtgaatt tctaccaaat agtagagcat accacttgaa gaaggaaaga 120
<210> 30
<211> 120
<212> DNA
<213> artificial sequence
<400> 30
gcacacatag tttctggtat atttgttggg aaagataaaa ctctagcagt tgttgagggg 60
aggatgtata aaatggtcat ggggatgaaa ggatctctga gaccacagag gctcagactc 120
<210> 31
<211> 120
<212> DNA
<213> artificial sequence
<400> 31
gtgaactgtt acgacccagg acaattagaa aaattcaccc accatgccgc acattactgg 60
gtaaaagcag ggcagcaggg aacaaaactc cagactcttg ggccgtcccc atttgcaaca 120
<210> 32
<211> 120
<212> DNA
<213> artificial sequence
<400> 32
ggactaagct gcggaatctt cttactaagc ttgaagagtg gagaggcgag aggtgagcta 60
ctttgtgagc caaagcttat gtgacatggt tggggaaaca gtccaaactg ttctgagaag 120
<210> 33
<211> 120
<212> DNA
<213> artificial sequence
<400> 33
tgtgaaagat gtccttggag atgagtttta ggaccagcat tactaaggca ggtgggcaga 60
cagtgacctc tctaggtgtg tccacagagt ttttcaggag agaaaactgc ctgacctttg 120
<210> 34
<211> 120
<212> DNA
<213> artificial sequence
<400> 34
gctctgctat acagtctata aaaattgtta ttatgggatt ggaagaaaca cgtggtcatg 60
aatagaaaaa aaacaaaccc aaaggtagga aggtcaaggt catttcttag atggagaagt 120
<210> 35
<211> 120
<212> DNA
<213> artificial sequence
<400> 35
tcctttaaaa aggtgcacta cagttttagc ggggaggggg ataggaagac gcagagcaaa 60
tgagctccgg agtccctgca ggtgaataaa cacacagatc tgcatctgat agaactttga 120
<210> 36
<211> 120
<212> DNA
<213> artificial sequence
<400> 36
gcatacctgt ctcagctgtt tggccaatgt gcataaccta ctcggatccc cacctgacac 60
taaccagagt cagcacaggc cccgaggagc ccgaagtctg ctgctgtgca gcatggaatt 120
<210> 37
<211> 120
<212> DNA
<213> artificial sequence
<400> 37
ggcaaaggta ttagtacaat aagcgttaag ggcagagtct accttgaaac caattaagca 60
gcttggtatt cataaatatt gggattggat ggcctccatc cagaaatcac tatgggtgag 120
<210> 38
<211> 120
<212> DNA
<213> artificial sequence
<400> 38
gtttggtttt ggacatgata aacctgccaa gagtcaacag gtcacttgat catgctgcag 60
tgggtagttc taaggatgga aaggtgacag tattactctc gagaggcaat tcagtcctgg 120
<210> 39
<211> 120
<212> DNA
<213> artificial sequence
<400> 39
ctgtgggttt tattcaacta cggttgggag aatgagacct ggagtcatgt tgaaggtgcc 60
caacctaaaa atgtaggctt tcatgttgca aagaactcca gagtcagtag ttaggtttgg 120
<210> 40
<211> 120
<212> DNA
<213> artificial sequence
<400> 40
gaagctccat ggacgtgtct gcacagggtc ctcagctcat ccatgcggcc tgggtgtcct 60
tttactcagc tttataacaa atgtggctcc aagctcaggt gcctttgagt tctaggaggc 120
<210> 41
<211> 120
<212> DNA
<213> artificial sequence
<400> 41
ccttttcctg aattggaaag gaaaagaggc ccaagtgcaa aagaaaaaac attttagaaa 60
cggacagctt ataaaaataa agggaagaaa ggaggcagca tggagagagg cctgtgctag 120
<210> 42
<211> 120
<212> DNA
<213> artificial sequence
<400> 42
aacaaactta gaaagggaag gaaatcccat cagtgaatcc tgaaactggt tttaagtgct 60
ttccttctcc tcatgcccaa gagatctgtg ccatagaaca agataccagg cacttaaagc 120
<210> 43
<211> 120
<212> DNA
<213> artificial sequence
<400> 43
tgaattgtca gatgtggagt attagtgaca ccacacattt aattcagctt tgtccaaagg 60
aaagcttaaa acccaataca gtctagtttc ctggttccgt tttagaaaag gaaaacgtga 120
<210> 44
<211> 120
<212> DNA
<213> artificial sequence
<400> 44
caccctagct ataccagcag aaaacctgtt caggcaggct ttctgggtgt gactgattcc 60
cagcctgtgg cagggcgtgg tcccaactac tcagcctagc acaggctggc agttggtact 120
<210> 45
<211> 120
<212> DNA
<213> artificial sequence
<400> 45
gcccacggag gcctcgagca gagagaatga aagtcttttt tttttttttt tttttttagc 60
atggcaataa atattctagc atccctaact aaaggggact agacagttag agactctgtc 120
<210> 46
<211> 120
<212> DNA
<213> artificial sequence
<400> 46
gggggatttg gtaggaagga gccagtgaac ttggctttcc tgtttctatc tttcattaaa 60
aagaatagaa ggattcagtc ataaagaggt aaaaaactgt cacggtacga aatcttagtg 120
<210> 47
<211> 120
<212> DNA
<213> artificial sequence
<400> 47
ctcccgagag atgacactag tcagaaaatt ggcagtggca gagaatccaa actcaacaag 60
tgctcctgaa agaaacgcta gaagcctaag aactgtggtc tggtgttcca gctgaggcag 120
<210> 48
<211> 120
<212> DNA
<213> artificial sequence
<400> 48
tctccaggga gctgatgtca tcacactctc catgttagta atggcagagc agtctaaaca 60
gagtccggga gaatgctggc aaaggctggc tgtgtatacc cactaggctg ccccacgtgc 120
<210> 49
<211> 120
<212> DNA
<213> artificial sequence
<400> 49
ctgcaaagtg tatgtgacca tcatttccca ggccattagg gttgcctcac tgtagcaggt 60
tctaggctac cagaagaggg gcagcttttt cataccaatt ccaactttca ggggctgact 120
<210> 50
<211> 120
<212> DNA
<213> artificial sequence
<400> 50
gctgggcctt ttgttaaacc cttctgtcta ctggcctccc tttgtgtgca tacgcctctt 60
gttcatgtca gcttatatgt gacactgcag cagaaaggct ctgaaggtcc aaagagtttc 120
<210> 51
<211> 120
<212> DNA
<213> artificial sequence
<400> 51
caggctggtg tgtaggtggt aaaacctgtt ctccatagga gggaaggagc agtcactggg 60
agaggttacc cgagaagcac ttgagcatga ggaactgcac ctttaggcca tctcagcttg 120
<210> 52
<211> 120
<212> DNA
<213> artificial sequence
<400> 52
agaaatctgg agctggcact gtggagacca cacacccttt gggaaagctc ttgtctcttc 60
ttcccccact acctcttatt tatttggtgt ttgcttgaat gctggtacta ttgtgaccac 120
<210> 53
<211> 120
<212> DNA
<213> artificial sequence
<400> 53
tctgaagttc agcatctaaa gcagcaggtc tagaagaaca acggtttatt catacttgca 60
ttcttttggc agttctgata agcttcctag aaagttctgt gtaaacagaa gcctgtttca 120
<210> 54
<211> 120
<212> DNA
<213> artificial sequence
<400> 54
ggtagtttgt tgcattgcag gtaagtctgg ttttgtccct tccaggagga catagcctgc 60
aaagctggtt gtctttacat gaaagcgttt acatgagact ttccgactgc ttttttgatt 120
<210> 55
<211> 120
<212> DNA
<213> artificial sequence
<400> 55
ccaaatggtt gcgtcctttg aacctgtgca atatgaggcc aaatttaatc tttgagtcta 60
acacaccact ttctgctttc ccgaagttca gataactggg ttggctctca attagaccag 120
<210> 56
<211> 120
<212> DNA
<213> artificial sequence
<400> 56
gaaatgcctc ttgaccttcc cctccacccg ccctaacccc ctctcattta cctcgcagtg 60
tgttctaatc caagggccag ttggtgttcc tcagtagctt tactttcttc ctttcccccc 120
<210> 57
<211> 120
<212> DNA
<213> artificial sequence
<400> 57
gaatgcacgt ttcaaagctt tcctgtttcc agggtctgag tgcaagttca tgtgtggaaa 60
tgggacggag gtcctttgga cagctgactg aatgcagaac ggtttttgga tctggcattg 120
<210> 58
<211> 120
<212> DNA
<213> artificial sequence
<400> 58
ccggacagtg ttggacagct acatatcatg gactacaatg agactcatca tgaacacagc 60
taaggaatga tggtcaatca gtgttaactt gcatattgtt ggcacagaac aggaggtgtg 120
<210> 59
<211> 120
<212> DNA
<213> artificial sequence
<400> 59
atgaggacgg catgaccagt agcctttctg agagcctaaa gacagaactg ggcaaagact 60
tgggtgtgga agccaagatt cccctgaacc tagatggccc tcacccgtct cccccgaccc 120
<210> 60
<211> 120
<212> DNA
<213> artificial sequence
<400> 60
gactatggga gaagcgtctg ccagcatccc caccactgtg ggctcacttc ccagttcaaa 60
aagcttcctg ggtatgaagg ctcgagagtt atttcgtaat aagagcgaga gccagtgtga 120
<210> 61
<211> 120
<212> DNA
<213> artificial sequence
<400> 61
gcccggggca gtagtggaag cagaggtggt ggaggcagca gcagcagcag cagcgagctt 60
tctaccccag agaaaccccc acaccagagg gcaggcccat tcagcagtcg gtgggagacg 120
<210> 62
<211> 120
<212> DNA
<213> artificial sequence
<400> 62
ctccccggct ttcttacagg cttgactgtt gtaatgacgg gtgctcagat tccatggtag 60
ggcacaatga agaggcatct ggccacaacg gtgagaccaa gacccccagg cccagcagcg 120
<210> 63
<211> 120
<212> DNA
<213> artificial sequence
<400> 63
tgagtccagt attataaaac agagagtggg ctagcggagt tcagtgtcag tgtgagtgag 60
tgtcagtgta attccacatc ctccgaatgt ggacagtcca atcaccagct ccttttttcc 120
<210> 64
<211> 120
<212> DNA
<213> artificial sequence
<400> 64
ctcttcgtgt tcgtgttcct ggccttgagt ccctccatat ggccacagga agtgttcaca 60
cttaagattg ccacctacta tccctagttg tgatttaggt ttctcttgat gagatctctt 120
<210> 65
<211> 120
<212> DNA
<213> artificial sequence
<400> 65
taaggactgt gtcacgtggt gtgggaagca gttactgctg actagacagg ctgcaacact 60
cagctcactc cgtgtcagag acccactctg acgttccttt cctcaaaacg cccagtgatc 120
<210> 66
<211> 120
<212> DNA
<213> artificial sequence
<400> 66
gaaagatggc ctcctgaaaa aacttgaaga agaaaaagca gaagcagctg aagcagcaga 60
agaaaggtag gaacaaagaa ctgattcatg accttgggac taagctgcca attccagcat 120
<210> 67
<211> 120
<212> DNA
<213> artificial sequence
<400> 67
tctggctggt ctgtatcttt cagaggacag ctgcaggccg cagagagcag gtatgaggct 60
cagaaaagga taacccaggt gtttgaattg gagatcttag atttatatgg caggttggag 120
<210> 68
<211> 120
<212> DNA
<213> artificial sequence
<400> 68
gccaagaaag accaccttct tttggaacag aagaaatatc tagaggatgt caaactccag 60
gcaaggtaac tttcatcagg aaaggctttt gtgtttttat taagtggaac ttcctatatt 120
<210> 69
<211> 120
<212> DNA
<213> artificial sequence
<400> 69
tagaaatgat gaaagccgcc tatcggaaag agctagaaaa aaacagaagc catgttctcc 60
agcagactca gaggcttgat acctcccaaa aacggatttt ggaactggaa tctcacctgg 120
<210> 70
<211> 120
<212> DNA
<213> artificial sequence
<400> 70
tatcagtata ctaaaatgcc ttctcagtcc ttcttacatt gtcttttcaa aatggataca 60
gcatgtttat tttttataag tactaattcc agtctttttt tttttttttt ttcaggaagt 120
<210> 71
<211> 120
<212> DNA
<213> artificial sequence
<400> 71
ggtttttgct cttataaata tgctgtgatg attatttttg tgcaaaatct ctatttatgt 60
ttcacatgat ttgcttgggg atagatttca aggaagggtt actaggataa tactaccagc 120
<210> 72
<211> 120
<212> DNA
<213> artificial sequence
<400> 72
tgttcgcata gttgattgta ctattcacac agtcttgtag tctgcttttt aatcttttta 60
ctgacaccat atcatttttt aaaaagactt agaaatatag gatgtatttt aatttactta 120
<210> 73
<211> 120
<212> DNA
<213> artificial sequence
<400> 73
cgctattgtc aggaggggga gaaaaggaga aaggaaagca agtgacctgc ggtaccactg 60
gactgaaatg ataactggat agtggcgtat tttcacttgg tgttttgtat atgtatatgt 120
<210> 74
<211> 120
<212> DNA
<213> artificial sequence
<400> 74
gcagcaggcc atctgcctta gcacgatcaa caaaccttgt cagggcatcc agtctgcaaa 60
ggctgctttg cttgagcaga cctgctccat tggcattcca ttctgtagcc tcacctgcgc 120
<210> 75
<211> 120
<212> DNA
<213> artificial sequence
<400> 75
taccacggta aacatacaca cacaaatgta acacaggctt aaaaaaatac cctttccgcc 60
ttctttctga gcattagtgt gtacttgctc tgggtttcaa gctgttccaa tctgtcggca 120
<210> 76
<211> 120
<212> DNA
<213> artificial sequence
<400> 76
gcttaccaga cagcatcaag gcagggcgcc ttcgtgaaag ctcatctcct tgctgtttat 60
ggtttattat cttttttaaa aaacaaatat atggcaagtt ttgtgttttg tatattttac 120
<210> 77
<211> 120
<212> DNA
<213> artificial sequence
<400> 77
atgcgttcat ccaccctgtg ctgaagtcga gccatttagc acagctggaa cagccgcatt 60
atccgagagc cagttctgag tttcaatcag ttgcgttcta taacaaggaa gcattgggct 120
<210> 78
<211> 120
<212> DNA
<213> artificial sequence
<400> 78
ggaacagttg gtaggggtag ctgtaaggat tagtgagagt gcacggatgt tcctggttca 60
atgctttgca tgattatcca tgaataagtc ctgttgttta tgacgaaggc cagatagatg 120
<210> 79
<211> 120
<212> DNA
<213> artificial sequence
<400> 79
ccatccctag cctagtcatt gcctcaaccc agtcaggatt tgctcctgaa cctggagcta 60
gggttgctct tgttccatcc aaaggaggag gaagagtgag tggtggggaa tcaggtggga 120
<210> 80
<211> 120
<212> DNA
<213> artificial sequence
<400> 80
ctcatggttg ccaggtgtgt gccacaggca cagatatgac aggcagacac aatgatgtcc 60
ccacagaaga ggagagcatc tcttcctatt cctcagcaag aaaatctttc ccaggctgga 120
<210> 81
<211> 120
<212> DNA
<213> artificial sequence
<400> 81
gcaggtgagt tccaggttgg tcaagttggc cattcaggga cagcatcgag gagccaggct 60
ctttccactc ttctgcactg ccttgcttat cctgcagacc ttgtcttcca gctagctgca 120
<210> 82
<211> 120
<212> DNA
<213> artificial sequence
<400> 82
ggccctgttt cccagttcat aaaacgggtg atgcagctga gttgtgatag tcaggatgcc 60
ttcaattgta gacaacaaaa accaaactag ggctgggcac ggtgacacat gcctacagtg 120
<210> 83
<211> 120
<212> DNA
<213> artificial sequence
<400> 83
ctcctgaaaa agctgctgaa acgtgcctgg gccatctcct gagagaagcc tagatgggcg 60
gcctccaagg agtccttgtg ctgtttggga ccttgagtag ctgcctctcc atggggccct 120
<210> 84
<211> 120
<212> DNA
<213> artificial sequence
<400> 84
tttttagaag gatgttaggt gtgggacttt ctctagaaag cagctatcac ttattttgga 60
ggtgtaatga ctgggaacag aaagggggag aaacagatcc gaggcacaag agagctcctg 120
<210> 85
<211> 120
<212> DNA
<213> artificial sequence
<400> 85
agagtctttt tcggccggat gtagagagga gtcttagaac tggagagagt aattttccta 60
atagagttac tctttatttc ttggctcctc tcagctctca gattcagact ccctttttta 120
<210> 86
<211> 120
<212> DNA
<213> artificial sequence
<400> 86
agtgaatgag gtgggaattg aattttaata gtagctgttc agatacttcc tgtcactaac 60
ttctccatca cacatgggcc ttctttttgg gtttcttggg catgtgcttt gtaaagagtc 120
<210> 87
<211> 120
<212> DNA
<213> artificial sequence
<400> 87
gttcagtcct ggcaacaagg ccagcattgg gatgatctta cattaattag tgcctcacca 60
gtggtgtcga ggcagaagtt ttaagtcact ttataaatag cctcaggtaa tgttagtgaa 120
<210> 88
<211> 120
<212> DNA
<213> artificial sequence
<400> 88
aaaagaagga tgggggacca attctgttta acatacctct caggaccatg gatatagagt 60
gctgtacata ccattttttt ttttcctttt aatgttggat ttctgcagat ggtagttcag 120
<210> 89
<211> 120
<212> DNA
<213> artificial sequence
<400> 89
ttgggttgct ttgaagttaa ctcacactga aagcacctaa tggtagttgg tagagagtag 60
gtgtaaagtg tttcctttct cttccctagg ctgcctttca aagagggaga gagaaaaaga 120
<210> 90
<211> 120
<212> DNA
<213> artificial sequence
<400> 90
ggcatagaga atggcttgat gacttatttc ctaaaagacg gagcggcagt cccactactc 60
cgtggtccag ctatacaagc actttccagc caccatgtga gcttgtttct cctattgggt 120
<210> 91
<211> 120
<212> DNA
<213> artificial sequence
<400> 91
ctatttggaa caactgcaga acaagcactc agataccaca aaggtatgcc agggctcggg 60
agccagacct tagtggggaa agcgtttcag acccagacag tatgtctccc gcatggcata 120
<210> 92
<211> 120
<212> DNA
<213> artificial sequence
<400> 92
cggatttttc actttgctca tgttttttgg ttagctctca aacagtgagt cggtccagca 60
gcagatggag ttcttgaaca ggcagctgtt ggttcttggg gaggtcaacg agctctattt 120
<210> 93
<211> 120
<212> DNA
<213> artificial sequence
<400> 93
attatgtcag ggactgtgaa cccatgggac tggtttattt tgccttaaca ttgaaatagt 60
gtgctcctag ctgattccct gtttaatgac gtctatgtgc tagttttatg tcgtcggatt 120
<210> 94
<211> 120
<212> DNA
<213> artificial sequence
<400> 94
tgtgggtggt cagtttgatg gactgcattt gtgctgtccc ctttgcaaag cacagttctg 60
aagtgtgttt ctgtctattt ttgttgtcct tgggtaccat cctccccacc tgccattatg 120
<210> 95
<211> 120
<212> DNA
<213> artificial sequence
<400> 95
ttctttggga atcactgcac ttcatacatc attttgtcaa gaacggtgag ttttccctag 60
ggctttatgc cactgggcct tggtggtata cctgtccacc ttctccaggt gttctgtggg 120
<210> 96
<211> 120
<212> DNA
<213> artificial sequence
<400> 96
caaagaagta tccatcctaa accctgctct atgtgtatcc catggaactc tttcttcata 60
ccttgtttac ataaatgtca aaagtttgtt caggtttttg agcgtgattc ctccttcttt 120
<210> 97
<211> 120
<212> DNA
<213> artificial sequence
<400> 97
agaagaaatg aggcagacct gaatctgctg aaacaccatt tgctaacatt cttccttcag 60
acaggttaaa gaaatagatt acttgagtgt ctgtgtcatg ggttcccaac aggaagtggt 120
<210> 98
<211> 120
<212> DNA
<213> artificial sequence
<400> 98
cagacgaagc tggaggactg caggaacatg attgcggagc tgcggataga actgaagaag 60
gccaacaaca aggtgtgtca cactgagctg ctgctcagtc aggtttccca aaaggtaaga 120
<210> 99
<211> 120
<212> DNA
<213> artificial sequence
<400> 99
caagaaagta gagccgttga gctaaggcat tcccagtcct ctgtgggctg gtggctaggt 60
aggcctgtga tctggcctgt tggtgttcct caaacttcat gtccacgtct ctttgggcag 120
<210> 100
<211> 120
<212> DNA
<213> artificial sequence
<400> 100
tgcacagttt gggaactgag gatctaaggt ctcttttttt cttttgttaa acagtaagga 60
actcagaaat caaccataac ttacttttta aaactaagac atcaaattct gagggcccaa 120
<210> 101
<211> 120
<212> DNA
<213> artificial sequence
<400> 101
atttccagcc agttagtaat tcacagagtg tccaacagat ggcgctgcgt ctccctcgaa 60
aattcagaat ctttctgcag catccctgtg agtttgctgt gtagcctcag ggctctttgg 120
<210> 102
<211> 120
<212> DNA
<213> artificial sequence
<400> 102
cctaagaact tagtagctgt tcacagataa tacacataaa ttaattttta aaaaaataat 60
tgcaattact aatgcctcgt gtgcacctat tgggcactgc atggtatctc agaccttgaa 120
<210> 103
<211> 120
<212> DNA
<213> artificial sequence
<400> 103
ttgttggttc atatagtagc tcccttagtg tctcagtcat ttttttttct gcagccaaaa 60
ggaaacagtt aacagttctg ctcattaagt agatctgaat aacttagtga gtacgaatgt 120
<210> 104
<211> 120
<212> DNA
<213> artificial sequence
<400> 104
tccctgggtg tccttgactt gttcagcttt actaagctga atgcttttct ctctgaaatc 60
atggcagaaa ttcttcatgg caggtgaatc ttacttagga cagaggttcc ccaactttgt 120
<210> 105
<211> 120
<212> DNA
<213> artificial sequence
<400> 105
tgcagcatga ccgagaggaa ttctacaacc agagccagga attacaggta taaactgcag 60
caccaggcaa agccaactgc gagaatgccg gagagcagtg gggagggagg cagtcagttt 120
<210> 106
<211> 120
<212> DNA
<213> artificial sequence
<400> 106
acaagagaag gacatccaga tgtggaaggt tagtctgcag aaagaacaag ctagatacaa 60
tcagctccag gagcagcgtg acactatggt aaccaagctc cacagccaga tcagacagct 120
<210> 107
<211> 120
<212> DNA
<213> artificial sequence
<400> 107
ttcagggtag cttatgacta ttcagatgaa atgttcgcag tgtgtgttaa attgcctgtg 60
ttggaagaca gctaaaatga tgacatttct ggtctctgct agaaagatca gttgaagtta 120
<210> 108
<211> 120
<212> DNA
<213> artificial sequence
<400> 108
aagatttatt taagcaactt aagatccatt tgcttaatgt aaaatttgga aaaccttgac 60
ctaaggccaa gtaagacagt agtgagctct aagagttttg gtctgtagtt agttacattt 120
<210> 109
<211> 120
<212> DNA
<213> artificial sequence
<400> 109
actgcaagca ttcagtaaat gctcatcgtt tcagtgaact tagtaccatg tttgagagat 60
tttattccag tgttggtagt cagacttttg aaagtattgg aagcaaactg atccctgaga 120
<210> 110
<211> 120
<212> DNA
<213> artificial sequence
<400> 110
accagtgtta ccttagaaaa gtaacgtggc ctcttgaagc ctctgttagc catgctataa 60
aatggaaata acaatagcag cacctgctct ttaagttgtg atggttaaaa gaaattatgt 120
<210> 111
<211> 120
<212> DNA
<213> artificial sequence
<400> 111
tggccatgat gatgaagggt cagaagatga ttttatttct ccaaatgtaa aaccaactct 60
tgtaaagcta tttcatggca caaaactgaa gcgtgtattg tacagcgggt gtgaagccag 120
<210> 112
<211> 120
<212> DNA
<213> artificial sequence
<400> 112
actcctttgg gcaggtcgct tgagattaag acatgaatgg tgacacctcg gaattccctc 60
ataattctca gaaaccgtgg ggacaagtga ttttgtgtgt gtatgtttgc atgtaactgg 120
<210> 113
<211> 120
<212> DNA
<213> artificial sequence
<400> 113
tgccatggtg aggactgggg aggggacagg tggagcttgc tttttgtttt gttttgggtc 60
agcatgatag cttataaagc acagcagccg aggaggtcag agttcccagt ccttcccact 120
<210> 114
<211> 120
<212> DNA
<213> artificial sequence
<400> 114
gcttttactg cacaaccagt tactctatga gcgttttaag aggcagcagc atgccctccg 60
gaacaggcgg ctcctccgca aggtgatcaa agcagcagct ctggaggaac ataatgctgc 120
<210> 115
<211> 120
<212> DNA
<213> artificial sequence
<400> 115
acacatggga agggggcttg attgaaccat ctgtaaaagg catttctgcc accctccctc 60
tgctttacaa tcaggctctc ctccttcaga tgagatccgc accctccgag accagttgct 120
<210> 116
<211> 120
<212> DNA
<213> artificial sequence
<400> 116
cttcacgggg gagacacata gtccatactt tcccccctgc tgttgctggg agtcaagtgg 60
tcatttgcaa agagagtggt gatttgtttt taaagaattg tgtttgttaa gctaacaaca 120
<210> 117
<211> 120
<212> DNA
<213> artificial sequence
<400> 117
acacagcgaa ggaagtgtct tgagaaacag ggcatctgaa atgcgtgatc tagatttgtg 60
gggaaaggaa agcaggctct caaagagtca tcccacatga tatgaccttt tgcattcctt 120
<210> 118
<211> 120
<212> DNA
<213> artificial sequence
<400> 118
ttcttatttt tgaaaagtgg caagtactat gcgcttgaga gtataagtgc aaaatacaga 60
cttcctgcca ggcttccctg gagaagacca gagtgaagca tcttcctggg ggagaacaca 120
<210> 119
<211> 120
<212> DNA
<213> artificial sequence
<400> 119
tgttgccctt tctgtccttg aaggaggtgc cctctgggaa acagatctcc ccttggctat 60
tgctccggcc aggctatctg cttggctaaa ggatctcaag tgttgccaag tcagcatttc 120
<210> 120
<211> 120
<212> DNA
<213> artificial sequence
<400> 120
tactcaaaaa ctttcttcct aggttgcctt tacccagcaa gtctgtcgac tggacccact 60
ttggaggtaa agttgttact ttagctccaa atccagccca catggttcct gcttgcttgt 120
<210> 121
<211> 120
<212> DNA
<213> artificial sequence
<400> 121
cctggagttt gaaacattct tatgccattg cagattttga ccacaaggaa gtgatctaac 60
tttgctgcaa ataaaagtcc agatacgttt ttttcttggt aagatcggta actttgttac 120
<210> 122
<211> 120
<212> DNA
<213> artificial sequence
<400> 122
gctctggatt tgttttttaa aggactgtgt taagctaaca acacaggtcc taggcagtgg 60
ggcgagggcc gcctcccatt gtgtccagtg taggcttctc ctctaactct ctgtggacct 120
<210> 123
<211> 120
<212> DNA
<213> artificial sequence
<400> 123
aacagacagg gttgaaaacg gctctcagtg tgtttgacta ctcagtttct ctggagagct 60
ggccccagaa acggaggcca cggtgtatgc agtgcagctc agcctgcaac cctctccgct 120
<210> 124
<211> 120
<212> DNA
<213> artificial sequence
<400> 124
atttaagctc cctcttttta aacgagattt ggtatgatag gcttaggtaa attacctact 60
ttttccttaa atcggagtga catagcttta caacagagtg tactccctgt atatttcaac 120
<210> 125
<211> 120
<212> DNA
<213> artificial sequence
<400> 125
tagctgagaa acggtttccc atccgtcttt tattagctac tttacaggtg cttggggaat 60
atttttattt ttcttcttat atactatgct atggtggaat ttgacaggga ttatagtatt 120
<210> 126
<211> 120
<212> DNA
<213> artificial sequence
<400> 126
ttttggtatc atagttcatt aggtggagat aaaatcatca gcattttatg caagttcaga 60
tggcctgaca tcccctccag accccctgag gcacccaagt tttcatagaa aggactctag 120
<210> 127
<211> 117
<212> DNA
<213> artificial sequence
<400> 127
atatgtgccc tctgcaagct gtaggctgaa aatgaggtta tggtatttca aagaatataa 60
gaatatttgt cacagtgttt ccctctctag ctacagatta ttattattat tttctat 117
<210> 128
<211> 120
<212> DNA
<213> artificial sequence
<400> 128
gacctctgtg cacctaaatt gggatgattc cttagcagtc catttcaaaa tgagtctttt 60
tatataggcc attttatgcc tctgttctat gaggacactc aaatgctttc atatgtgccc 120
<210> 129
<211> 120
<212> DNA
<213> artificial sequence
<400> 129
agagaggaac aagaatcatt cttcacactc ccaccttgag gcagctggtt ctctgctgtt 60
tgtcagatgt ccttctaggc tgttgcatct tcatatatgt gaccatgtgt gacctctgtg 120
<210> 130
<211> 120
<212> DNA
<213> artificial sequence
<400> 130
ctgatacagc agggagcaga cgcgcacagc aaggagctga acaagtaagg gactggggca 60
ctctcttctg tgttaaatgg tccattttat tgtgaagtac agaaagtgta agagaggaac 120
<210> 131
<211> 120
<212> DNA
<213> artificial sequence
<400> 131
cagcccatca ttttgtcatc aggaagactg aggagctgtt aaagaaagca aaaggaaaca 60
cagaggaaga tggtgtgccc tctacctccc caatggaagt gctggacaga ctgatacagc 120
<210> 132
<211> 120
<212> DNA
<213> artificial sequence
<400> 132
cagtatcttc actcccagtc cttgtaaaat tccacctccg acgagagtgg gctttggaag 60
cgggcagcct cccccgtatg atcatctttt tgaggtggca ttgccaaaga cagcccatca 120
<210> 133
<211> 120
<212> DNA
<213> artificial sequence
<400> 133
aagcttgggc ctgacacacc aaagcaagcc tttactccca tagacctgcc ctgcggcagt 60
gctgatgaaa gccctgcggg agacagggaa tgccagactt ctttggagac cagtatcttc 120
<210> 134
<211> 120
<212> DNA
<213> artificial sequence
<400> 134
ctccctttta ccgagacagt ctcccaggtt ctcagcggaa gacccactcg gcagcctcca 60
gttctcaggg cgccagcgtg aaccctgagc ctttacactc ctccctggac aagcttgggc 120
<210> 135
<211> 120
<212> DNA
<213> artificial sequence
<400> 135
actgccattt cttttgtttc ctctcttcct ctcagctgca atatctagag aactttctga 60
gatcaccaca gcagaggcag agcctgtggt tcctcgagga ggctttgact ctccctttta 120
<210> 136
<211> 120
<212> DNA
<213> artificial sequence
<400> 136
cgtgagccac tgtgtccagc cggatgccac tttttctcct ctctctgagt gacactggca 60
tgtggcagca tgccacccaa actgcctagt ctttcccagg tggaataccg actgccattt 120
<210> 137
<211> 120
<212> DNA
<213> artificial sequence
<400> 137
gattttgtgc cattgctcac aggcttgctg gatttttctt ctcttgaggt aacaagatgg 60
gtggtttagt ctgggaccta tgccaggtaa agtgatgcca cttttttttt tttttttttt 120
<210> 138
<211> 120
<212> DNA
<213> artificial sequence
<400> 138
ctggcctctg aagaagatag tattgaaaaa gataaagaag aaggtaatgt atgtgggatt 60
gctatgagtt gataaaacct gaccctcgct ctgctataaa tctgggattt tgtgccattg 120
<210> 139
<211> 120
<212> DNA
<213> artificial sequence
<400> 139
acactgtatt tctttgactt cagttgtctt tgtttctctt cagaagagcc acctggcagc 60
aaaggttctg tcactctaag tgatcttcca gggtttttag gtgatctggc ctctgaagaa 120
<210> 140
<211> 120
<212> DNA
<213> artificial sequence
<400> 140
gtagtatccc caggacagag ccatgtccag ccttctctgt tcagcatgaa gagttattac 60
agacatattc tatacagtgt aagcagtttt acacttacag ggattacact gtatttcttt 120
<210> 141
<211> 120
<212> DNA
<213> artificial sequence
<400> 141
cttgactata tctcttttca gagacattaa gaactgagaa ttttatttgc tatgggatta 60
tttttggtac ttttagttat attattttta atatttcagt cttttgtagt atccccagga 120
<210> 142
<211> 120
<212> DNA
<213> artificial sequence
<400> 142
atactgaggc ctaaacataa tgaaacgagt agtgaattct aaacaccaac ctaataatat 60
caaaaacagt ttttaagcta ttgcagtgaa gtacctgtat tctgacttga ctatatctct 120
<210> 143
<211> 120
<212> DNA
<213> artificial sequence
<400> 143
aaaatttctg cgttactaca ggccttgctt gcctcttcta attgggttat atgtgtttaa 60
gaaaagaaag ttaaatggaa acaaggaaat tctgggatat ccaaaatact gaggcctaaa 120
<210> 144
<211> 120
<212> DNA
<213> artificial sequence
<400> 144
gtcttgtgat ataaatgata cttatctttt caggaagaga gaatggattc tgcaagacca 60
tgtctacaca gacaacacca tcttctgaat gacagaggat caggtaaaat ttctgcgtta 120
<210> 145
<211> 120
<212> DNA
<213> artificial sequence
<400> 145
tcaaaaaaaa agaaaagaaa acatcccaac aatttgagaa tcactgcact cggctgacct 60
ttaaactact ttacaatatg ctcgagaaca tgtgcaacat ttttcgtctt gtgatataaa 120
<210> 146
<211> 120
<212> DNA
<213> artificial sequence
<400> 146
tacattaact tgtaatgggc ttgctatttt taagggaatt aatattttaa aaatttcctg 60
gttttctaat ataataatta tgcctcgtaa aagctcttgg gattctccaa ctttctcatt 120
<210> 147
<211> 120
<212> DNA
<213> artificial sequence
<400> 147
taagaaacta acacttatca aattttggtg taataacaaa gatgattatt tgaaaagtct 60
gtcaacatac gtttactttt tgcggctggg cgtggtggct tgcttctgta tccagcactc 120
<210> 148
<211> 120
<212> DNA
<213> artificial sequence
<400> 148
cgtgtatata ctaccatgaa cttgatagct gccccaggac ttttatgatg agaccgaaaa 60
gtctgtggaa gcttagttag taatttgagt ttttgatatt gtataatgaa gtgtttcaac 120
<210> 149
<211> 120
<212> DNA
<213> artificial sequence
<400> 149
gtgacctctg gccctcatgc agttatttga attgagaggt gaagtagctg ccttttttca 60
tggaatgcca gttttatttg aaagaactgc tgtcttacaa actggttatt cagacttggg 120
<210> 150
<211> 120
<212> DNA
<213> artificial sequence
<400> 150
tgaatcaagg caggcattga agtgtcctat cccaagaggc cttgcattct tccctgacat 60
cttctctcca ttaaaaacaa taaaaactaa aaaattttaa aagttgagtg ttctgtatta 120
<210> 151
<211> 120
<212> DNA
<213> artificial sequence
<400> 151
ccacacctga ccaaacccac cttcatagta acactaagct gtcatttgcc cttcccactg 60
cattggcatc tgcaatgatg gcacaaatac gacggggggt gaaatggtgg caacttagcc 120
<210> 152
<211> 114
<212> DNA
<213> artificial sequence
<400> 152
caagcctcac tttgagaagc ctaattatgc cagatagaat tctgacctaa aatgcaatgg 60
gtttgaatca gaataattga aaatggacta acaagctgct ctcaaggtgt gatc 114
<210> 153
<211> 120
<212> DNA
<213> artificial sequence
<400> 153
ctgtcattcg gatgactacg tgcacatttc actcccccag gccacagtca caccccccag 60
gaaggtgcga tccagctcgt ctgctatccc tctgcccagg cacagtgact cacttgcaag 120
<210> 154
<211> 120
<212> DNA
<213> artificial sequence
<400> 154
ggcagttttt ctaatagttg ggctcagtgt tcatatatgt tctgcccttg tctctaagca 60
ggtggaaaag gaactcctct gggaacccca gcaacctctc ctcctccagc cccactctgt 120
<210> 155
<211> 120
<212> DNA
<213> artificial sequence
<400> 155
tttcagaatg tgtaaagtga acctaaaaac aaaaaagaga gagactgatc tagatcccca 60
gaaagttaac tctagcagct ttatttatag taatagttat aggctgaaaa aaaatcggca 120
<210> 156
<211> 120
<212> DNA
<213> artificial sequence
<400> 156
gatttgatta gttggttttg gcctgccttt aatggcagga ggagctctct tttagatcta 60
agggaccact tgctgttgta aacttgtttt tgacacttat tgcaaatccc tggggctttc 120
<210> 157
<211> 120
<212> DNA
<213> artificial sequence
<400> 157
ccatctatgg tttgtggtat gaccactcct ccaacttctc ctggaaatgt cccacctgat 60
ctgtcacacc cttacagtaa agtctttggt acaactggta tgtatgtctt aggttggatt 120
<210> 158
<211> 120
<212> DNA
<213> artificial sequence
<400> 158
tgaaaaagct aaatttaagc tgaacactgg ccatggatat aaacctcgtg gatgacttag 60
cattcctttg ccactgctga tgtactttat taacttccca ggctactctt tggagcccat 120
<210> 159
<211> 120
<212> DNA
<213> artificial sequence
<400> 159
gatccatgat attagcaaag aaagttactg ttgcctctta gattcatctt gaagtcttga 60
tttacaaaat gcaacttgtt tcttgatacg cttttaataa gatgcctttt tctagatgaa 120
<210> 160
<211> 120
<212> DNA
<213> artificial sequence
<400> 160
tgtcaactag tgtgcctgct ctctcctctg ctttctggtg aagctgaccc tttgggtcag 60
atttagtatg tggttgggaa aatttcacac tgctcatttc aggagtcact tttaaggatc 120
<210> 161
<211> 120
<212> DNA
<213> artificial sequence
<400> 161
ctacttctac cccttactcc acgtctcggc tgatgttgtt aaatatgcca gggcagctac 60
ctcagactct gagttcccca tcgacacggc tgataactga accaccacaa gtatggtgtc 120
<210> 162
<211> 120
<212> DNA
<213> artificial sequence
<400> 162
tcaaatggtc tagaggacca tctttttttt tttttttttt tttttttttt tttaaccaga 60
ataacctaaa accacacact aaccccctgt gttcttctct tccattttag ggtgtgctac 120
<210> 163
<211> 120
<212> DNA
<213> artificial sequence
<400> 163
aaccttattg aactttattt caaaggagca tttagagaaa ctctgaagtg ttactttgtc 60
cccaaggatg tcagttaagt ccctcagatt ttttaggtac agagaattga atattatcaa 120
<210> 164
<211> 120
<212> DNA
<213> artificial sequence
<400> 164
aacaatttag aattggattc atataaaaat ctaggcttta tttgtgggtt gcagccactg 60
aagttgtcat ctgtattgtg cttttttaag ttatcttgag gcttaatgag acatcaaacc 120
<210> 165
<211> 120
<212> DNA
<213> artificial sequence
<400> 165
aatgggttta agtatttgac ttccagactc tacctcataa gggaatcttt ctgattttca 60
gacatttaga gtgaggctct tgtgtctgta gcactgacac agtttgaatg agtcggaaca 120
<210> 166
<211> 120
<212> DNA
<213> artificial sequence
<400> 166
tccctccatt ttcttctaat taatttctcc ttcaagttta atttagatgt ccttggtctg 60
ctacctgatt gtatgccaac agagttggtg acgtgtctcc aacacttaag aaagaaaatg 120
<210> 167
<211> 120
<212> DNA
<213> artificial sequence
<400> 167
tctgttttgc aactttgtct ctggaaaaca ttatttgtct ttgttgattt tcttttctgg 60
agtaagactt agttcagttc ctagggattt ttcccaaaat atcttaaatt tgcatgtccc 120
<210> 168
<211> 120
<212> DNA
<213> artificial sequence
<400> 168
gctattctgt gtctcaccaa atctcagccc gctttcctca tcgttcagcc gatgtcacca 60
ccagccctta tgctgacaca cagaatagct atggtaaaaa gtgtctttgg tacttatctg 120
<210> 169
<211> 120
<212> DNA
<213> artificial sequence
<400> 169
tttgcatttc ttgactttca ttgcatttta caggtggaag agattagaaa ctcatgatgt 60
tgtgatcgag tgtgccaaaa tctctctgga tcccacagaa gcctcatatg aagatggcta 120
<210> 170
<211> 120
<212> DNA
<213> artificial sequence
<400> 170
atgtactaga attgtttcag acttgggctg gcatggtccc gcttgttctt tgctatcaga 60
gttccgtggc tggcactgag ttgacactct gaagtattta attcagttga ttacagtttg 120
<210> 171
<211> 120
<212> DNA
<213> artificial sequence
<400> 171
gaggctacac ctagtctttt gttgaggaaa tatttgtttc agattagctt gtaaacttga 60
tataaccatt ttaaacaggg aaggtatagg attgtaaaat gaatggctat ttctttatgt 120
<210> 172
<211> 120
<212> DNA
<213> artificial sequence
<400> 172
gcctcagctg cttggcagtc tccaggtctc cctatttttt gatgaccttt gttccaaagg 60
acatttttcc ctgcctgctg ctctgctgca tagcttatgt ttcatttttc cattttgagg 120
<210> 173
<211> 120
<212> DNA
<213> artificial sequence
<400> 173
aaaaaaaaaa aaagaaaaaa attctcatgg actttcttta gtttgtcttt ttatactctg 60
tttctggtcc agggatggat ttgacacctg aggccttgat aggagacctt aagtcagcct 120
<210> 174
<211> 120
<212> DNA
<213> artificial sequence
<400> 174
tgctgtgctg aacattgttg tatgtctgtt tctataggat aaattcttag aagtgaaacc 60
atggatcaca taacaggaat ctttagacag ttttaaaaat attcttggcc gggtacagtg 120
<210> 175
<211> 120
<212> DNA
<213> artificial sequence
<400> 175
agatatattt gcgggtgtgt ctctgaatag ctttgtgtct ttttttcttt taagattata 60
ttataagcgt tttatgtcat ctaatgtttg aaagcattat tatttttttg cggcacagtc 120
<210> 176
<211> 120
<212> DNA
<213> artificial sequence
<400> 176
tcattattag ggcctttata gaatgtttgg taaatactga agagttgaaa gaataaatga 60
acattgttcg taacttcact tcttttcatt tgaatactta ctacagtcag atatatttgc 120
<210> 177
<211> 120
<212> DNA
<213> artificial sequence
<400> 177
aatctctgat ggagttacta accaccttag aaacacatag agcaaagtta tgttgtctaa 60
aggaaaatag tttatgcttg actaggcgtt taattttaaa tattctgttc attattaggg 120
<210> 178
<211> 120
<212> DNA
<213> artificial sequence
<400> 178
tgagcttcct acaacagttg agtaggatca catgctttgt taaggtaaac ctatggagtg 60
cccttagtgt tgctgtgctg ttttctgtaa acttggaaaa aaaatgcaaa tctctgatgg 120
<210> 179
<211> 120
<212> DNA
<213> artificial sequence
<400> 179
ctgaaatcga aaggctcgct cttcagggaa gctgccttat attctcccca tgccctggac 60
actttctttt ctgtatttaa taccgtgttt tcagcatcta agatataatg agcttcctac 120
<210> 180
<211> 120
<212> DNA
<213> artificial sequence
<400> 180
gctctcaatc actttctagt catgctgaga atgcataaat aggagcctat ccccattaac 60
aggatcccac aggcagtgag aacccaggta gtgaatgaag gggcagccct gaaatcgaaa 120
<210> 181
<211> 120
<212> DNA
<213> artificial sequence
<400> 181
attactttga ttaaaataaa acatttaaat gtattcctct tttattatga ttctcatttt 60
ctcctctaaa atcaatcttc ttgtgtgtac acatgtgtcc taacgcctgc tctcaatcac 120
<210> 182
<211> 120
<212> DNA
<213> artificial sequence
<400> 182
tgagaaagaa aaaaatgcca agtaaactaa catgcatttg attagacgat ggttcccagt 60
tttagatatt aaaatatgaa aagtcctttt aagaagcagg gaaatactgt aagtgcataa 120
<210> 183
<211> 120
<212> DNA
<213> artificial sequence
<400> 183
tggttgcagt ggggagggat gggaggaacc tttagtaccg tattgacttt ttaaactacc 60
atatttcatt ggatctcaga tgccgttaga tgtgtgctgt acttctattt tatatacatc 120
<210> 184
<211> 120
<212> DNA
<213> artificial sequence
<400> 184
aagttaatag atggtgtcta taatttataa atcaagaaat taaaagcaca gggcatattc 60
tttagaacta tagaggcagg ataacaattc agctaacaga attggaagca gctgccagag 120
<210> 185
<211> 120
<212> DNA
<213> artificial sequence
<400> 185
tcataatgtt gaaatcaatt ttgaaaacaa caaaaacagt tacatattta ttttgagagc 60
attgaggagg agggaaagga tatatggaag agtcctcaat cctcacttcc cattaatagt 120
<210> 186
<211> 120
<212> DNA
<213> artificial sequence
<400> 186
aaaaattagc aatagacaca caaaaaagtg aggaagagaa acagaacaat taaaacttac 60
aagaaaggaa atattatcat agtatactct gtggctcagc catgagtagt acttaggtag 120
<210> 187
<211> 120
<212> DNA
<213> artificial sequence
<400> 187
agagagtgct ccagaaggga gctcttctgg aagatgagga ataatcctgg tggattcttt 60
gcatttcatt agtaaaagtt atattaggca ttgtttcaga gctgttagaa tacatttagg 120
<210> 188
<211> 120
<212> DNA
<213> artificial sequence
<400> 188
gaggaagacc gaatccagga gactggggcc tgatcatgac cgttttacag gaccatgtcc 60
agggaaagtg tcaggataac aggcagtgct gagagcagcc agtccaatct gaagccaggg 120
<210> 189
<211> 120
<212> DNA
<213> artificial sequence
<400> 189
ttgtctatca aatatgagac actttcagat atgcatggac tcaaatttcc ttcccatatg 60
tccttcctca gttaatcact ggagcatgta ttccaccaaa atgagagtaa aatcatgaag 120
<210> 190
<211> 120
<212> DNA
<213> artificial sequence
<400> 190
gagaaagaaa aaaatgaaat cacattaata aggattagaa atcagaatgc tgttagcttc 60
tgaaatacct tcaaaattga gagaaaaagg ttttcaacta gaattctata gccagccaac 120
<210> 191
<211> 120
<212> DNA
<213> artificial sequence
<400> 191
aggtaaatag aaagcagaac caaaggatag agcttggtaa tatgagcaga acagagattt 60
agaatgatca gttcaggaag tcccagcatc caattaaaaa aaattttttt ttaaagaaga 120
<210> 192
<211> 120
<212> DNA
<213> artificial sequence
<400> 192
taagcatcag gatgccacag aaaaagacca ttttgagact aaaagaactc ttcaaaatta 60
aaaatgatag ccaaaataaa catttcagta aaagaattgg gagatacttt tctgagatat 120
<210> 193
<211> 120
<212> DNA
<213> artificial sequence
<400> 193
tttaacagta aagacagaca ccaacattaa gaggagaaaa gagagctaga acaaaaccat 60
aatgatagag cagaagaaaa tatctaccat agccacagag ataagatgtt tgtgcatatg 120
<210> 194
<211> 120
<212> DNA
<213> artificial sequence
<400> 194
aggttgtaca gttgagtgca tatgttcaac caactatatt aacttggaag gctcctcagt 60
cagcttatag agagcctcac tcaccttggc tgggcagatt gtttggcttt ggaagaaggt 120
<210> 195
<211> 120
<212> DNA
<213> artificial sequence
<400> 195
ctgcctgtct gttttttagt ttcaaaaact tatggttcta ttccctctct cctgttctcc 60
tccttgtggg tttatattta aaaacaaaga agtctttact gtagacagtg ggattccagg 120
<210> 196
<211> 120
<212> DNA
<213> artificial sequence
<400> 196
ccagatgcta taagttcctc atgattttaa ggattctgta gtataatcag ttgactcttc 60
actttgagac agtggcagct taggattctg cttttgtgga tttgcagtgt cagttaccac 120
<210> 197
<211> 120
<212> DNA
<213> artificial sequence
<400> 197
gggagtgtag agttggggca ggacccaggg gttgtgactg ctcctccagt ggttttcact 60
ctgtcttcag tattttagct ccccttgtct acctgctgct catctcctgt tccagaagta 120
<210> 198
<211> 120
<212> DNA
<213> artificial sequence
<400> 198
ccctcatttg gaatggcact catgccctca actacttctg gaatacttta tccaggtact 60
ccttgtttta ttctctatag agaataatcc aggtttctgg tgagaaaaga gctgttgctt 120
<210> 199
<211> 120
<212> DNA
<213> artificial sequence
<400> 199
agaaagtagt cttctgattt tcaggctggt aggggtctga ctacctctgg ggggaaagag 60
gctggtggtg aggaagggtt ggtggtctgg gcattcagaa tgtatatgct tcacttaatc 120
<210> 200
<211> 120
<212> DNA
<213> artificial sequence
<400> 200
aacagctttg ttcacagtgg tgggacttgt tgactttgag ctttgttgta tgttgaactg 60
agcatctgtt ggaaatagtg gtgtcggtat tgttttcttc ttgagctggt catgtttttt 120
<210> 201
<211> 120
<212> DNA
<213> artificial sequence
<400> 201
tcttttccct gcataatctg tttcttctaa gcttccttct tttcggtttt gtgttattct 60
ttttaaatct ttgaggcctt ctgccaggat ctagtaaact gtttatatat ggggagacaa 120
<210> 202
<211> 120
<212> DNA
<213> artificial sequence
<400> 202
tgtcataata ttctgaaatt tccagtgatg tatgttggta tgaatctatt ctcattgttc 60
aagctggaag ctcttcaagt tctatgatat tttctttagt tgttttgtgc ttgatttcct 120
<210> 203
<211> 120
<212> DNA
<213> artificial sequence
<400> 203
ttcagtaatt tgaaggcatt attccattgc caccctgctt ccaatgttgc tcttagaatt 60
tctgatcatc tgtatttgct gtgtttttct ctaggggagc tggtagggag ttctctttgt 120
<210> 204
<211> 120
<212> DNA
<213> artificial sequence
<400> 204
tgtcttcttt cttggtttac tcttgtttaa taggacatag cctctaggag ctttttgagg 60
aaggatgcag tgttttggct ggtgtagact tacaggttga gagtcggtaa tttgaaggca 120
<210> 205
<211> 120
<212> DNA
<213> artificial sequence
<400> 205
acagacaagt tatacaggcc agggtcacct ggctctgtcc ctcattaaaa agatagtgca 60
ggacagcagg aactttgaga catgcctgtc tcttggcagc tgctgttctg atccgaactg 120
<210> 206
<211> 120
<212> DNA
<213> artificial sequence
<400> 206
ctcaggaata ggtcagacag aatccttctg tgggataaaa tgaatgtcct ctgctgatca 60
gacagaggag ggagagtagg aatttcatca gtatgtagtt aagacaagct aagtacagac 120
<210> 207
<211> 120
<212> DNA
<213> artificial sequence
<400> 207
acacaaggct taccctcatc agagcgtctg gcaaggcttc tagcaagggc aaggcactgg 60
acatgcgtga aatatggcag gcagggaagc tgctctctgc gcctgctttc agctctcagg 120
<210> 208
<211> 120
<212> DNA
<213> artificial sequence
<400> 208
caggagatga gaggaggacc agcgcatctg agtcttggtg tggtttcact gtccctgagg 60
tttcacagcc ccttctggga agtcagtgca caaggtcatg aatgagtctg ggaaacacaa 120
<210> 209
<211> 120
<212> DNA
<213> artificial sequence
<400> 209
tgcttttctt tgtagtttta ctgtaggtat tgctttgttt tgaaaagcta gttgactagg 60
aggcaaagcc tggttaagag aagggcagtc ttgtcactag tagttgaagg tttccaggag 120
<210> 210
<211> 120
<212> DNA
<213> artificial sequence
<400> 210
tggcacctag cttaaaaaaa acagaacatt actggtacct tagaggctcc ccgtggagaa 60
cccctctttt ctccctacta cctcagagac aactaccatt gttgctttta atcattctct 120
<210> 211
<211> 120
<212> DNA
<213> artificial sequence
<400> 211
acactgcctc taccacacag agcctcagcc agcttaaagc agtttattgt gagattatat 60
gtagagaagt atagaaaatg tgtatgtaaa gtttaataat aacacaaaaa cacatgtagc 120
<210> 212
<211> 120
<212> DNA
<213> artificial sequence
<400> 212
gttaggggag ctggcccttt ttggggaaac tgacccatgg atactgacac ttagggatct 60
cctgctgaaa aagctagctc actgcctgat cccccaacag cgaatctcac ctcaccacag 120
<210> 213
<211> 120
<212> DNA
<213> artificial sequence
<400> 213
tggaactgag ggtaagactg agcgagggag ataaaggaaa tttacagact gagctgtggg 60
aggcccagct ccttccctct gcttgtctct gcctggtagc caggcttatt atgctcccca 120
<210> 214
<211> 120
<212> DNA
<213> artificial sequence
<400> 214
ctgcaaagcc agttgactat accatcctcc ccagggccct acagaggccc ccaggtatgt 60
tctctggaaa aaccgaacct ttgagtccct tgattgaagg attccaggca cagtggagag 120
<210> 215
<211> 120
<212> DNA
<213> artificial sequence
<400> 215
agcatatggc taaaaacaag gggactgcag aaaaacaatt tagcatatat ataaatctgg 60
ctttgcaaaa tggagaaagg acttcaggga gtcctatatt aagtatttgg agtccctgag 120
<210> 216
<211> 120
<212> DNA
<213> artificial sequence
<400> 216
ggactaataa catttagcag agtggagaaa gttgcagcac aagtgcctgt cccccagaaa 60
ggcttacacc tcagtagtgc cagtgatggg gcgatgcagg aggtgaagca tatggctaaa 120
<210> 217
<211> 120
<212> DNA
<213> artificial sequence
<400> 217
aggtatattt gggaatatag atgttctact tacagaatca gtccacttgg aagcactcat 60
acagctaaaa tttgtgtgag tttaaaacat actcttcaca ggcggaggac taataacatt 120
<210> 218
<211> 120
<212> DNA
<213> artificial sequence
<400> 218
atccaaggac catgaactgg accctcgaag gtatagaaac tagtgtcaaa attttaaaga 60
atctttcgag agattgaaaa tgtgatctag gaggtaatcc ctgttgaggt atatttggga 120
<210> 219
<211> 120
<212> DNA
<213> artificial sequence
<400> 219
ccatcatttg gatgttccac aaacattcag ccctttataa tttgtcaacc caactcttct 60
agccaatgat ggagcatgtg cgaattcatc cggaattagt gactggatcc aaggaccatg 120
<210> 220
<211> 120
<212> DNA
<213> artificial sequence
<400> 220
tttgaagaag tggtcaaggt aaattgaaac tgcttgtttg tttgctactt agtatactgt 60
ttagataggc tgcatttata ccttttgtat ttaacggcag acagggaaat tttgaaaaga 120
<210> 221
<211> 120
<212> DNA
<213> artificial sequence
<400> 221
tctcgtccat ctccatgcca gtgtgtacgc actctttcat cgcctttatg gaatgtaccc 60
ttgcaacttc gtctcctttt tgcgttctca ttacagtatg aaagaaaacc tggagacttt 120
<210> 222
<211> 120
<212> DNA
<213> artificial sequence
<400> 222
agataaaaag tcctgctggc agccacttgt ttatagctgt tttgcactcc tcaatctgtc 60
tccaactaag aggctcttct caacgggttc cttttctagg ccacgtggcg gaagtctatc 120
<210> 223
<211> 120
<212> DNA
<213> artificial sequence
<400> 223
tccaaaactt atagggagcc attgatggat ttgaaataag ggtgtctggt gtgttcggat 60
ttgtttgcat tttagaaaac cactcttcct gtctttggag tgaggtggga atatacatag 120
<210> 224
<211> 120
<212> DNA
<213> artificial sequence
<400> 224
taaagatagt tcagtattgt gagaatgttt gggatccttt ttgggcagtg gctgaagagg 60
agggcagaag ttagatcagg aagagccttc atggatcata ctagtagact ggaatttatc 120
<210> 225
<211> 120
<212> DNA
<213> artificial sequence
<400> 225
tgttaaatat caggtccagt gcaaagcacc gagaaataag taagacagtt tttttctcaa 60
gaagctcgta ctgaattcgg caatggaaaa gtataaattt tacagagagc tatcatcata 120
<210> 226
<211> 120
<212> DNA
<213> artificial sequence
<400> 226
ctttaagcta atttctagat aatagttttt ttcactctgt agttataaat ctgcatagct 60
aagactacat actgatttaa aagagtctca cacattcatt ctgtaaatat tgagtgcttg 120
<210> 227
<211> 120
<212> DNA
<213> artificial sequence
<400> 227
tgaaaaagga atggtctgtc cattattttg gaggaccttt atgtatactg tggccgtggg 60
tttccacagg gtctaggtaa ggctaaatta agatgttcaa tttctttcac tcttagttct 120
<210> 228
<211> 120
<212> DNA
<213> artificial sequence
<400> 228
tttctatcaa aagggtgaag tatgtcagac ctgtgagaca gaacaccgtg ccttcctgta 60
taggattaaa ttacaagcat aggcccacgt ggtgcctgct tgtttagtag gacctttgtg 120
<210> 229
<211> 120
<212> DNA
<213> artificial sequence
<400> 229
cttcaaatgc agtggttttt ttttttcccc tatcggcagg tagcagagct ctatcaaagg 60
gatcagaagc tgtaagcatg tgaaatttgg aatctttggg ttatcccagt gtgaggtatt 120
<210> 230
<211> 120
<212> DNA
<213> artificial sequence
<400> 230
tttctgtctt ccttggctgc tctgttgtga cagaacgcaa atgtcagatt ctgagaaccc 60
actcgttgta cctgtaggag tcagagggaa atgcggtgtg tcctgattag cactccagct 120
<210> 231
<211> 120
<212> DNA
<213> artificial sequence
<400> 231
taaaaggatt agtcgtcaga gaaattgagt ggtaggatgt aaaactttat gattgttgat 60
aaactgaaaa acagcctccg tctgtattgc agcagtacag gactaagctt gtgggacatt 120
<210> 232
<211> 120
<212> DNA
<213> artificial sequence
<400> 232
ttttatagct gaaatgagtg gttttcacca gacagatgag ggaatatctt gggtgcatcc 60
actacaggca catagaagaa acatgactgt tgagataact ttttttattt tcttggctta 120
<210> 233
<211> 120
<212> DNA
<213> artificial sequence
<400> 233
atcatggtgc ctgaagaaac caggtacaga tctcctcata tacctgttgg gccctgtgag 60
gtgaatgctt tcattattga ttaattgctc atatgctgta aggaatggac atgtagactt 120
<210> 234
<211> 120
<212> DNA
<213> artificial sequence
<400> 234
acactgacgt cgttgtcctc acaacaggcg tcttggtgtt gataaccatg ctaccaatga 60
ttccacagtc tgggaaacag catcttcttg atttctttga catttttggc cgtctgtcat 120
<210> 235
<211> 120
<212> DNA
<213> artificial sequence
<400> 235
tcaacttgtg atttgtgatt ctctcagtgt ttagagcctc ttcatgtact gtacaatgcc 60
gatcctggtg ccagtgcctg acagacgttt cctgtttgac cttttctcct gcagatggac 120
<210> 236
<211> 120
<212> DNA
<213> artificial sequence
<400> 236
gtgttgtaaa tggtcctcac tgactcatta cagtagagtt ggggctcagt gttctgttga 60
gtctgtttga atgttatccc ttcagtaatc cttagggata gggaaatgag tacgtgagtc 120
<210> 237
<211> 120
<212> DNA
<213> artificial sequence
<400> 237
tgaaaagcag ctccttttgt tttcatccaa ctgctatcaa tagggcatcc taaggctgca 60
ggacttgggt gtccccaagt caagtttgaa ctcgtctccc ggatgccttt gcataggtgt 120
<210> 238
<211> 120
<212> DNA
<213> artificial sequence
<400> 238
tttaaaaaat agtaagttac ttgtcaatgt gcagtttttt ttttttttaa ttaacaaaaa 60
gtaagtatct taggatttgg ttgaatgaat gaaacagagc agtgctcctg tgttttgttg 120
<210> 239
<211> 120
<212> DNA
<213> artificial sequence
<400> 239
tttccatata tatatatttt aatttactgg tctctaaata ctgctttgaa gtgagccttt 60
aagttgactt gttagtgcta tatgaatttc tccttcaatt atacttctgt tgtagttctt 120
<210> 240
<211> 120
<212> DNA
<213> artificial sequence
<400> 240
tgagctgctg tagctagcta gtcagagctg attgagtatc cattgggtgt taagtgtctt 60
cagttagcct gaagttattt atttgactta atatttaaac tgtaggcgtg ctgaaaggtt 120
<210> 241
<211> 120
<212> DNA
<213> artificial sequence
<400> 241
attctaatag gaataatgga tgtcttaacc tacatagtag tcttttgatt aatatcttgt 60
ttcataaatc tgaatttcat ctacctggca aacattcatg atttaattat gggtcaggtg 120
<210> 242
<211> 120
<212> DNA
<213> artificial sequence
<400> 242
tctcaattct cctaccaata tattattctt actggatatc ttccgtaatg aaaggcttga 60
tgcttgatgt aaaaatcaaa atatatttaa aactttattc ccagactcat agattcctat 120
<210> 243
<211> 120
<212> DNA
<213> artificial sequence
<400> 243
ttatcttttc caaaagagta cgttttgtta atcatggata agtcttcagt tagactgtta 60
ggaaaatgaa atcagggcta gttctttctg ctgagaatca ttatatagtc tcatatattc 120
<210> 244
<211> 120
<212> DNA
<213> artificial sequence
<400> 244
tggcagtacc attggattca tctgctacag caccatgcaa attgattttt gtgtctgcca 60
agaagggtaa ctcttttatt atccctagag gtgggtccca aggagtcaca ttggcagggt 120
<210> 245
<211> 120
<212> DNA
<213> artificial sequence
<400> 245
tttaatctgt tttagttcct ggacttgttt tctatctata aaataagaaa atgtggttaa 60
tattaactgc ctgtacctca cagagacatg aaaatatcca atagtatttg ttccaggatg 120
<210> 246
<211> 120
<212> DNA
<213> artificial sequence
<400> 246
tgcattctat tttttgcact aaatttagtg catttttcta tatagggagt caaaatctaa 60
atagaacttt atggttttag ttttaacagt ggcgtgcagc catactcagg gttatttgtt 120
<210> 247
<211> 120
<212> DNA
<213> artificial sequence
<400> 247
tgtttctaaa ttatctttta gctaatagaa aaatggctta aagtttctgt taaccattta 60
ggagtatggt ctggttgcag ctataattaa gactttgttg atgtaaattc tactaagttg 120
<210> 248
<211> 120
<212> DNA
<213> artificial sequence
<400> 248
agtatggaaa aatttcgatc agatgggttc aatgttacat tattccaaac ctcttgattt 60
cgtcatcgtt tagccttccc tcatttaaaa acatcctgga ttatcttttg ggaatccctg 120
<210> 249
<211> 120
<212> DNA
<213> artificial sequence
<400> 249
ttttagagtt taaaaccttc taggcatttg gcttttctca aatagaatgt tgtccagagt 60
tggtacttag taagttctca aatacatcac tatgactatt gaataccttg tccatgcaag 120
<210> 250
<211> 120
<212> DNA
<213> artificial sequence
<400> 250
tgccttcttt actaaaatgt ctcaaggtag gatgtttgta aggatttgaa tgaaatggtt 60
ttatgagtat agtttctgaa attttaggca acttaaagca aggaagctag attttaactt 120
<210> 251
<211> 120
<212> DNA
<213> artificial sequence
<400> 251
gacaggatta acgaatatgt gggcaaagcc gccactcgtt tatccatcct ctcgttactg 60
ggtcatgtca taagactgca gccatcttgg aagcataagc tctctcaagc acctcttttg 120
<210> 252
<211> 120
<212> DNA
<213> artificial sequence
<400> 252
tttacattag agacaagact tgagagattg gagcacatca ttgctgtctt tatttgtgtt 60
aacttcatac attcatgtga ggactgccct tgttctttta cattttcagc acctcttgga 120
<210> 253
<211> 120
<212> DNA
<213> artificial sequence
<400> 253
gtcctttttc atgagctgca aactggctgc cttttgtcag gccaaatgca gcagtgtttt 60
gtttgctaac gtggttttta aaatcttgaa tttgaccttt tatctgcatg acccttgctt 120
<210> 254
<211> 120
<212> DNA
<213> artificial sequence
<400> 254
aagtggctgc ttccagcagg atcccctcat ggcttcagta acctatcaca gtttgggact 60
gttggttatt gaggggctgt gaacaagtct ccccctttct gcatgcgtgt attgtagggt 120
<210> 255
<211> 120
<212> DNA
<213> artificial sequence
<400> 255
gcatgagcca ctgcgcctgg cccgtcttgt ttttttgttt actctggtct gaaatgtaac 60
ttctactacc taattgatac ttgaggccaa accatgtagg ctgggttgct ctagcaataa 120
<210> 256
<211> 120
<212> DNA
<213> artificial sequence
<400> 256
gcattgttat tgcagacttt ggtaagtctt aagtgtatat atgagagcaa cttccccagg 60
atttgaagac cttgtattgc atgcctttta cagtacatct tgttttgttt tgttttctaa 120
<210> 257
<211> 120
<212> DNA
<213> artificial sequence
<400> 257
caaattaatg agtcttgttt cctagcaccc ggcacttgga gggctccttc atgttttcct 60
tttgttttta gtaagtagct aataaagcat tgttattgca gactttggta agtcttaagt 120
<210> 258
<211> 120
<212> DNA
<213> artificial sequence
<400> 258
gtacccatct ttcaacccat actttgaata gaatttttag acttttatcg atatggaaaa 60
gcttcaagta caaaggacta acatgacaaa ttaatgagtc ttgtttccta gcacccggca 120
<210> 259
<211> 120
<212> DNA
<213> artificial sequence
<400> 259
aactgtctca aaaaaaaaaa agatcttgtt taaagaaatc ttacatttcc agtactataa 60
ttgtatagtg atgatttggc ccataggtac ccatctttca acccatactt tgaatagaat 120
<210> 260
<211> 120
<212> DNA
<213> artificial sequence
<400> 260
agtttataac tacatataaa aattactttg taggacccat gattcttgaa aagtttacaa 60
aataaaacat atttcagaga ctgttaaaga tcttgtttgg gccgggtgtg gtggctcacg 120
<210> 261
<211> 120
<212> DNA
<213> artificial sequence
<400> 261
atatcatagg catttcatat gttcttcatg agtacaacag cttctgtgca cggccactgt 60
gcaacttgtc ctgagcttat tcttttgatt tctgtgcgcc actgatgaca ttgttcccag 120
<210> 262
<211> 120
<212> DNA
<213> artificial sequence
<400> 262
agaccgtggc cctatgcttg taaacacctt ggtggattat tacctggaaa ccagctctca 60
gccggcattg cacatcctga ccaccttgca agagccacat gacaaggtaa tggctgaaat 120
<210> 263
<211> 120
<212> DNA
<213> artificial sequence
<400> 263
acaaaactta gaatagcata taaagaaaca ttttctggat tttgtgacag gaagctgtgt 60
aaggtaaatt taggatgtta aggggaataa gtatcatcca ttgccctttt cttgatttag 120
<210> 264
<211> 120
<212> DNA
<213> artificial sequence
<400> 264
caaaaaaaaa aaaaaaaaaa aggcaataaa aatgacttca tatgttttta tgcatattta 60
ggcaaataag cttggaatat cttattatta aattaagaag gcagaactgt aatgctgcac 120
<210> 265
<211> 120
<212> DNA
<213> artificial sequence
<400> 265
ggtgaggagc actttcattt ttattttatg tacttttaca tagcctgaat gtttaacagt 60
agatatggat tattttttgt aattaaaaaa gcaataaagg gccaggtgtg gcggctcacg 120
<210> 266
<211> 120
<212> DNA
<213> artificial sequence
<400> 266
aagggtttga agagacacac tctaaactta agggtgttta tctgtgaaga gtgggttggg 60
aggcaggtgg tgaggagcac tttcattttt attttatgta cttttacata gcctgaatgt 120
<210> 267
<211> 120
<212> DNA
<213> artificial sequence
<400> 267
acacatgcac aaactgtgtc tgtgtctgtg gacatgaggg ctgtgtgcgt gtggttatac 60
aagtagaaaa gggtttgaag agacacactc taaacttaag ggtgtttatc tgtgaagagt 120
<210> 268
<211> 120
<212> DNA
<213> artificial sequence
<400> 268
caagtatcct tcagtaggtg aatggttaaa ttagttatgt agagccatgc agtggaacac 60
taggaggacg gaaagaaatg aaataggcca tagatgctga cgtgggaagg tggttacaac 120
<210> 269
<211> 120
<212> DNA
<213> artificial sequence
<400> 269
cactgttagc aggaatatga attgatgttc agccttttgg agcatcagtc atcaatttta 60
aaacacatac catttgggcc atttataaga atctgtatct tattacagct ttgagtgaaa 120
<210> 270
<211> 120
<212> DNA
<213> artificial sequence
<400> 270
gatgttgctt taactgtaaa tcatatatgt ggtttttaat atgaaaagtg cttaacctct 60
ttttaatatg agaaatacaa atttaaatag tacccttttt tgcttaccag gttggcaaaa 120
<210> 271
<211> 120
<212> DNA
<213> artificial sequence
<400> 271
gaagagattg actttagagc cactagaatc ctgctgatac attttagttt tcatcttctg 60
aaaagttttt taaacaccca aagagagtat ctatatgtgt tttaaacttt caattatgga 120
<210> 272
<211> 120
<212> DNA
<213> artificial sequence
<400> 272
ccatgctgga ctcccccatg ctgggtgtgc gggacgacgt gacagctgtc tttaaagaga 60
acctcaattc tggttagcaa aataatatcc tttttagctt atcttctaga aagaagagat 120
<210> 273
<211> 120
<212> DNA
<213> artificial sequence
<400> 273
tggtagtggc cccaatgaag aaccttcaga acctgtagca cacgtcctgg agccagcaca 60
gcgccttcga gcgagagaat ggcccaacaa gcaaatgtcg gggagcttct tgccatgctg 120
<210> 274
<211> 120
<212> DNA
<213> artificial sequence
<400> 274
caaactttcc attgcattga acacgtgcat tagtttgtct tgcaggtatt ttcttttttt 60
atggagaaaa atggggccat ttagtgactg ttcatcttcc tttttctcag tttggtagtg 120
<210> 275
<211> 120
<212> DNA
<213> artificial sequence
<400> 275
attgttatat tttgtagaaa ccctcttcat aaactcgcca aagaattatt catacacttt 60
atcttctttt atcagctaaa tgtactcact gtttgaatca gagaattctg gccaaacttt 120
<210> 276
<211> 120
<212> DNA
<213> artificial sequence
<400> 276
aaatgtggtc ttagccaaaa cccaaggtag aatcagaagt aggaataaaa cttagatttg 60
atcctatcat taagttgctg tgactggtat cagtttttaa ggtttctttc tgattgttat 120
<210> 277
<211> 120
<212> DNA
<213> artificial sequence
<400> 277
cagctatact aactcttagc cattgatgag actgtcaaga aggaaatagt atgtatttag 60
ttcttttgct gaaaaaagac tgtctgcttt ttagatcaat aatttgaaat ataaatgtgg 120
<210> 278
<211> 120
<212> DNA
<213> artificial sequence
<400> 278
cagtggtatt tgggtgtgca attagatgtc tcagatgaga ggtatatgct aaaacagaga 60
aatgatcccc agtttatgct agatgttgga cttaacagac ttgtgaccta accagctata 120
<210> 279
<211> 120
<212> DNA
<213> artificial sequence
<400> 279
ttgtatatca agataaagca gctgctctac taccatagag agcttgggtt ttgaagggtg 60
agtttttgaa gatttgccct gatgatccca tctatggata cctccctgta gccagtggta 120
<210> 280
<211> 120
<212> DNA
<213> artificial sequence
<400> 280
agtgcttatg aatgataact gttgttactt gttttaacaa atatagcctc agagatcaaa 60
gtgggggaga aatcgtaaat gtgtatagtt acacttggga atgagctgct ttttgtatat 120
<210> 281
<211> 120
<212> DNA
<213> artificial sequence
<400> 281
tttgtgaccc agaacaaatg gcttgatctc cattctgctc cctgtacaat ggggacaaaa 60
gtgccaatta catggtggtc atattaggag tatatacaat gatgtttgtg aaaggtgtac 120
<210> 282
<211> 120
<212> DNA
<213> artificial sequence
<400> 282
gctgtgatga tcaaaaccac aggttagctt agtgtgacac ttaagggctt ggggctttgg 60
agtcgggcat acctagcttc caatatcagt ttttctcctc tggttttgcc tcttgctagc 120
<210> 283
<211> 120
<212> DNA
<213> artificial sequence
<400> 283
gaactgctac ttacacttac tgaaagaaaa ggaagtgtta tcctttttgg gcatgcatat 60
ccccatgtgt aaaataagga tgatacctgc tcacaccaca tcacatcaca tcacagactt 120
<210> 284
<211> 120
<212> DNA
<213> artificial sequence
<400> 284
attacctgga gtgcttatta aaatatagat tcctgagccc aaaatacagt tttggaaggg 60
gcccaggtat tgcatttcta gcaagtatcc caggtggttt cgatgcacat tgaagcttaa 120
<210> 285
<211> 120
<212> DNA
<213> artificial sequence
<400> 285
ttacaagcgt gagccaccat gcctggcctc agccactaca tccggcctca gcttaactct 60
ttagttggat ttttctttat catagtgttt ctcaaaaata atttgtgtct cactttaaga 120
<210> 286
<211> 120
<212> DNA
<213> artificial sequence
<400> 286
attaaataag aatatagatg atagcaagtt aatacctggc agtttttggg gtcatggcta 60
atttaaattt ggcattcttg cagaaggagc ttatctctct cttttttttt tttttttttt 120
<210> 287
<211> 120
<212> DNA
<213> artificial sequence
<400> 287
aacttcctat atcatggtat caaaaaggca tttagacatt ttaattgatt tttctgataa 60
atgaacttct aacttactaa gagccaaaat cagtgaatgt cacaagattg taattaaata 120
<210> 288
<211> 120
<212> DNA
<213> artificial sequence
<400> 288
tgaactttta cggtagaatc ttaccaacgg tggtctcaca ttttggagcc ctttgaaatt 60
aacttcctat gtgatttact tgtaagattt ttatttatag atatgagtca gcaacttcct 120
<210> 289
<211> 120
<212> DNA
<213> artificial sequence
<400> 289
tcttgaaagt ggtggcccaa agatttttac tggtattttt tatgataata tacaggtact 60
atgcagcgag tgtttatatg tacctgatac catactaatc gctttttggt tttgaacttt 120
<210> 290
<211> 120
<212> DNA
<213> artificial sequence
<400> 290
cttttaaatt tatgaacaac attctttgtc actaattgag aatcatttgt gatttacctg 60
aagcagaaat caatgtgggg gttagctaga caagtgtgcc attaaaaagt catcttgaaa 120
<210> 291
<211> 120
<212> DNA
<213> artificial sequence
<400> 291
atatgacatt atcgtcttct gactacacag aaggcaaact cagagtctcc ctagacaaat 60
agtaggtaag taacaatttt attgaaacaa aaccaaactt agggacaaga tacttttaaa 120
<210> 292
<211> 120
<212> DNA
<213> artificial sequence
<400> 292
ccaagctgat tagcccacac tatcgccaag ttgactggat gggcgccatc tttgtttaaa 60
attgagctca tgtcactccg ggctctgggg ctgcctgcat ttggaggacc agatatgaca 120
<210> 293
<211> 120
<212> DNA
<213> artificial sequence
<400> 293
cggccgacag taggattttg gaaccagaga gaaaaacttg ttgccaaaac gtgtttctaa 60
tgtgttttag aataaaacct tactttgcaa atggaaaaac aagctaggtg gcccaagctg 120
<210> 294
<211> 120
<212> DNA
<213> artificial sequence
<400> 294
atgcgaagaa tctcacataa aacccaatgt ttatattttt cctggagatt aaaaactatg 60
gtaaacagta gaattttgga aggcagctat gctcaccact ataccaccaa cgcggccgac 120
<210> 295
<211> 120
<212> DNA
<213> artificial sequence
<400> 295
tgaatgtgct taaaaaggag atattctagt tgtgggactg attccaaaag ctatgattta 60
actcttagga gggcttttta gaatgtcaaa aatgcttgaa cttgagccac ttatgcgaag 120
<210> 296
<211> 120
<212> DNA
<213> artificial sequence
<400> 296
catattgaac catgtctttt tttctgctat aaaacattta attcttcatt gcactggcta 60
aatctgtttt acctgcttaa caccttgcac ttactgtaga ccctcaaatg tttgaatgtg 120
<210> 297
<211> 120
<212> DNA
<213> artificial sequence
<400> 297
gccagtcttc tataggctgt aaagtgtgtt taacatgtgt atatttcatc caccactacc 60
accacccctg actgagtcca tgtagggctg gtttcttccc cttttttgta cacatattga 120
<210> 298
<211> 120
<212> DNA
<213> artificial sequence
<400> 298
tatggtgagt tacttccaaa atggaaaaga gacttatggc tagagacttt tgtggctaac 60
acactgatgc ttccttgtgt ctgtggtgct aatctttaat tgacttttct cagccagtct 120
<210> 299
<211> 120
<212> DNA
<213> artificial sequence
<400> 299
tgtggccact aaagataata ttaaactaaa tggaatattg ctttagcatg tacgatacag 60
aaatccattc acccagttgc tgtcttttaa cttctcctgt atggctattt tctatggtga 120
<210> 300
<211> 120
<212> DNA
<213> artificial sequence
<400> 300
actgagatcc agaagatggc agagtgatgg attttggagt ggagattggc cttgaaggtc 60
atgccctctg aatatgacta gcatcatcta cagcactgta ctgtgcactg tatgtggcca 120
<210> 301
<211> 120
<212> DNA
<213> artificial sequence
<400> 301
cgactgaggt gatagcaaag ggtttgctga tggattagat gtggtggtgg gggtggtgaa 60
agagtcaagg agtcacctgg gtgtttgctt tagactgatg gtagtgcctt ttactgagat 120
<210> 302
<211> 120
<212> DNA
<213> artificial sequence
<400> 302
tctcaatgtc tcttgtggtt atttggaggc aaatgaattt tgtagggtag catgaataca 60
agcaaggaga gtagtgaggg gggctgctgc tcccttgtct ctgagagatg atgcgggctt 120
<210> 303
<211> 120
<212> DNA
<213> artificial sequence
<400> 303
tatgaggcct tgtaggctac tcatgagttt cataagttcc ataatgttat tggctcttat 60
taattccatg ggaagccatt ggatgatttt aaacagagga gtgagattct gatgtttata 120
<210> 304
<211> 120
<212> DNA
<213> artificial sequence
<400> 304
agcaagtgca aaggccttga gcaagaaaga accagtattc ctgtgtttgg gaagactggg 60
actagagcag aggaatgaag aggcagaggg gggttgggag gttaataact ggctggatct 120
<210> 305
<211> 120
<212> DNA
<213> artificial sequence
<400> 305
atcaaatctg gctactagtt gtatagttta aacttagttc aaggtttctc atgaattaca 60
aagtatcttt tattgaaaag tgatgactga gaacctccct gctgctttag attgggtggt 120
<210> 306
<211> 120
<212> DNA
<213> artificial sequence
<400> 306
actgaacttt ggcagatccc tgctttccat gttttttgag atcataagta tcattggatc 60
aaatctggct actagttgta tagtttaaac ttagttcaag gtttctcatg aattacaaag 120
<210> 307
<211> 120
<212> DNA
<213> artificial sequence
<400> 307
ttattttgaa acaaaaaaaa ccccagcttt taatagcatt tttctttttt catggggtac 60
tcttgtttat acttttgtcc tcatttttaa gacatttttg gccaggtgtg gtggctcaca 120
<210> 308
<211> 120
<212> DNA
<213> artificial sequence
<400> 308
ttggacaaag cagaattcag gaaagtttct ggtagatggt tttctggaag gaaccttgta 60
cctgggattc atagcttggc aagcctcaaa gatccttact cttcaattac taaaaattgt 120
<210> 309
<211> 120
<212> DNA
<213> artificial sequence
<400> 309
ggaattttaa tataggaaaa atactttgtg ggcactaccg gctgctaggt tactcctgtg 60
gtcactatgt cacatgtgta gtatcatctc aactggcaca cagcgtcatt ggtaacattt 120
<210> 310
<211> 120
<212> DNA
<213> artificial sequence
<400> 310
agctaaatat caccatcata aaatgtaaat tctgggatac aaaagtaaat ctcaaatttt 60
attaaacatt tttcacgata gtaattgtat tgcattttag tagtcagatt ttagaagttt 120
<210> 311
<211> 120
<212> DNA
<213> artificial sequence
<400> 311
actgtcgaaa gttaagtatt gttctcaagt agggaaagtt ttctgagttt gatttttcat 60
tttcagtgtt tttgtgtata cttcatactg ttcctttttt agaagtccac tgtatatgaa 120
<210> 312
<211> 120
<212> DNA
<213> artificial sequence
<400> 312
tattctgtca ctgtctgcct cacctctgtc gtaggaattg taaaataagg tagggatttt 60
tgtcttacag ctctacattg gttcataagt agggtcttga tacaaattgt agactgtcga 120
<210> 313
<211> 120
<212> DNA
<213> artificial sequence
<400> 313
acagagctgt gtataggaag ggtgtaggga agacgggagg tgcttggtct gctgtctttg 60
tacatggaca gctctgtgac tcatgccgag gctcagtggt tgctgtttag tgtattctgt 120
<210> 314
<211> 120
<212> DNA
<213> artificial sequence
<400> 314
tatccttcat aaatgttgag gcgccggcat ttccacggat ggaatttcct cttagtgact 60
taactgatca ctgaactgta attttggttt agcagtaata gtgccaagcg caacagagct 120
<210> 315
<211> 120
<212> DNA
<213> artificial sequence
<400> 315
gagctggtga gtgagcattt gcatcttaac atggctatat ctgttgcttt aaattaattt 60
tgggggataa attatatgct atagtagttt ttaggaattg gatgatcctg tctcagaata 120
<210> 316
<211> 120
<212> DNA
<213> artificial sequence
<400> 316
catgggttta taaaaacaaa ccaaatgtga tgtccggatt ccatccctta gttaacctgc 60
tccagagttt ctgtaagctc tccaggtgat tctgatgtac atcctgggct gagaaccctt 120
<210> 317
<211> 120
<212> DNA
<213> artificial sequence
<400> 317
cagctctgtt tagcagcaaa gtttggttgt gaccacttca ttcaattaaa gcctgtgtgc 60
tggcacaagt catttaacta gtgcagacgt tcttaaccct ggctgcacct gagaaatctg 120
<210> 318
<211> 120
<212> DNA
<213> artificial sequence
<400> 318
tgcgttactt tcttcttcac agccacgctt ttggtgtttc cccattttac aggtgaggat 60
tcgggttcaa acatgtcaat tttcctaaag atgcatagct ggtacttagt ggactcaatt 120
<210> 319
<211> 120
<212> DNA
<213> artificial sequence
<400> 319
tttacagttt tagctacttg ccaggaactg gaccatctat ggcatgaagg gattagtcac 60
attactgatg attattagtt gcttgtattc agtgcctgac actgtgcaaa gcgcattata 120
<210> 320
<211> 120
<212> DNA
<213> artificial sequence
<400> 320
cagcactgga aactgaagta ccagttgtcg ctagaacagg taagctataa ccaggccagt 60
ggttagagga agatgggagg gaattatctt gcccatggtc gtgcattcag ggatttaaca 120
<210> 321
<211> 120
<212> DNA
<213> artificial sequence
<400> 321
tggtggccac ctgtcaggga tagaggagga agaagcttgt gccagatgaa cccctaaccc 60
gcttttgatt acatctggga ttttgcttca ttgtacatat gttttcttcc ttcagtgacc 120
<210> 322
<211> 120
<212> DNA
<213> artificial sequence
<400> 322
agacagagat tacaagttca gcacaatata aagaattttc cagcaaccag ctgttcagaa 60
atgtagacgg ggagaggcac gtgcttccaa tgattatgag tgttcattcc agtggaaacg 120
<210> 323
<211> 120
<212> DNA
<213> artificial sequence
<400> 323
agataaatag ctaaatgtta cacagctaat aagttgcaga gcttggattt taacccggaa 60
ctctctaatt ctagggccta tcctgcccat tcatttatac ctctaacaga cattaacaaa 120
<210> 324
<211> 120
<212> DNA
<213> artificial sequence
<400> 324
tggggactgt ggcaggcggt gaggccctgc aggcccactc agtgctttgt gcctctcact 60
gtcctggacc tgcctcacat ggctcctcca gtaacttcgg tgtgccccgt gctgtgccga 120
<210> 325
<211> 120
<212> DNA
<213> artificial sequence
<400> 325
tttaaggatg aagagtgagt ttaggaggag ccaaaggtag actctcttag gctcaggaat 60
ggggagcatg tggcttagcc aaggaactga aaggccagtg agtcaaggtg gtggggaggg 120
<210> 326
<211> 120
<212> DNA
<213> artificial sequence
<400> 326
acaagaaata taggctgcaa gagtataaca ggggacctga cctagtctgg aaggtggaag 60
tgggaggcaa gtagaggcct aggaggtctt ctctgaggaa gtgagcattt aagctgagat 120
<210> 327
<211> 120
<212> DNA
<213> artificial sequence
<400> 327
tggtagctgc ttgaaataca gtactgagta agctgcggtc tctccctgga tataactcct 60
agtgaaggag gcatgttcag taatcaatca agcttattta attgggttgt ggtaagtgac 120
<210> 328
<211> 119
<212> DNA
<213> artificial sequence
<400> 328
atagctgttc acaaacattt tatgtctctt ttgtagtaaa cttaagtcat gctgcctgaa 60
ggcagaatta ggctttgcac atttatttaa gaaatactgg ccaggtgcag tggctcacg 119
<210> 329
<211> 120
<212> DNA
<213> artificial sequence
<400> 329
atatatactc atttagcatg gatatttaat acaagttaat ttggacagaa agtagggtaa 60
aagggggaag aaaatagaaa aatgatagct gttcacaaac attttatgtc tcttttgtag 120
<210> 330
<211> 120
<212> DNA
<213> artificial sequence
<400> 330
catggagttt accatctagt gatcagattg tacctaaata tagtttgaag gacccatatt 60
ttaaaagcaa acaaaaatgt atttatatat actcatttag catggatatt taatacaagt 120
<210> 331
<211> 120
<212> DNA
<213> artificial sequence
<400> 331
gtccatagta tatgaggctc agctttcata ctctattcaa ctctggaatg gctgccaaag 60
aagctgatta aatcttacca gttctgagca gggtgttttt gcctcttgtg tgccaggtgc 120
<210> 332
<211> 120
<212> DNA
<213> artificial sequence
<400> 332
ggaacaagcg attttaattg ttagagagtt cctcagtcca ctagtttgac tttggccatg 60
gtcgtacatt taagaacttg gttcaagttt tttccatgtt tagggtaatt aggtgtccat 120
<210> 333
<211> 120
<212> DNA
<213> artificial sequence
<400> 333
gagggccagc ctgcctgcag cactgttcac aggcttgcag gtgccactga agagaccagt 60
ggagtttaat gtctggaatg tgttccacgt ggaaatataa ttactctgtc atctggaaca 120
<210> 334
<211> 120
<212> DNA
<213> artificial sequence
<400> 334
cgtgagccac cacacctggc ctgggctcct gcactttaat tcaagccctg tgacttgcag 60
tgagtgtggc caggcaagca ctccctgtca gaatggtatg atccctcttt tctggagggc 120
<210> 335
<211> 120
<212> DNA
<213> artificial sequence
<400> 335
ttagtcgcaa gaggaagtct atatgactca ctggactaac tgcttatttt aagattctga 60
ttttaagatt agaggctctt gcactttatt tatttatgta tttattttga aacggagttt 120
<210> 336
<211> 120
<212> DNA
<213> artificial sequence
<400> 336
tgggcagtct acaggatctc atctagcgta gatcctaatt ttacccttgc cttagatatt 60
tcttttcagg taaaatgtcc aaccgggatt agtcgcaaga ggaagtctat atgactcact 120
<210> 337
<211> 120
<212> DNA
<213> artificial sequence
<400> 337
tcaaaaaaca aaacaaaaaa accaaccacc aacaacaaaa ccactctgct ttcctagagt 60
agggccttta tgtaggatgg gttgtggctg ggcagtctac aggatctcat ctagcgtaga 120
<210> 338
<211> 116
<212> DNA
<213> artificial sequence
<400> 338
aaattgctac caatttagta ccattatcat ttttagtgca gtaataaaga aattaaaagt 60
cttaacattg agcattggac aaaaacactc tgcttggcag ggggtggggg ctcacg 116
<210> 339
<211> 120
<212> DNA
<213> artificial sequence
<400> 339
tatgccttgt agtaccccca taggacagga ttgaaataca aatgaataag tcaataaaca 60
cttaaaaata taaataagag tagaatagta ggtagccttt gacataccaa cataaaattg 120
<210> 340
<211> 120
<212> DNA
<213> artificial sequence
<400> 340
gataaggacg tggattgaca ctggtgttct gctctgccag gtgtttccat ctgcattcct 60
cccttcccct caggaggttc acagatcaca tctcacttta ctgaccagag tgattatgcc 120
<210> 341
<211> 120
<212> DNA
<213> artificial sequence
<400> 341
tagaagtgaa gttataatga tgaacataag tgagaacaca acttttgggt caaatatgaa 60
agggaaaaaa gtctagatct ggaggcaggt ttctttttaa atttggcttt cgaagataag 120
<210> 342
<211> 120
<212> DNA
<213> artificial sequence
<400> 342
gatgaacagt gaaaacagat tgatctatgt gccttctgtt tcatctcaaa atacttaaac 60
acagagccct tatcttcttc ctcaaaccta cattttattc agaaagattg cttatagaag 120
<210> 343
<211> 120
<212> DNA
<213> artificial sequence
<400> 343
ggcgtacggg tcctgctaat gacagctgtc catggctgtt aggctagagt tcatgtgtaa 60
tcctaggcat ataagccatc cgtctgtaaa cacctaaaga atgatattag ttaagatgaa 120
<210> 344
<211> 120
<212> DNA
<213> artificial sequence
<400> 344
tctaaagaca tcttaggtat ctgccactag tattttcaaa aggtttgtgt gtactcttgg 60
ctctctcaca gctcataatg catcttggct agggcagaga tatgtgaaaa aaatggcgta 120
<210> 345
<211> 120
<212> DNA
<213> artificial sequence
<400> 345
attttatgtt acatacagtc ctgaggagtc gtagagggta gtgtctaggc cacatatcac 60
agcacttgtt tttgaaaaat tcgaatattc acctgtaatt tcagataaat ccattctaaa 120
<210> 346
<211> 120
<212> DNA
<213> artificial sequence
<400> 346
aggaaacaag ttatagtgaa gagacatctg ccttcattta cacatgcagt acatttttac 60
atcatagaca aatgtgtaca aaattatctt aggcaaattg atatgcggtc acctatttta 120
<210> 347
<211> 120
<212> DNA
<213> artificial sequence
<400> 347
taacagtgta acatttctgc tctatctaac tgtacctgat aataaaatag tctatccatg 60
cctggacctg tgtctgaatt gtccttgaat ttttatggat aaaaaattga atataggaaa 120
<210> 348
<211> 120
<212> DNA
<213> artificial sequence
<400> 348
caagtatctt acccttttta gatgcatttg tgctgaaggc gtcttggttc acttgataga 60
atattaccct aagaagtcac ctgagagttc ctgagccaga gcggaacatt aacttaacag 120
<210> 349
<211> 120
<212> DNA
<213> artificial sequence
<400> 349
gactacacat gttggcaggt tttaccatca gctgttttac tctcacatag taagtagtta 60
tttcctaccc ttttttcctt ccttctaggc actgatagga agagagaatg ggagcaagta 120
<210> 350
<211> 120
<212> DNA
<213> artificial sequence
<400> 350
tcaaggcccc tgatggcaga aattctgaat ggagaatctg gcaagttgga gctctcctgc 60
cccagtttgt ccttgagagg gactccaact actaagacct attcaatcac acatgactac 120
<210> 351
<211> 120
<212> DNA
<213> artificial sequence
<400> 351
agcattattt attgaagaga tacgccttac caaaattaag ctctggcctt acacttaagt 60
tactagaaga ttcttcacct ttgggatagg ctataagctt tagcaaacca tccatcaagg 120
<210> 352
<211> 120
<212> DNA
<213> artificial sequence
<400> 352
atctctttta ggagaagctc tgcgtagtgt ctttttgaaa tatacatggt atctgtttgg 60
cctgtattat cttagtaaat aatgttgttc atgttaatag aaagtcaaaa cgtaagcatt 120
<210> 353
<211> 120
<212> DNA
<213> artificial sequence
<400> 353
accacatttt gagaaccact gccctagact atcaaactat acccttcttc cctagaatac 60
ttctattttg gtcctataaa cctgaaacct aaagatatct cacagtttgc ttgtatctct 120
<210> 354
<211> 120
<212> DNA
<213> artificial sequence
<400> 354
cccaaggttt atgcactcta tatatttttt tccttttgaa cctcaaagga ggtatattaa 60
tgaatgaatg ttttttacct tcatccttct ttttcctaga ccagtggttc tgaaccttta 120
<210> 355
<211> 120
<212> DNA
<213> artificial sequence
<400> 355
gtgtacccag gtatgtaacc tgctacgtgc ttgtcaggct tggcattcgg tctgtgctgg 60
tacctttagc acctggcaga attccactgg gccttttccc caaggtttat gcactctata 120
<210> 356
<211> 120
<212> DNA
<213> artificial sequence
<400> 356
actttttttt ttttttaact agtagtcagg aaaggcccaa gtcagaaggt ggccttatgt 60
actgtctggg ttataaatta ctttgttaaa tttctgtagt gtacccaggt atgtaacctg 120
<210> 357
<211> 120
<212> DNA
<213> artificial sequence
<400> 357
ggatatggct tcaggtaatt tatggacgca gcttgaaacc cagctgatca ttttagatag 60
attactgctc taaaaatgga cttaggcttt attaaaaaac tttttttttt ttttaactag 120
<210> 358
<211> 120
<212> DNA
<213> artificial sequence
<400> 358
ttgccctctg aaaatctgtg ggaagctatg gaccaaattt ctcttctacc ctttatgtcc 60
catcatcacc aaaaaaattc atacagacat gggattttgg atatggcttc aggtaattta 120
<210> 359
<211> 120
<212> DNA
<213> artificial sequence
<400> 359
tgtgataaac tgcttcatct gctgacctca taaattaact cacaggtcag gtcagtggtt 60
cttaactttg gtggtggtgg gaaggtgtgt ggactcagtt gccctctgaa aatctgtggg 120
<210> 360
<211> 120
<212> DNA
<213> artificial sequence
<400> 360
tgtctgatac cccattaact tcttacagcc ttaagaggca ggataggaag aggaagcagg 60
cttagagtaa gttgcctata gtcacttatt cagtggctaa gctgggatat gaaccttttt 120
<210> 361
<211> 117
<212> DNA
<213> artificial sequence
<400> 361
tggttgtatc aatgtttcaa ataccagttg ttaaatggat agactgctaa gcattatgta 60
cccagcaatc catttttgtg aagtagtaat attgttataa taaagtttat atttttt 117
<210> 362
<211> 120
<212> DNA
<213> artificial sequence
<400> 362
ctgtaggaag aacagaggca gtgaccttaa tgtctgcaat cattaagact ctgctacttt 60
gagtagttca cagagcatag taacaaactt gaactgtatc cattttaagt tatacaatgg 120
<210> 363
<211> 120
<212> DNA
<213> artificial sequence
<400> 363
aactcacagg tcactctctt aagtaaatat gatggcagta gaggcccaga agtgttggag 60
taacaaagga cagttttgcc cttctgtggg tgatgtgatg gaagacacag aggggagctg 120
<210> 364
<211> 120
<212> DNA
<213> artificial sequence
<400> 364
cagcaaaaga taacaatact ttttacggtt gaatgaattc agatttacat ctaataagta 60
aaatgtctta aaaaccatgc tttagtccaa aataaagcat agtagttact gccctacaac 120
<210> 365
<211> 120
<212> DNA
<213> artificial sequence
<400> 365
agagaataaa aatgcaaatt ttatatactg tgtataaaat acactgtctc aggaccttgt 60
cagtttcttc ttgtcctttc tctcgttcag tgctaacttt tattatgaac atggaatcag 120
<210> 366
<211> 120
<212> DNA
<213> artificial sequence
<400> 366
catttaaatt catctgaaag aggtaaactg tcagcagttt gagattattc tttctctggt 60
ttacttttta agactgtagt tgctagaaat tagtaacttt atgtctgttt tcatgggaga 120
<210> 367
<211> 120
<212> DNA
<213> artificial sequence
<400> 367
ctgtttgctt gaaatgtgta tatgtagtat acactcaaac actgagtttg ttttttttaa 60
tctcagatca tgaattggta actaatataa tttgggtagc atgaaatact cattctccat 120
<210> 368
<211> 120
<212> DNA
<213> artificial sequence
<400> 368
tccctataag tttcccatat tataaatctc tgaaaggtta gtctttgcat tggttttgtc 60
atttaagtag ctgaaggcgt gaaagaaaag tgtacttaat agcgttaaaa tctgtggctg 120
<210> 369
<211> 120
<212> DNA
<213> artificial sequence
<400> 369
tgttaatggt tttataaaaa ccaagcaaat tggtgacttt gagcctaccc tgttgggtga 60
agatctgttt atcatttatc ctttccttta catcataata ctctttgaaa aggtaattcc 120
<210> 370
<211> 120
<212> DNA
<213> artificial sequence
<400> 370
atctgtgaag taaaagttgg aatgtaaatt aatgagtatt tctaggccta catttctgtg 60
atttaaagtc ctttggggtg tcatttaaat attctgacta aatcgattga gtcaacctgt 120
<210> 371
<211> 120
<212> DNA
<213> artificial sequence
<400> 371
gaactaaaat tagcttttcc tggaattaat tggatattct tgaatgccga tgagccaaat 60
atagcaatat ctcaaccatt tcaggctttt ctagagagtc agatagcttt tgaccttcag 120
<210> 372
<211> 120
<212> DNA
<213> artificial sequence
<400> 372
tggtgggtga attttgggct ctgaattaga gctgacttgt tcttatagct ctgtcttcat 60
ttgaagtttg tttggctaca ggtatgttta tttctgggtt ccagggccat agtgaactaa 120
<210> 373
<211> 120
<212> DNA
<213> artificial sequence
<400> 373
atgtgcaccg gaggttgagg accactggct tcaagtatca ttctggctat tttcatttat 60
tatttatcac agaggtattt cttaaaatag cttgtagcct tttatttgtg tagtggtggg 120
<210> 374
<211> 120
<212> DNA
<213> artificial sequence
<400> 374
tctgaaaccc tagtgctcat gagaaccttg atgtacagat atttggcact atactaggta 60
gacctacata ttcggacacc ttgtatatat attttggaag aagactgatt cttatgtgca 120
<210> 375
<211> 120
<212> DNA
<213> artificial sequence
<400> 375
tgtgcatgcc tggtttcatt cgtgagatga aacttaacag tcttactagg gcaaatctaa 60
tatatacctc tatatgtaat gtttgcagaa taatgaactt ggtggaaacg agatctgaaa 120
<210> 376
<211> 120
<212> DNA
<213> artificial sequence
<400> 376
ttgtttccat aaaattagag tgcttcaggt cctgtgactc agttgtcctc ttcctcactg 60
ggttaagagt aaaaactgat actgctactg ttgtggtgta atatgatgcc ttctgtgcat 120
<210> 377
<211> 120
<212> DNA
<213> artificial sequence
<400> 377
tgcctagaag ggcagatgat gtaaactttc tctgctgcat gcatttcctg gtgtcataaa 60
cacttggtac gttcctaaat tcctggttag aaagcaggtg gctaccagcc ttcttgtttc 120
<210> 378
<211> 120
<212> DNA
<213> artificial sequence
<400> 378
agaatcttcc tctaaccacc tggtgtaaac ttaaggggta tttatagaag atgtaaacgg 60
aaaatatcct cttactaaag ttaatatctt atccaaaaca ctcttatatc acgtgcctag 120
<210> 379
<211> 120
<212> DNA
<213> artificial sequence
<400> 379
tgaaaactga tttagggttg tgtagggaaa tgcaccttta acagtcatgc atcaggcaaa 60
tgaggctcct cagaaacagt gaaacattct ttgctattgc cctagggagc tgcagaatct 120
<210> 380
<211> 120
<212> DNA
<213> artificial sequence
<400> 380
taaatttcag gaagcattat aaaacctaat ctttggggag cctttgattt accgagcaac 60
cacctgtgat tcttaaattg aacattcctg agtaaatctg gaatatgcaa atgtgaaaac 120
<210> 381
<211> 120
<212> DNA
<213> artificial sequence
<400> 381
gtaagctata aaagtgctaa aatagaataa tactcttctg agatactttg atttataatt 60
ttgggatcaa cttggagtca tctgaattca aacaggccgg caaagtggag ctgtaaattt 120
<210> 382
<211> 120
<212> DNA
<213> artificial sequence
<400> 382
tagtttaata aaactgatga gtttactgaa gaaagaagtc ctgctaaaat ccttgctggc 60
tttttttttt ttttaaatag aaagcataca aataacactt cacgttgcat agagtaagct 120
<210> 383
<211> 120
<212> DNA
<213> artificial sequence
<400> 383
gtttaatgtt gaagtggggg gatgcacttg gcttatccgc cttagctttt gtttgggatg 60
gcagtgttgt gcatgtgaac ttgttagtct aaattaggct aaaaagtatt tgatagttta 120
<210> 384
<211> 120
<212> DNA
<213> artificial sequence
<400> 384
gggatctgac tgactccaaa gatatgactc ttaaatttat ctgttatttg atcaaagctg 60
gcctgtaagt gattaaaatt tatcatttag ccaaggttta tgcacgtgtg tctgtttaat 120
<210> 385
<211> 120
<212> DNA
<213> artificial sequence
<400> 385
gtcattatct cctttggtcc tcacgacaaa gagaagaggc agccactgtt aacacctcca 60
atcttctcaa atgaagaaac tgaggcccgg agagagcagg gtactttgcc taagttcaca 120
<210> 386
<211> 119
<212> DNA
<213> artificial sequence
<400> 386
aagctctttc tttgtgtttc ctgttaaaga gttttgcttt gtgtgttttg gatgtgtggt 60
gaggacttgg gaggggacgc ggtcctccta agaacaacag ctaacgttaa tggagtgct 119
<210> 387
<211> 120
<212> DNA
<213> artificial sequence
<400> 387
aagtgggcaa aggggattcc taagagacag ctatttgcag agcccctcct aggcgttcat 60
tcattcattt gaggaactgg aggatgaaga gcctgcaatc ggagggacct tgtagaatta 120
<210> 388
<211> 120
<212> DNA
<213> artificial sequence
<400> 388
atggaggtcg cctgtgggga tcaaggactc gcctggattc ggtgtctccg ctgaaatttg 60
catgactcgc tctgggtgta cttgtgggtg tttaattggt ggtgaaagac agttacctta 120
<210> 389
<211> 120
<212> DNA
<213> artificial sequence
<400> 389
ggttcacgct aggtgcggag ggcagggtag agacgcttgg cgggagggga agggtcgcga 60
gggtggggct ggtcccagaa cttaaagaga ggggtcgggg tataggggcg tggagaatga 120
<210> 390
<211> 120
<212> DNA
<213> artificial sequence
<400> 390
gccggacgga gcacttcgcc cctccttggc ccccgagggg acggctgcac cctgggcctc 60
ggtccctcgg gcaggggcga ggtgggcccc ttcgtcagtc cctcacttgg tggggtgaca 120
<210> 391
<211> 120
<212> DNA
<213> artificial sequence
<400> 391
tcacttgctt ggtagggatc ccggggaagg ggggttcgga gagctctccc ctccctctta 60
ttacacgcta tctccggctg gcccggccgg gactggcggg tccctgggga ggagaggcga 120
<210> 392
<211> 120
<212> DNA
<213> artificial sequence
<400> 392
ggggaggaga cggtgggtga gtatgggggt gtctccccct cctttttatg ggggcttcct 60
ggggcagccc cggcaccatg actccagccg gggaggctcg gaggggctgg agcaagagac 120
<210> 393
<211> 120
<212> DNA
<213> artificial sequence
<400> 393
ggactctttt tcgtggcgga ggccgccgtc ggccttggcc ctttcacgac gggggaggtg 60
ctgtacgtcc aagatggcgg cgccctgtag gctggaggga ctgtgaggta aacagctgag 120
<210> 394
<211> 120
<212> DNA
<213> artificial sequence
<400> 394
actttttttc tcgtccaacc cacatcgtca gttatgagtg gaagagcctc ttccttccgg 60
cggggctgcc gagcgcggcc gtctatcctt cctttcgaga aggaggggag gtccggaggg 120
<210> 395
<211> 120
<212> DNA
<213> artificial sequence
<400> 395
tcccagccct gcctcggccc ctgcatctct cccagccctg cctcggcccc tgcatctctc 60
ccagccctgc ctcggcccct gcatctctcc cagccctgcc tcggcccctg catctctccc 120
<210> 396
<211> 120
<212> DNA
<213> artificial sequence
<400> 396
cccagccctg cctcggcccc tgcatctctc ccagccctgc ctcggcccct gcatctctcc 60
cagccctgcc tcggcccctg catctctccc agccctgcct cggcccctgc atctctccca 120
<210> 397
<211> 120
<212> DNA
<213> artificial sequence
<400> 397
ccagccctgc ctcggccctg catctttcct tccctccatc cttggaacca ggccctgggg 60
cccagccctg cctcagccct gcatctctcc tagccctgcc tcagcccctg catctctccc 120
<210> 398
<211> 120
<212> DNA
<213> artificial sequence
<400> 398
ccctccctcc tcccgtagaa ccaggccctg ggggccagcc ctgcctcagc ctgcatctct 60
cccagccctg ccccaccccc tgcatctctc ctttcctcca tcttgccttc tcccctccac 120
<210> 399
<211> 120
<212> DNA
<213> artificial sequence
<400> 399
agaggcctca atccttggca tgcagttggt tttttccctg tgtcctcaca ggctctttcc 60
tggatgtctg cgtgttaatc tcctcttggg aggaaaccgg tcatggctta gggtccgctc 120
<210> 400
<211> 120
<212> DNA
<213> artificial sequence
<400> 400
ctcccatccc ccgttgctcc cgtacccccg ggtaccatca agctgcttcc tgtctctgtg 60
gatttaccta ctctcaacat ttcatggaag tggaatcaca caaaattcat ccataagatg 120
<210> 401
<211> 120
<212> DNA
<213> artificial sequence
<400> 401
cctgtgcagg tgaaaatccc catctaactt ttaactcccc agaaacttta ccaacagccc 60
tctgttgact agaagccttg ctgatagcag acagtctatt aatgtacagc tcgtgtgttt 120
<210> 402
<211> 120
<212> DNA
<213> artificial sequence
<400> 402
tcttgtccgg gcagggccag ttcaactttg tccacgtgat cgtcaccccg ctggactacg 60
agtgcaacct ggtgtccctg cagtgcagga aaggtagggc cgggtggggc cctgcagtgc 120
<210> 403
<211> 120
<212> DNA
<213> artificial sequence
<400> 403
ctggagtgga gagtcccgga cagagtggtg ggaaaggaag cgttttcttg cttggggcga 60
aagggggcag cggagcggag cgcccgaaac ccagcccctg cggaccgcaa tctttgggaa 120
<210> 404
<211> 120
<212> DNA
<213> artificial sequence
<400> 404
aaaggcgcaa ggtgggaacg cagggccgca cgtgggaacc gttcgcggct gccgggtttg 60
cagcccctgc ccgcgcagct gggagccgca ggaggcggcc cgggactcca gcctgcagcc 120
<210> 405
<211> 120
<212> DNA
<213> artificial sequence
<400> 405
cctatcccgc ctcctcccac gctccagcca cggcgcggcg ctacctgctg cagcctctct 60
tctccggaga ggcccgggct cctccctaca cccccgcggc ccagccccgg gtcccaggct 120
<210> 406
<211> 120
<212> DNA
<213> artificial sequence
<400> 406
ccggctccgg gtcagcatcc tcgcgctcaa ggcggtcatg ccggactcct gcggactaca 60
catcccggcg gcccatgcgg ccccgtcacg tgatgcaagg atcgccggcc tttccgccag 120
<210> 407
<211> 120
<212> DNA
<213> artificial sequence
<400> 407
agggcggcac agaactacaa ctcccagcaa gctcccaagg cggccctccg cgcaatgccg 60
ctaccggaag tgcgggtcgc gcttccggcg gcgtcccggg gccagggggg tgcgcctttc 120
<210> 408
<211> 120
<212> DNA
<213> artificial sequence
<400> 408
tccgcgtcgg ggcggcccgg agcgcggtgg cgcggcgcgg ggtaagtggc ggtccccacg 60
gggcaagtgg cggtccccac ggggcagcgg cctagagagg cggaccccgc agtgtccggg 120
<210> 409
<211> 120
<212> DNA
<213> artificial sequence
<400> 409
tcccgggccc tcacccgcgc ccactgcaac ccgactccgg agctccgagc atcccttagt 60
tttaagtcat ggcgggtgcg aacgggtctc tgctgcaggc ggctccgtga cagctcctgc 120
<210> 410
<211> 120
<212> DNA
<213> artificial sequence
<400> 410
ttcacatggg tagaggagag acggcaaacg tcggggctcc caggacttcg cggcggcagt 60
cctaacccgt gcactgagtc gggcggggcg ggcggcagcg tctgagtaga gagctctcta 120
<210> 411
<211> 120
<212> DNA
<213> artificial sequence
<400> 411
gaccaggcct ggtgtctccc gggctttcct aggtgcctgt ttgcgagctg gtcagctggg 60
ctgtagttga gttctcccag ggagtgtggg aggaaaggtt atgcccacca gagacccagg 120
<210> 412
<211> 120
<212> DNA
<213> artificial sequence
<400> 412
gtcctgacgg ctggaggtcc gcagtgggga aggtgggcag aggtgttgct cagatgtccc 60
cattcctgtt tcgtttgcac agaggggttt tctggtgcgt cctggtccac catggccaaa 120
<210> 413
<211> 120
<212> DNA
<213> artificial sequence
<400> 413
ccaacaagca aagattcagg cttgaaggag aagtttaaga ttctgttggg actgggaaca 60
ccgaggccaa atcccaggtc tgcagagggt aaacagacgg agtttatcat caccgcggaa 120
<210> 414
<211> 120
<212> DNA
<213> artificial sequence
<400> 414
atactgagag tgagtgagct acctgtgtct ttgctaggct agagggaaat gcagagaagg 60
ctgggtttgg tcttgcacca ggttctgtgg gagacgggtt gctggcaact gtctacacag 120
<210> 415
<211> 120
<212> DNA
<213> artificial sequence
<400> 415
gaatgctgtc tccagtactt ggaggccgac atgtccttcc tcaggagact tcgaaagtca 60
ggatcttggt gacctggttc aggcacactt gagttactat tcagatgttg atgaaagaaa 120
<210> 416
<211> 119
<212> DNA
<213> artificial sequence
<400> 416
gcccatctta tagatgaggc ctgagtatca tcatcttcac aggtaaggat atgtccaggt 60
gttacatgat aagatgtgag ttcctgggag aagtaggttc tttattttat ttttttttt 119
<210> 417
<211> 120
<212> DNA
<213> artificial sequence
<400> 417
acaggcatga gccatcgcac atgggctagg tcgttatctt ttatgtgtgt ttgtgtcttt 60
gtcacacatg cctggcattg tgttttgccc atgagtaaat gctgaatttt tgcacttgta 120
<210> 418
<211> 120
<212> DNA
<213> artificial sequence
<400> 418
tgcccatgag taaatgctga atttttgcac ttgtaaagtt ttctacttag aaacaactaa 60
aacgttcatc aactgatgaa taaaatatag tccatcctgg ctgggtgcgg tggctcacgc 120
<210> 419
<211> 120
<212> DNA
<213> artificial sequence
<400> 419
aaactccgtc taaaaaaaaa ttgtgcagtt tgaaattgta tttcatgtta tgttttatct 60
caatacaaca tttgcagttg tgaaaaaaaa ttgcacattc tcaactcctc gggatggagc 120
<210> 420
<211> 120
<212> DNA
<213> artificial sequence
<400> 420
ttcatgttat gttttatctc aatacaacat ttgcagttgt gaaaaaaaat tgcacattct 60
caactcctcg ggatggagca gtaaagcccc tcagtaaatc tttttttttt tttttttttg 120
<210> 421
<211> 120
<212> DNA
<213> artificial sequence
<400> 421
tacaggcctg agccaccgcg gctcgtcaag tgaatcttga ttccagaaag atctgtttta 60
agtctctagt ctggaaaatg cagtgggagt ctttaggtgg tttgtgactt gcagttaagg 120
<210> 422
<211> 120
<212> DNA
<213> artificial sequence
<400> 422
ctttaggtgg tttgtgactt gcagttaagg agaccgtggc ctgagcactg gccccttttt 60
cttctttcat ctctctccag gaactgagca tggaatgtgg cctcaacaat cgcatccgga 120
<210> 423
<211> 120
<212> DNA
<213> artificial sequence
<400> 423
tggaatgtgg cctcaacaat cgcatccgga tgatagggca gatttgtgaa gtcgcaaaaa 60
ccaagaaatt tgaagaggta ggtttatcca gttgagctac tagagagagg cacgtagact 120
<210> 424
<211> 120
<212> DNA
<213> artificial sequence
<400> 424
gttgagctac tagagagagg cacgtagact attcagagcc tgagtttgct ttttttagga 60
acatggttga cagctgactg ccgatgatct ggtttgcact tttttttttt tttttttttt 120
<210> 425
<211> 120
<212> DNA
<213> artificial sequence
<400> 425
gtgagccact gcgcccagcc agtttgcact gttttagggg aatttagctt tcatcgtagt 60
gatggggaag ctactggaaa tgccccgaat acaaccttga gggaccaatc aagcgtggaa 120
<210> 426
<211> 120
<212> DNA
<213> artificial sequence
<400> 426
cccgaataca accttgaggg accaatcaag cgtggaaatg gggagcaaag ggattaggct 60
tttctagcaa caccagaaag gatttctatg ccgagcgggg gtgcgggggc ttatgcctgt 120
<210> 427
<211> 120
<212> DNA
<213> artificial sequence
<400> 427
aaaaaaaagg aagagtttgt agtggctgat agaaacgcat gctcactcgc tctctcctgt 60
tacaagttca ggccaagaaa aatcaagaaa gggtttgttc cacagagaac aatcctaggc 120
<210> 428
<211> 120
<212> DNA
<213> artificial sequence
<400> 428
ttgtggacag gacaggaagt ggtcattttg ggagtgcagg ttgctggtag agcacctgag 60
ggctctgccc ttgccttgcc cagcatttgt gtgtgggaga gcagtgagac ctggacctct 120
<210> 429
<211> 120
<212> DNA
<213> artificial sequence
<400> 429
tctgctaaga ggagagtgat tgctacctct gcagcagctc atctgaaacg tgctggccgt 60
acgctaccaa agataggtgt aaagaacagg tgtccttagc cgggcgcagt ggttcacgcc 120
<210> 430
<211> 120
<212> DNA
<213> artificial sequence
<400> 430
gaaaacaaaa aaaagaacaa gcgtcctgca tcctgttctg aaagttgttt gtgtgggtac 60
ggggcagcct gtgagtggat aaataggcct ccgaggctgg gatggtcccg ggccctgtgt 120
<210> 431
<211> 120
<212> DNA
<213> artificial sequence
<400> 431
gtggataaat aggcctccga ggctgggatg gtcccgggcc ctgtgtccac ggatctttgc 60
agctcaggtt gcaacggtaa gagtattgtc aatgagacaa aggaggtgag agtgccagtt 120
<210> 432
<211> 119
<212> DNA
<213> artificial sequence
<400> 432
cggtaagagt attgtcaatg agacaaagga ggtgagagtg ccagttgtct gaattggttg 60
ggatgttggt cagatgacat ctaaaagaac acggccattt tgttattatt tggttagag 119
<210> 433
<211> 120
<212> DNA
<213> artificial sequence
<400> 433
gtgagccacc gcacttggcc agaacacggc cattttagtt cccctcctta gaggagtaag 60
gccaggaatg agcctgtggt ctgaaagccg tggctgttgg ttaatgtgga gaagggaagg 120
<210> 434
<211> 120
<212> DNA
<213> artificial sequence
<400> 434
agaggagtaa ggccaggaat gagcctgtgg tctgaaagcc gtggctgttg gttaatgtgg 60
agaagggaag gtggtgagag ccagcccaaa cccctgccga gtgagactga ttctggcagc 120
<210> 435
<211> 120
<212> DNA
<213> artificial sequence
<400> 435
ttagaggagg cagatttcag aaggccacgc agcgctcttt ctcagcaggt caggcaggca 60
gcagaggtcg ggcaggggca tggggtcgag ggcccgatgc tggtgtgttc actagaggag 120
<210> 436
<211> 120
<212> DNA
<213> artificial sequence
<400> 436
actagaggag agccacaagc agggattctg ggtcaggtgc aggcctaggg cttagtgtgc 60
acttgtggtt ctgagactgt cccatgactt cctgccagca ttccggcagc tctagtggga 120
<210> 437
<211> 120
<212> DNA
<213> artificial sequence
<400> 437
tctagtggga ctccctcctg gtccaggtga ggccaccatt gctgccctgg cttgctgctg 60
tcctctcagc ccccagtctg tcacctggtg ggagttaaag ggacctgctg gggtttgagg 120
<210> 438
<211> 120
<212> DNA
<213> artificial sequence
<400> 438
gggtttgagg aagctctgag ccgttccctg tacgaagcct gtggtcatct caggctgcag 60
gagacacagg agatacgagc tttggaggtg gggctctcag tcacaagccc ccgttgttcc 120
<210> 439
<211> 120
<212> DNA
<213> artificial sequence
<400> 439
ccgttgttcc tccctgtcct ccgctcacgg cactgctcca gttgccgggg ccagggttct 60
tggagagcac atcctcaccg ctgtcccctc tgctggtgac agcacgcagt ggaagcactc 120
<210> 440
<211> 120
<212> DNA
<213> artificial sequence
<400> 440
ggaagcactc tggaaggcgg tcgcggatct gttgcagccg gagcggccgc tggaggcccg 60
gcacgcggtg ctggctctgc tgaaggccat cgtgcagggg caggtaaggc ccagggcgac 120
<210> 441
<211> 117
<212> DNA
<213> artificial sequence
<400> 441
ccagggcgac gctgggatgg gtgacgtcag gctgcccact gactgtcctg tccctgctgg 60
gccgtgtttg gactcctgcc tcggtgagtt gctgggcaca gggtctaggg gctgatg 117
<210> 442
<211> 120
<212> DNA
<213> artificial sequence
<400> 442
atggcctgtg gggtctcctg gtgtcatgag gtctgtgtga ccgtaggcac tgcctcctcg 60
cctgtaaaca gatggtcact gcaccttcct cttatgggat gttctgggga tcatatgagg 120
<210> 443
<211> 120
<212> DNA
<213> artificial sequence
<400> 443
tgctgagatc gtacctggca gctggtgtgg ggctacggtg ttgttttgcc cttgcaccct 60
ttcggggcca ctcccctgct cactgcattc catctgtgct ggtcttggct gaccctgaac 120
<210> 444
<211> 120
<212> DNA
<213> artificial sequence
<400> 444
ccctgaacac ccaggcctct tggtgttcct gcctcccctg gtcggccact tctactcctt 60
catgtcccag ctgctcagaa gggccgtcca ctctcacagg ctctcctggg tttcccccac 120
<210> 445
<211> 120
<212> DNA
<213> artificial sequence
<400> 445
tcccccactc aggccttgtc ctcagtctct gagcacaagg ctgtctgccc tgcaccgagt 60
gcaggggtcg ggcaggagct gtgtcatccc ctgctctgcg ccacccgctg tgccaggtcc 120
<210> 446
<211> 120
<212> DNA
<213> artificial sequence
<400> 446
ccaggtcccg acacacagca gttgctcccc atacgccgct ctgcggtcgg ccggtgcatc 60
cggccccctg ccctgtacaa tgctgatgct gcagacctgt ctcttgcagg gcgcctctgt 120
<210> 447
<211> 120
<212> DNA
<213> artificial sequence
<400> 447
gcctctgtgg gaaggagagg ggtccagggc tggagtccgg gtgcccctgc acttcaggga 60
cttcttggca gccgtgtggg cgacgctggc aggctctgct gatcctgtgg cttttgtctt 120
<210> 448
<211> 120
<212> DNA
<213> artificial sequence
<400> 448
tttgtcttta gggcgagcgt ttgggggtcc tcagagccct cttctttaag gtcatcaagg 60
attacccttc caacgaagac cttcacgaaa ggctggaggt tttcaaggcc ctcacagaca 120
<210> 449
<211> 120
<212> DNA
<213> artificial sequence
<400> 449
cacagacaat gggagacaca tcacctactt ggaggaagag ctgggtgggt gccaccttgg 60
gttggaggtt tctctggcct tgacgatcaa gtgtaacctg gatgggaagg acctggggct 120
<210> 450
<211> 120
<212> DNA
<213> artificial sequence
<400> 450
ctggggctgg ggaggggctg ccgttctcag ggatggcctg cagcgggtat gcccaccctg 60
cttcatgcac ctgggctcac ctgcgtggcc ggagtgcccc tgaggcacgt gttaaaaatg 120
<210> 451
<211> 120
<212> DNA
<213> artificial sequence
<400> 451
agtctctggg gcttggggcc tccgaacacc tctgcaacgg caggagctgg gcgagttctg 60
tcactgggag gtggtgctgc tgacttggtc tcaaccggag cgtactggtc ccgtcttcct 120
<210> 452
<211> 120
<212> DNA
<213> artificial sequence
<400> 452
ggtcccgtct tcctcctcct ttctccactt tgtggacctt cctcctgcca tcctgtggtg 60
ggaggtttcc attagtcttg ggtctctgtg tcatgattct gggaagtaga gaaagaggag 120
<210> 453
<211> 120
<212> DNA
<213> artificial sequence
<400> 453
tagagaaaga ggaggaagag atcggtctga ctctggcttt gctgttctgt cgcccagaaa 60
agggcctcag tggctgggct gcctgcagga caggtgccgg ccaggtgcct accgtcaggt 120
<210> 454
<211> 120
<212> DNA
<213> artificial sequence
<400> 454
gcctaccgtc aggtttcctg tctgaggtga cgtggccggc agccaagtgt gcacacgtct 60
cctccgagcc actctctgct gggggtgggg aacgcccagg agtctggtga tgtcggcgtc 120
<210> 455
<211> 120
<212> DNA
<213> artificial sequence
<400> 455
gtgatgtcgg cgtctcccag cctcgggttg ggccctgagt gtacggcata cacacttctg 60
ctgccgcctc ggcacagacc ctctgtgcag ccccaggggc ggtagatcct agtgtccgtg 120
<210> 456
<211> 120
<212> DNA
<213> artificial sequence
<400> 456
tcctagtgtc cgtgcgtagc cggcctgccc tgggctcccc tgagcctctt cgggcccagt 60
gcgtggtctg tctgttgctg ccgggggact gatgatgggg tttctggcag tgacgggttt 120
<210> 457
<211> 120
<212> DNA
<213> artificial sequence
<400> 457
gcagtgacgg gtttggacac actgtcctgc ggcgggaggg ggaggtgagt gggagatgta 60
gattcggcgt cctcgcaaac tgccgccgct tctcccccag ctgactttgt cctgcagtgg 120
<210> 458
<211> 120
<212> DNA
<213> artificial sequence
<400> 458
ttgtcctgca gtggatggat gttggcttgt cctcggaatt ccttctggtg ctggtgaact 60
tggtcaaatt caatagctgt tacctcgacg agtacatcgc aaggatggtt cagtaagaaa 120
<210> 459
<211> 119
<212> DNA
<213> artificial sequence
<400> 459
ggttcagtaa gaaaagaatt gagatcctgt tctgataatg gtcctaagtt cagctccgca 60
gtgaataaag ttgaaaccac caaaaaaata gaggttgggc tgggcacaat ggctcacgc 119
<210> 460
<211> 120
<212> DNA
<213> artificial sequence
<400> 460
aaaaaaaaaa aaaaagagaa gtacgtagct atcttctgtt tagctctcat ctgatgtctt 60
ggttatcttt ttgttgtttg tttagaatgt tgcatgagct ctgtctcact catgctgaac 120
<210> 461
<211> 120
<212> DNA
<213> artificial sequence
<400> 461
tctgtctcac tcatgctgaa cacccagcac cgagagcagt ggctggcgca cagcaggcac 60
ctgagtgctt gttgggtggg tgggaccccc agggaggatg agccatgcgt gttattgacg 120
<210> 462
<211> 120
<212> DNA
<213> artificial sequence
<400> 462
gagccatgcg tgttattgac gtcatagagt gactagacca cagcccgtgg tggctcggcc 60
atccaggcag tgctgccggg actgagctcg gtgctccctg caggatgatc tgtctgctgt 120
<210> 463
<211> 120
<212> DNA
<213> artificial sequence
<400> 463
gcaggatgat ctgtctgctg tgcgtccgga ccgcgtcctc tgtggacata gaggtcagtg 60
cctcccctcc ccagggccgg cccatttcac cctggtttct gggaggctgg ggcttggggg 120
<210> 464
<211> 120
<212> DNA
<213> artificial sequence
<400> 464
cccccatgta agtcaggata gccgggcgcc tccatgtgga gatgtagctc agggtggatg 60
acagcatcaa tgacccacag tgacagggac gtcaggtgct tcccacatgc ccgcttgccc 120
<210> 465
<211> 120
<212> DNA
<213> artificial sequence
<400> 465
ccctgtggct tggagagagg gtgccatggc agcggggaga ggtggcagcg caggctgaag 60
gaggtgggaa ggaagcctgg gtgtcctctc ctgtggggag gagctggggt aggacgggcg 120
<210> 466
<211> 120
<212> DNA
<213> artificial sequence
<400> 466
gcgtgagccg tctccctctc caccaggtct ccctgcaggt gctggacgcc gtggtctgct 60
acaactgcct gccggctgag agcctcccgc tgttcatcgt taccctctgt cgcaccatca 120
<210> 467
<211> 120
<212> DNA
<213> artificial sequence
<400> 467
tcaacgtcaa ggagctctgc gagccttgct ggaaggtggg gtttctgaaa ctgctctgga 60
aggttcctga gagcacatgg atgggacaag ggccatcctg tctcccatga atggttgtct 120
<210> 468
<211> 120
<212> DNA
<213> artificial sequence
<400> 468
tctgattctt ggggtggcca gacaatggcc tgttgaggga cggccagtgt cattttccca 60
ggcagttgag ctgaggtcag ggttttggtg gcattttgag aaccctgctg cctctgtctt 120
<210> 469
<211> 120
<212> DNA
<213> artificial sequence
<400> 469
ctttgggagg agatggtggc gagctggccg gaccttgggt ggctataggg cagcagccag 60
gcggggccag cagcgggact ggggctgggg gcagggctta tgcctgccag cccctgacac 120
<210> 470
<211> 120
<212> DNA
<213> artificial sequence
<400> 470
cacgcattgt gtctcgcagc tgatgcggaa cctccttggc acccacctgg gccacagcgc 60
catctacaac atgtgccacc tcatggagga caggtgagtg tggtgggtgg ggcgcagggc 120
<210> 471
<211> 120
<212> DNA
<213> artificial sequence
<400> 471
ggcagtggag gccagcacag ccctcggggc agctccagtg tcccttgcca agcacacact 60
ggcttagaga gtccttgtcc tctcgggcag ctgttccaga ggctgccact agagcgaggc 120
<210> 472
<211> 120
<212> DNA
<213> artificial sequence
<400> 472
ggcccatgac ttctaggatc cagcccctgt cctctccttc ctctgtcagt tcaacagaat 60
atccacaccc agctcagtgc ctgccccatg ctcggacgtc ctccagcggt gctccccaac 120
<210> 473
<211> 120
<212> DNA
<213> artificial sequence
<400> 473
aactacttag cctgttacaa ggcgaggctc ggggtcttgg cttgacgttg cccttgccct 60
cacccccaca gccaggctgt ggccactttt gttgctttag ccattagaga tggctcagct 120
<210> 474
<211> 120
<212> DNA
<213> artificial sequence
<400> 474
gctctgccca caccctggcc tcccacccat gctgccagct ccccctcctg ctctcctgta 60
tccatccgcg cctcctgaag cccactccat gcagcacccg ggtggccttt ttctgacaca 120
<210> 475
<211> 120
<212> DNA
<213> artificial sequence
<400> 475
acagatatgt cggtgtcacc ctttgctgga agccaggtgg ttcccagcgc ccttgggatg 60
taggcttctc ctatggaacc aggccctggg gccagccctg cctcagccct gcatctctcc 120
<210> 476
<211> 120
<212> DNA
<213> artificial sequence
<400> 476
caccaagggc ttgtgcatgc cctgattcct cttgccagca ggttcttcca cctttgccga 60
gttactctgt ttactgaggt cttagcgtgg tcactgactc ccccacctcc ctgagtagtt 120
<210> 477
<211> 120
<212> DNA
<213> artificial sequence
<400> 477
gtttttgctg tggctttcct tcttggctgt gattggagga agagattttg cgtttacctg 60
ggagattatg tggctggcgc ctgtctcccc cagactgcga ggctgtgggc catccctctt 120
<210> 478
<211> 120
<212> DNA
<213> artificial sequence
<400> 478
cttgcctgct tcctgtccct ggcatgacct gtagctcaca gcgtggtcag cagtgatggg 60
ctgccgcctg tgcgcaggag tgaacaagag tgttactgct ggcctctgtt ccctgccctt 120
<210> 479
<211> 120
<212> DNA
<213> artificial sequence
<400> 479
cttccccagc ggtgctcctg ccccccccaa gcacagggac ctctggggct gctgcaggag 60
cctcggcaac ctcacacatc catggcggac cctgggacag ggccctgctc acattccgtc 120
<210> 480
<211> 120
<212> DNA
<213> artificial sequence
<400> 480
gtctctctgg ggaacacttt tagagcctac atggaggacg cgcccctgct gagaggagcc 60
gtgttttttg tgggcatggc tctctgggga gcccaccggc tctattctct caggaactcg 120
<210> 481
<211> 120
<212> DNA
<213> artificial sequence
<400> 481
tcgccgacat ctgtgttgcc atcattttac caggtaaggc ggtttctgtg tgcagtgagc 60
tggcaggaac gggagagctc ccctcacgcc tgcccaccca tcccactggg ggtcctgctg 120
<210> 482
<211> 110
<212> DNA
<213> artificial sequence
<400> 482
ctgcgggggc tgcggtggca tttctaggcc tttccaggca gttgctttgc agctgggggt 60
gaggtttggg gccctttgta ggctttagtc tttttttttt ttttgagaag 110
<210> 483
<211> 120
<212> DNA
<213> artificial sequence
<400> 483
atgagccact gcgcgcagcc caaaggcttt attctcaagc aaaccttaca tcttgcgagt 60
ttcaccttct ggagttggca gtggaggggt gaacgctgcc tcgggggtag ccgttctctt 120
<210> 484
<211> 120
<212> DNA
<213> artificial sequence
<400> 484
tgctgttggc ggctctgttt tgtcaagtgc tggtcttgtc ctgtctctgc aatgacgccg 60
tggcacagac gctggtggta cagcttcagt ttccgcagtg ccccgtgatg acagcgcttt 120
<210> 485
<211> 120
<212> DNA
<213> artificial sequence
<400> 485
tttgtgtccg tcctcgttct gtgctcacag ctccctggag ggtggggcga tcacgtcgtc 60
ctggttttat agtgatgagc tgcggtgtgg gtcacagggc tctcctgatc ctctgctctt 120
<210> 486
<211> 120
<212> DNA
<213> artificial sequence
<400> 486
tcctgctacc cccctccccg taggggcggt ggggggatgt tgtctttgtg cacagcttgc 60
agccgaactc agggcagctt tcagttgctg ctgggctggc ccaccgggtg cccaggattc 120
<210> 487
<211> 120
<212> DNA
<213> artificial sequence
<400> 487
cagttgctgg tctgtccgag tcagggactt tgcaggcagg catgggggtg gggcccgtct 60
gggtcctgac tgtgctggag catgtagaaa cccctcctgg gcgccccacc tgctgtttct 120
<210> 488
<211> 120
<212> DNA
<213> artificial sequence
<400> 488
tgcggcccct gataaacgtg tggtgggcac tgcgcgctca ggcgtgctac tctcggtccc 60
aagggtgact gggagggcgt cccacagcaa gcaagcagct ctgaccctgt gtgctggccg 120
<210> 489
<211> 120
<212> DNA
<213> artificial sequence
<400> 489
gggctcgtgt tccaggccat ggcatgtccg aacgaggtgg tgtcctatga gatcgtcctg 60
tccatcacca ggctcatcaa gaagtatagg aaggagctcc aggtggtggc gtgggacatt 120
<210> 490
<211> 120
<212> DNA
<213> artificial sequence
<400> 490
tctgctgaac atcatcgaac ggctccttca gcagctccag gtggggtggg ggcaggagct 60
ccggggagca ccgggaaccc agacaggcag gctcggccca ctcagaagat ggtaccttgg 120
<210> 491
<211> 120
<212> DNA
<213> artificial sequence
<400> 491
ggccccatct ctgggggtcc cgcagagact gccagaaccg tgttctctgg tgattcgcag 60
tggcgctcat ccaccttcca ccggagacag gtctgatttt tccagacgtg gtgcatcgtt 120
<210> 492
<211> 120
<212> DNA
<213> artificial sequence
<400> 492
ttaggcccca gacaggaata tgcagtaggt gagccggggc tgggccagtg ctgtccacag 60
tccgcagagt gacctgcagg ccgccttcgt ggcctgagtg ggccccggca cagttcccag 120
<210> 493
<211> 120
<212> DNA
<213> artificial sequence
<400> 493
gagggatgcc agtgtggctt ccgcatgact ttggaggacc gcattagtcg agtctgttaa 60
ccacagcttt aaggaggact ccacggccac acgggctcat cagcataggg gccctgggga 120
<210> 494
<211> 120
<212> DNA
<213> artificial sequence
<400> 494
aggcgaggct agtatccagc agcctcaggg ctgtgccttt tcctggagcc tggggcgggt 60
gatgtacagg aggccaggca gcagaaggga ggccgggact tcgccgggac ttagcaggga 120
<210> 495
<211> 120
<212> DNA
<213> artificial sequence
<400> 495
actgaagtcc tctcagagcc tgtcgctggg ccagagcatt gcccccgacc gctggtggca 60
gtggcagagg tcatagcctg gggcttctaa aagaggctgg acctgggaga ggcaagaaag 120
<210> 496
<211> 120
<212> DNA
<213> artificial sequence
<400> 496
ggcttgtagt tgtggctact cttggccctc ctgcccgagc ttccttcttg gcccagctgc 60
atgggcacag ccaagattcc ttggggggtg gggtacgggc aggaacagca gctgccatca 120
<210> 497
<211> 120
<212> DNA
<213> artificial sequence
<400> 497
acagccactg tggccccttg agaggatctg gggggtgtcc tgggccacgt gggtcagggt 60
ggcccctgga gaggatctgg gggtgtctca acccatgagg cccggagcgg cctcagaggg 120
<210> 498
<211> 120
<212> DNA
<213> artificial sequence
<400> 498
gctgggggcg tctgtcccca tgcggcccag agcggcctga gagggctgag ggtgtctcca 60
tgcggtgggt gtgtagcgag gcctctggtg ccaagtccat gtggggagtg gaagtcagcc 120
<210> 499
<211> 120
<212> DNA
<213> artificial sequence
<400> 499
ctgtgtcatc gtgcctggta ctgcagacct tggacagccc ggagctcagg accatcgtcc 60
atgacctgtt gaccacggtg gaggagctgt gtgaccagaa cgagttccac gggtctcagg 120
<210> 500
<211> 120
<212> DNA
<213> artificial sequence
<400> 500
gagagatact ttgaactggt ggagagatgt gcggaccaga ggcctgtgag accccctcct 60
gggtggggcc tttgggcttt ggctggtggg gaggggccgg gtgctgggtg aagtgcagct 120
<210> 501
<211> 120
<212> DNA
<213> artificial sequence
<400> 501
tttctgagcc tcagaagcca agggccaggt gggcgcctgc tttccaggtt tctgcactcg 60
gcagggaagg ctggcaggca cagcacgtgt ttggtaacaa gctcggggct agcccaccca 120
<210> 502
<211> 120
<212> DNA
<213> artificial sequence
<400> 502
atcagtttcc tcccacctgt gtggagcaag cttccatccg gctctgtaga gtcctgtggc 60
tcccaggcgg ccgcagtcat tttgccagga acactcagct tagggcccag gcttttccat 120
<210> 503
<211> 120
<212> DNA
<213> artificial sequence
<400> 503
tgggtttgga cacaagtctt ccccgctgcc aggagtgcct ttgtgtctgg gctgtgggct 60
gcaggctgtg aggcggctgg gctctgacag caaaccagcc tctcgaccag cagcccagtg 120
<210> 504
<211> 120
<212> DNA
<213> artificial sequence
<400> 504
gtggagaagg agagcgccgg aggggcagag gggcaacacc ggctcttctt ttgacaggag 60
tcctccctcc tgaacctgat ctcctataga gcgcagtcca tccacccggc caaggacggc 120
<210> 505
<211> 120
<212> DNA
<213> artificial sequence
<400> 505
ctggattcag aacctgcagg cgctgatgga gagattcttc aggtaggggg tcctctgtag 60
ccttgcctgg cacctggagc ctggccctgt ctctgtctgg ggcccacccg ggctgggtct 120
<210> 506
<211> 120
<212> DNA
<213> artificial sequence
<400> 506
tcaggatgcc cgatgagcag ggccctcccc tctgcctctg gagagccctg gctctgggtg 60
agcaggtgct agcttgcttt ccagtccagc aggacaggtc ctctcatgac gccactgggc 120
<210> 507
<211> 120
<212> DNA
<213> artificial sequence
<400> 507
ctccctcttt tcgggggtcg tctggagaga tgctccctgg gaagcagagc tctgtgccct 60
gtgtgcctgg ccgcgggagg acccagagtc gggctggcct gcgccaggca gacgggctgg 120
<210> 508
<211> 120
<212> DNA
<213> artificial sequence
<400> 508
gtgtggggct gtggccgggc actccccacc cgccccagca ggctgccgtc ccgcaggagc 60
gagtcccgag gcgccgtgcg catcaaggtg ctggacgtgc tgtcctttgt gctgctcatc 120
<210> 509
<211> 120
<212> DNA
<213> artificial sequence
<400> 509
caacaggcag ttctatgagg tgcgtgtcca ggcggccgca gctgggggct cagggctatt 60
tctccgtggg cgggctgtct ctgttgtgca cgtgctcccg cagagccggg ctctgcctgg 120
<210> 510
<211> 120
<212> DNA
<213> artificial sequence
<400> 510
ggacttcggt cctgccggac cctctgcagc ccccagcgtg gtctgtttac ccctgttcat 60
tcactggctt gctcgtcctg ggtgcctctg ccaggccttg acacgtggcc aagtagcaag 120
<210> 511
<211> 120
<212> DNA
<213> artificial sequence
<400> 511
ggaaggcaca gtgcctgccc tcagggagct ccggccggtt ttcacccaac acaggagcct 60
cttaaaaatt ctgtgtgagt tcgtttcagc cagtcttgca tggggacatt gtcttccgtt 120
<210> 512
<211> 120
<212> DNA
<213> artificial sequence
<400> 512
ttcagtcctg acgttcaccc tgtgcacctg cgtgatcgcc agccctgcct ggtctctcct 60
ctgcgggctc tccctctcca ctccctcctc tgggagctct gtggccccag gcccaccttc 120
<210> 513
<211> 120
<212> DNA
<213> artificial sequence
<400> 513
ccttgagaga catttgtgtg cctgccagtc ataccccttt cccaggaggc gcagcttagg 60
ctctgaggct gtcccttccc accgaactcc tccctgcagc ctcgcagtcc tgccctcctg 120
<210> 514
<211> 120
<212> DNA
<213> artificial sequence
<400> 514
gagagctgcc cactctgctc ctctccccag cgtccactgt ccttgaattg ccctttgctg 60
ggcattgcga tcccgcattc tgtctgaggg agctaagggc ctcctggaag ttcctctggg 120
<210> 515
<211> 116
<212> DNA
<213> artificial sequence
<400> 515
gtcctctggc ttctcccatc agggctggtc ttgtcctggt ctctgttcct gtggaacttt 60
ttacctgctt ctgtgaaaac tcacgctgtc ctcagcacag cacgcacaca cacgca 116
<210> 516
<211> 120
<212> DNA
<213> artificial sequence
<400> 516
cacacacgca cagcaccatg tgggaggggt tctcggctgt gacagtgaag ggcagggcct 60
cacctcggct gctccttgtg agttgtgggc cccgtgtctg tgcccggccg ccctgcggtg 120
<210> 517
<211> 120
<212> DNA
<213> artificial sequence
<400> 517
gcggtgctca ccagccttct gaacgaggag ctggacagga tccctggaag gggccccggg 60
gtctctgagt cgcgctcagc gggtgcttgt gctctctgcc cagctgtgct gaagtcccga 120
<210> 518
<211> 120
<212> DNA
<213> artificial sequence
<400> 518
tcccgaggga catgtccgct gcttgcgggt cggttcctga ggaattggaa gtgtcacgag 60
atgtggccct cgttgggctg gcgctcattg gcctcccttg tgcctgtgca ggaggagctg 120
<210> 519
<211> 120
<212> DNA
<213> artificial sequence
<400> 519
gagctgatta actcagtggt catctcgcag ctctcccaca tccccgagga taaagaccac 60
caggtccgaa agctggccac ccagttgctg gtggacctgg cagagggctg ccacacacac 120
<210> 520
<211> 120
<212> DNA
<213> artificial sequence
<400> 520
acacaccact tcaacagcct gctggacatc atcgagaagg tgagagccgt tgtacccggg 60
gccgggtgct agcgtgccag agctccgtgg gcagcaatgg cctctgggcc ctctgtcctc 120
<210> 521
<211> 120
<212> DNA
<213> artificial sequence
<400> 521
gtcctcctct tcgagtgacc ggatggctgt gtccgtaggt gaggctcccc tccctgcagg 60
gtgggtgtcc cgaggcctgt gcagggcctg ccactgctgg atttgtgtcc tgactgaaag 120
<210> 522
<211> 120
<212> DNA
<213> artificial sequence
<400> 522
tgaaagtcct ggacatgggt gtcctgtcac actctgggac agctgggctg ggcctcctgg 60
accgacgctg gagcccagac ctggggctgg ggctttggcc tgccgtcctc cctgcccagc 120
<210> 523
<211> 120
<212> DNA
<213> artificial sequence
<400> 523
cccagccaac agctttgctc tttgattttc agatgcattt tggtttctgc acagtcactc 60
gggtataaag ggcatctttg cttttgagca ataaagatga aggccgggca cagtggctca 120
<210> 524
<211> 120
<212> DNA
<213> artificial sequence
<400> 524
aaaaaaaaaa aaaaaaaaaa ggtgtttgtg gtagaaagtg ttctcacggc tgctgactca 60
gaaccatgag cctgtgtgta agtcctggcc ttctcttcaa aggtgatggc ccgctccctc 120
<210> 525
<211> 120
<212> DNA
<213> artificial sequence
<400> 525
tctccccacc cccggagctg gaagaaaggg atgtggccgc atactcggcc tccttggagg 60
atgtgaagac agccgtcctg gggcttctgg tcatccttca ggtgggtgtt ctgcacgagg 120
<210> 526
<211> 120
<212> DNA
<213> artificial sequence
<400> 526
ggcctctgct cccggggcgc gcatggctag cgtccaccag ctgcatctgc gttgtgttgg 60
agtctgttcc ccagcgggac ccacaccctc cctggatttg ctgagggtgc ggtggtctca 120
<210> 527
<211> 120
<212> DNA
<213> artificial sequence
<400> 527
cagcaggcag cagaaccttc ctcctgctct tgtggaggga tggatgcaag aggccccgtt 60
gtacgccctg accagagctt gtctctgtgc tcctgagtca gggccggaac catgtaccat 120
<210> 528
<211> 120
<212> DNA
<213> artificial sequence
<400> 528
atcctcagcg tggcgcttgc cctcgtcacc cagcacagca cctgggaagt aagggtggcc 60
ctccattcct gccctgcagt ccgtttaata tttgcagctg ttttgttgag atttaattta 120
<210> 529
<211> 120
<212> DNA
<213> artificial sequence
<400> 529
catatcatgc aatttaccca ttcacagtga acagttcagt ggttttcagt aaattcacag 60
agctctgcag ccaaccccac agtcagcttg agaacctcct gagcatacca gtagcacacg 120
<210> 530
<211> 120
<212> DNA
<213> artificial sequence
<400> 530
ttggatggta gaacagtttc ctgtctgctg actggattgt tccacccagc gccatgtgtc 60
caggcccgtc caggctgtgg cagctgttgg tgctcccctc cttttcatgg ctgagtagta 120
<210> 531
<211> 120
<212> DNA
<213> artificial sequence
<400> 531
ttccatcatc tggaaggagc acattttgtc tgtccgttcc tccattggtg gacatttggc 60
ctgtgtccgc cttgcagctg cggtgagtgg tgctgctgtg aaccttctcc tacgagggct 120
<210> 532
<211> 120
<212> DNA
<213> artificial sequence
<400> 532
ccgccgggcc tgcattttca cttttgggtc tgcacctagg agtgaattgt tgggccctag 60
gtttagtctg catttggtgt ttcaaggcga taccaggctg ttttccactg gtgctgtgcc 120
<210> 533
<211> 120
<212> DNA
<213> artificial sequence
<400> 533
gtgagccacc acgcccggcc tgcctctact tttcaaagcc tcacagcatc acttacgtgt 60
gactgtcagt gtcagtatcg tgtaaaatat aatgtatgaa tcagtttgct caaaagctca 120
<210> 534
<211> 120
<212> DNA
<213> artificial sequence
<400> 534
agctcatcct taagatgttg gatggtagaa caatttcctg tcatgtttat atgtcatggg 60
tttttatttc ttgccatgga agttgaaagt ggtgatgatt ttttttttta attaattttt 120
<210> 535
<211> 120
<212> DNA
<213> artificial sequence
<400> 535
aaaacaaaac aaagcaaaaa caggcatcac ctccttggtg tctcatccac atgagcacca 60
tgctctttac tgactggttg ggaaggggtg tgctgggctg tgggggccta tggcctggga 120
<210> 536
<211> 120
<212> DNA
<213> artificial sequence
<400> 536
aaggggtgtg ctgggctgtg ggggcctatg gcctgggaga actgagaacc tttctgcttc 60
tgcagaggga aggaaagagg ttctgttgcc cttacttgga actccagccc tggaggcctg 120
<210> 537
<211> 120
<212> DNA
<213> artificial sequence
<400> 537
ctgttgccct tacttggaac tccagccctg gaggcctgag ggtctgggct gcagaactga 60
gatatttcct agttgaggca gagtcctggt tctggctgct ttcatttctt tatttttttg 120
<210> 538
<211> 120
<212> DNA
<213> artificial sequence
<400> 538
ctcgtgctgt tcgagggtca gagagtttgc acaatggaca cggtgacaag tttgattccc 60
cttttcctgc ctgcctagtg ggcccggcag ggcggcagct gctgttggtt ccatgtggcc 120
<210> 539
<211> 120
<212> DNA
<213> artificial sequence
<400> 539
ctagtgggcc cggcagggcg gcagctgctg ttggttccat gtggccttcc cagaatgggg 60
ggtgccaggc actgtgtgaa cccccacctc cacctctttt ttgtccgagg aagggatgtt 120
<210> 540
<211> 120
<212> DNA
<213> artificial sequence
<400> 540
tgtgaacccc cacctccacc tcttttttgt ccgaggaagg gatgttgctt ttatgtcata 60
atattttgag atgaggagaa actgttaatc atttaatcat cttttttttt gagatggagt 120
<210> 541
<211> 120
<212> DNA
<213> artificial sequence
<400> 541
gtgagccacc acacctggcc tcagtcattt ctttcaatga ttttttaatc atttaaaggt 60
gttaatcatt tctttaaaag aataacagtg taaccactta cctccagagt gctgcaaagg 120
<210> 542
<211> 120
<212> DNA
<213> artificial sequence
<400> 542
aagggtccct caggccagat ttcccctggc tcctgctggc ctcggcccca gggttgctgg 60
aggcaacaga tgctcttcac accttgccac acgtgtctgg gaggtgccct tgaccttttg 120
<210> 543
<211> 120
<212> DNA
<213> artificial sequence
<400> 543
tttgggaggg gctgcctaca cctgggatcg ccctgcagca cacactcccc gccccattct 60
gccctgtctg ccacgcagct ggagcttctc cattgaatgg actcttcctc acctgttgat 120
<210> 544
<211> 120
<212> DNA
<213> artificial sequence
<400> 544
tgatgactgc cctgatgatg agatgggcac gaggttgggt tttacttttt gctgctgtgg 60
agagagagtc ctggtggtcc tgggtttgaa ggtcgtgtgt tttgaagcac gcactctaga 120
<210> 545
<211> 120
<212> DNA
<213> artificial sequence
<400> 545
tagagcagcc gccccggccc ctgctccggg acaagggtgc tgtcttagga ctgcgttttc 60
acctcctgcg ccgtggtgag ctgcgtcctc tctctgcaga ccaagctgta caccctgcct 120
<210> 546
<211> 120
<212> DNA
<213> artificial sequence
<400> 546
gcctgcaagc cacgccacgc gtgtgtatga gatgctggtc agccacattc agctccacta 60
caagcacagc tacaccctgc caatcgcgag cagcatccgg ctgcaggtat ggtggctggg 120
<210> 547
<211> 120
<212> DNA
<213> artificial sequence
<400> 547
tggggttgcg cagccagttc ctgggggccc agccaggtat ccccgtctcg gcaggtgtgg 60
ttcctggaag ctgcagagac ggccccagga tggggcctca gctgaccgtc cctcctctgc 120
<210> 548
<211> 120
<212> DNA
<213> artificial sequence
<400> 548
ctgcacccac tgtggccgca gcctccccag tcctggtgtc cttccctctg cctgcagtcc 60
acacatctgt ggcttgtcgc tctaagccgc acggtgacat gggttggggc agagaaaagg 120
<210> 549
<211> 120
<212> DNA
<213> artificial sequence
<400> 549
aaggacgcac ggcgacttcc ggggcagtgc atggccctga cgctcctggt gctgcagaat 60
ctgtgaagga cctgcagcag agggctgggc aggtgggcgg cacagggcag agctgagagg 120
<210> 550
<211> 120
<212> DNA
<213> artificial sequence
<400> 550
gggatgggca gaacagggct ggaggagttt cgctgagttt gcgctataga tgttggcacc 60
aggctgagca gaggtgactg ggatgggagc cctccctcct agagcaggtg ctctctgggg 120
<210> 551
<211> 120
<212> DNA
<213> artificial sequence
<400> 551
ccacccctgt ggcctcagag tcctgttcag cctgtcgatg gaagaagtgg cagggctggg 60
agctgagctc cgctttctgg cagttggggg cgtgtggtgc tgccagagga gcgaggcgcc 120
<210> 552
<211> 120
<212> DNA
<213> artificial sequence
<400> 552
catcccttcc atcccaggcg ggcccagctg tggtggtggg gacaccaggc tctgtgagct 60
ccgaggcaag ggagggagga ggctgtgggt gctgggcctc cggtgtcacc aggacagagc 120
<210> 553
<211> 120
<212> DNA
<213> artificial sequence
<400> 553
ctgtgtctgt gttgggatgt gggtgtgtgc acatcagcag gtggcctttt ctgagtgcct 60
gtggtgctgg acgtgggtct gagcaggtgg gacgccgcct gtcctgggcc tgcacgagct 120
<210> 554
<211> 120
<212> DNA
<213> artificial sequence
<400> 554
tggctctggc tttcaccatc ctcttcctga caggcctttg acttcctgtt gctgctgcgg 60
gccgactcac tgcaccgcct gggcctgccc aacaaggatg gagtcgtgcg gttcagcccc 120
<210> 555
<211> 120
<212> DNA
<213> artificial sequence
<400> 555
tactgcgtct gcgactacat gtacgcggga cctcgcccac ggcccatgag gctcagggcg 60
tcagaggcgc tggggctgtg gtggcgctgt ttgcatgtct gagggatgtc ccagggttgg 120
<210> 556
<211> 120
<212> DNA
<213> artificial sequence
<400> 556
gaagagccaa gtctgttccg ttcctgctgc ggggacttgg cctcagctgc ttctcttgct 60
tctgcaggga gccagagaga ggctctgaga agaagaccag cggccccctt tctcctccca 120
<210> 557
<211> 120
<212> DNA
<213> artificial sequence
<400> 557
cagggcctcc tggcccggcg cctgcaggcc ccgccgtgcg gctggggtcc gtgccctact 60
ccctgctctt ccgcgtcctg ctgcagtgct tgaagcaggt gagtggggcc gggcagggac 120
<210> 558
<211> 120
<212> DNA
<213> artificial sequence
<400> 558
catccgtccc acgttgggcc aggaggacag ggagctgcca cctgcctgct gggcctccct 60
ccctgtctgg cctgtggagg gcagccctcc ctcagagctg agccttcccc cttccccgag 120
<210> 559
<211> 120
<212> DNA
<213> artificial sequence
<400> 559
cagctgcagg gacagaggcc tgcgctgggc aggctccccc ggctgagaac agggctccat 60
agcccttgac gctgtgcagc cacaaagcag agcctcagat gctagcttcc gcctctgtct 120
<210> 560
<211> 120
<212> DNA
<213> artificial sequence
<400> 560
ctagggtcca gaaggccctg tcctgacgcc tcctctcctc gcaggagtct gactggaagg 60
tgctgaagct ggttctgggc aggctgcctg agtccctgcg ctataaagtg ctcatcttta 120
<210> 561
<211> 120
<212> DNA
<213> artificial sequence
<400> 561
cttccccttg cagtgtggac cagctgtgct ctgctctctg ctccatggta ccatggccgg 60
cctggggttg gggtggggga cccagtaggg tttttcccca aaagactgcg agcctctggg 120
<210> 562
<211> 120
<212> DNA
<213> artificial sequence
<400> 562
cagagcgagt gagacccttc gggctcgggc tccatttccc tcaaactcag ctgcactctg 60
gagcgcagat tgtgccttgg gcagggtgga gggacccctg ccccagctcg cagcttttgg 120
<210> 563
<211> 120
<212> DNA
<213> artificial sequence
<400> 563
gactgacgtc agaggtcccc agccaagggc atgtcactga atgtggatgt ctcccatctg 60
tgcttttcct aagtggggct cccgtgccgt tcacctcaca ttcctggtgt gttacttggc 120
<210> 564
<211> 120
<212> DNA
<213> artificial sequence
<400> 564
aggcactccc accactccga aagggaggcc cttcctggga gggaggcaag aaggctcccc 60
agcccctttg ccccctttcc tgggcctgcg ttcccagggc ctccccagcc cctctggcta 120
<210> 565
<211> 120
<212> DNA
<213> artificial sequence
<400> 565
ccccgtgacc tggccgctgg ggagaggttt catgcctgga tttggtcatc agctttcagg 60
cccaaagaca ctggagcggc tccgaggcgc cccagaaggc ttctccagaa ctgacttgca 120
<210> 566
<211> 120
<212> DNA
<213> artificial sequence
<400> 566
cctggccgtg gttccagtgc tgacagcatt aatctcttac cataactacc tggacaaaac 60
caaacaggta ggaggtcaga gcaggacagg cgagcttgat ggggcctggg attcgagggc 120
<210> 567
<211> 120
<212> DNA
<213> artificial sequence
<400> 567
ctggcccagg taggccccac atttttctca taaacgagtt tctgccaggc cagggatgag 60
tgagttggct ctgcttccct gggtggctgc cagatgccca gagtggggac atccgattcc 120
<210> 568
<211> 120
<212> DNA
<213> artificial sequence
<400> 568
ctggtgcttc tagctctctt tggggcctgg gagccatcca gtgttccctg tccaccccgg 60
acagcatctc tgctctctgt agagcgttgc ctggcttgtt cctgctgtcc caagggggag 120
<210> 569
<211> 120
<212> DNA
<213> artificial sequence
<400> 569
gtggccatgc cggttggtgg agctgggctg gttctgaggc gcagggtggg caggccagag 60
agtctggctt ctgcctccct ccacgcccca tcaggtgccg gaaactgtcc cttcacctgc 120
<210> 570
<211> 120
<212> DNA
<213> artificial sequence
<400> 570
gatctgcctc gcccccgtcc cagtcgcatt cttccacacc tctctttgac atggccctcc 60
gggacgagga gctggtgtcc tagagattct ggcctccgct cagggccatg cccgccagga 120
<210> 571
<211> 120
<212> DNA
<213> artificial sequence
<400> 571
gatgctgact ctgaggcttg gcccatctgt gccccgggcc tcagcttctg atggtggccc 60
tgtagggagc tgttgttggg ttcccatccc tcaggctcag ccccaccctg ttgggcccct 120
<210> 572
<211> 120
<212> DNA
<213> artificial sequence
<400> 572
tcagcccctc tgagaggctc actgggtcct catgggtctt gcctcaaagc atagccagcc 60
ttgctgggct gcaggttctg aggccttact ggcccacagt gtatccgagg ggtgaggccg 120
<210> 573
<211> 120
<212> DNA
<213> artificial sequence
<400> 573
gctttgggaa atggaagctg ttcccgggac actgcctggc aggccatctg gccccgggct 60
ctgcctgagc tccgctcatc ttctgctgtc ctcatggaag acactgccca gggttggtgt 120
<210> 574
<211> 120
<212> DNA
<213> artificial sequence
<400> 574
gggatctggt ggcttggcca cttcaggcag cactgcccct tgcaacagag ccagcctgtg 60
aagggcccag aaccagggga tgagagccca gcatgtctgg gttctgttgg cctgtgggat 120
<210> 575
<211> 120
<212> DNA
<213> artificial sequence
<400> 575
cgtgtcggaa tgcaactgac cggagcagtc tgctgtgcag agtctgctcg ggtagctcag 60
cactgctggc tctgccccac aggcattcag ggacttgcta agcctcggct gttctcccgg 120
<210> 576
<211> 120
<212> DNA
<213> artificial sequence
<400> 576
tggagcactc gaggttggcg aggggtaggc gaggctgcct ctgctgcaag cgggtggggc 60
ctgaggtgtc ctgtctcctg cagcgcgaga tggtctactg cctggagcag ggcctcatcc 120
<210> 577
<211> 120
<212> DNA
<213> artificial sequence
<400> 577
accgctgtgc cagccagtgc gtcgtggcct tgtccatctg cagcgtggag atgcctgaca 60
tcatcatcaa ggcgctgcct gttctggtgg tgaagctcac gcacatctca gccacagcca 120
<210> 578
<211> 120
<212> DNA
<213> artificial sequence
<400> 578
gcatggccgt cccactgctg gagttcctgt ccagtgagtc cccgccctgc ctgcgcatgc 60
acccgagagg ttcgggctgt gtaacctgtg cgggcttctc tggtgccctc tctcaggact 120
<210> 579
<211> 120
<212> DNA
<213> artificial sequence
<400> 579
ccttggggaa cctgggtgtc tcgccttctg ctgcctcagg gcctgggcgt ctctgcccgg 60
ctgccatgag tgctctcctt cctggctttg aggggcggct cctctcaccc ctctagtgtc 120
<210> 580
<211> 120
<212> DNA
<213> artificial sequence
<400> 580
catgtgaacg ctcctccttg aagaagcctc ttcccccccg agcagtggcc ctcccctggt 60
tttgggcctc ctctctgtcc aacagagcac acgccgcttc aggggggctt tgttcgcttc 120
<210> 581
<211> 120
<212> DNA
<213> artificial sequence
<400> 581
ccccagactg tgacttcagg agctcaggtg cctgtccctt cccctcaccg cctgtgcgca 60
tctgggcagg ccctcaatgt tgagatggca gaagggcact gctgggcccg cacttggtgt 120
<210> 582
<211> 119
<212> DNA
<213> artificial sequence
<400> 582
agaggctgga gagaagatcg tgtgtgcttt gtgggccaca tgcaggtcct gtcggtcttt 60
ctgttttgtt gataaccctt tagaagtgta gaagcctggc caggcgcggt ggctcaggc 119
<210> 583
<211> 120
<212> DNA
<213> artificial sequence
<400> 583
aaaaaaaaaa aaaaaaaaga ggtgcggaag cctttcctca cggatcacac aaatggtagg 60
cgacagctcg aattggccca gaagctgtgg ttggctggcc atgggaccga gagttgaggc 120
<210> 584
<211> 120
<212> DNA
<213> artificial sequence
<400> 584
gaggccaggg tcgggaaagc cacgtccgtg tggccgtggc cttctctcct ctgcagcacc 60
ccatcgctgc cgtgggcaga gcagccgtgt tggccttcag aggcgctgca cgggaccccg 120
<210> 585
<211> 120
<212> DNA
<213> artificial sequence
<400> 585
ccccggctcc cctgaccacc ctctccatta ccgcagctct ggccaggctg ccgcacctct 60
acaggaactt tgccgcggag cagtatgcca gtgtgttcgc catctccctg ccgtacacca 120
<210> 586
<211> 120
<212> DNA
<213> artificial sequence
<400> 586
caccaacccc tccaagtgag tggtcgcccc aggccctgtg cctcccagcc gtggcccccg 60
ctaggccttg cggcagaaag ccccggcagc ctttgtcccc aaggcctgag cgcctcggtt 120
<210> 587
<211> 120
<212> DNA
<213> artificial sequence
<400> 587
cggttttttg cacttcatgc cctggggatg tttccctgct gccaggatgg agtgccagcc 60
cccttctcat ctcaggttta atcagtacat cgtgtgtctg gcccatcacg tcatagccat 120
<210> 588
<211> 120
<212> DNA
<213> artificial sequence
<400> 588
gccatgtggt tcatcaggtg ccgcctgccc ttccggaagg attttgtccc tttcatcact 60
aaggtgggct cagggccggt gaaggctgtg tctctcggta ggccagggct tgctttgccc 120
<210> 589
<211> 120
<212> DNA
<213> artificial sequence
<400> 589
tgcccttggc tgtccatggt cgggcagagt gacaggcagg tggagggcag tgggagggtg 60
tttggggctg tgcctgtggc gctgggggct ctgctgggca gcctgcaggg ctttgatgcg 120
<210> 590
<211> 120
<212> DNA
<213> artificial sequence
<400> 590
atgcgcggca ggcattgagg ggtgggagct gggtgccgcc gccttgcccc tagcctgcag 60
cttgtccctg gccagggggc acccggcagg cctggtgagg gcctccagcc cccattgcca 120
<210> 591
<211> 120
<212> DNA
<213> artificial sequence
<400> 591
tgccacccct cactgtctgg gtgtgctcac tctgccaggg cctgcggtcc aatgtcctct 60
tgtcttttga tgacaccccc gagaaggaca gcttcagggc ccggagtact agtctcaacg 120
<210> 592
<211> 120
<212> DNA
<213> artificial sequence
<400> 592
caacgagaga cccaagaggt acggcctgcg ggggtgtgcc tggagtcggt gtggggtggg 60
gaaggacatg gggctgtggc ctgcctgacg gtgcctccaa gtcagtgagt ggaaatgggt 120
<210> 593
<211> 120
<212> DNA
<213> artificial sequence
<400> 593
tgggtcctgt gtgccctgga gtatgtgagg cagggcagga cctgcaaggg ccgctaacac 60
ccctcagccc ctcagcaggt tggccgtggt ggcctgggtc cgggctgcgt gtgccacggg 120
<210> 594
<211> 120
<212> DNA
<213> artificial sequence
<400> 594
acgggcacct acttgtggaa ttgggggttg gggtgcaagc tttaggcgcc tgagcccctc 60
gaaggagccg gccttgtctg gggctgcccc ctcctctgca gcccccagcc tgctgctagc 120
<210> 595
<211> 120
<212> DNA
<213> artificial sequence
<400> 595
ctagccgggg actctgcttc atcaccgccg ccttgccgga ccgcaaagag ctgagccagc 60
ctctgtgttc ttgtttgcat ttcatttgaa cggctttctc ctcctgtccc ccaccttcct 120
<210> 596
<211> 120
<212> DNA
<213> artificial sequence
<400> 596
ttcctgcccg agctattttg gctttcccta gatgggaata cggcattttc cagcgtgacc 60
tcaactcgga agctgttgtc tccagcccct gggggccggg ggccaagctc ggccattacg 120
<210> 597
<211> 120
<212> DNA
<213> artificial sequence
<400> 597
ttacggccag agactacttt ctggggtctt ggtctctttt cctagtgacc ttcagggcct 60
ggccactgag gcctcagtgc cgcctcggtc agagctgggc ggtgcctgcc ttccgcgggt 120
<210> 598
<211> 120
<212> DNA
<213> artificial sequence
<400> 598
cgggtgggtg ggattgcctg gccagcacag cctggaatct gccgtggggg tgacccacac 60
acgtttaatt tgcactgacg ttgtttgttt tggtgtcatg cgtgaagcct tacttgttct 120
<210> 599
<211> 120
<212> DNA
<213> artificial sequence
<400> 599
gttctcagtc atgtttacca gacgtattat catgcatttt tgttttctgt ctcttccccg 60
ctaactgccc tttggcatgg ctctttttgc tcatctcacc cgcgggatct ctccatcctg 120
<210> 600
<211> 120
<212> DNA
<213> artificial sequence
<400> 600
tcctgaccct gtggcctggg acctttcctc ctcacccctc cactggcttg ttctcccctt 60
cccgggagct gggctctctg gggcgttggg gctccttcct cacccgatag tctgaggata 120
<210> 601
<211> 120
<212> DNA
<213> artificial sequence
<400> 601
ggatagccag accccccaaa caaggcttga ataactctcc acccgtgaaa gaattcaagg 60
agagctctgc agccgaggcc ttccggtgcc gcagcatcag tgtgtctgaa catgtggtcc 120
<210> 602
<211> 120
<212> DNA
<213> artificial sequence
<400> 602
ggtccgcagg tagcgggact gtcgggtggg gggcacggac cctggagctt ggccccgtga 60
gcacctgggt ggcagtgcat ggggctgctt gcatgacctc atcgtctgcc cgtgtcctcc 120
<210> 603
<211> 120
<212> DNA
<213> artificial sequence
<400> 603
cctccctggc cagcccaggg ggagccggtg acgaggggtg gaaaggttgc attctgtccc 60
caggccccgt atgagcacgg gctggttgca cgcatcccca ggccccctcg gggtgccgct 120
<210> 604
<211> 120
<212> DNA
<213> artificial sequence
<400> 604
ccgctccgag agagccaggc gtgccgggca gcagcctccc caggctgtcc ccaagggccg 60
cagtgtgggt tgggggagac accactcctg gttttggcct tttcgtattc tctagaatgg 120
<210> 605
<211> 120
<212> DNA
<213> artificial sequence
<400> 605
aatggacgtt tttcttcggg ctttcttctc aacaaggttt attttttgtt gtagctgaaa 60
gggaacaagg ggcatttgtg gagggtgctg gggtggggca gcctgggagg gcctgggtgg 120
<210> 606
<211> 120
<212> DNA
<213> artificial sequence
<400> 606
catgggcatg ggcctgggcc ccaggccatg gtcttagttc tccccgcagt gtctgggtgc 60
aggtgtgggc tctcgggctc tcggctgtca cctgcctgtg ggtcatcgct gctggcactg 120
<210> 607
<211> 120
<212> DNA
<213> artificial sequence
<400> 607
cactggcaga ggggatacct gtctcctcct ggaagcccgt tgcaggccaa ggggtcccat 60
ggccctcagt ccatccacct cctcacctca ggccggcctc tgctgggtgg gacttggcca 120
<210> 608
<211> 120
<212> DNA
<213> artificial sequence
<400> 608
ggccaggggt tggggtggta gaggtgctcg gtgaggctta aagccatttt ctagcacatt 60
ctgtatcatg agcaaaatat tgcctagggg ctatgaaatt tgtatcagaa tgaactccca 120
<210> 609
<211> 120
<212> DNA
<213> artificial sequence
<400> 609
tcccataagc ctcttccctg tcactgggtg tggagctcag gcagccgctc gcctgcctga 60
gggtgacggt ggaaggccac atggggatcc cagacctctg tgtgcttgcc ggaggcagcc 120
<210> 610
<211> 120
<212> DNA
<213> artificial sequence
<400> 610
cagcctgcgg gcagaatgca atctgggcct gtctgtgtgg cctccgcctc tctgcatgac 60
tacaccgttt cgccaggagg ccgtaaccta gtgctcccgt gggcttcggt gagggggatg 120
<210> 611
<211> 120
<212> DNA
<213> artificial sequence
<400> 611
ggatgtcggt ctctagcctc ctgagtctgc tccgaccagt aggcctggtc ttccccaccc 60
agcgtctccc cgttctctgg gacaatgtgg tccacgtgat tctcaagctg aggctcgctg 120
<210> 612
<211> 120
<212> DNA
<213> artificial sequence
<400> 612
cgctgggccg cccacgccct gttggggtct ttccgagcga ggtcctcagc cgtgcatgcg 60
ttgagctttg gcccttggtg ataggtggct cggcccgccc tacctggcac cctgaccctg 120
<210> 613
<211> 120
<212> DNA
<213> artificial sequence
<400> 613
ccctggtcac ggcctctccc tccagcagga tacagacgtc cctcaccagt gccagcttgg 60
ggtctgcaga tgagaactcc gtggcccagg ctgacgatag cctgaaaaac ctccacctgg 120
<210> 614
<211> 120
<212> DNA
<213> artificial sequence
<400> 614
cctggagctc acggaaacct gtctggacat gatggctcga tacgtcttct ccaacttcac 60
ggctgtcccg aagaggtcca ggcggcacta cagggctggg cgggcctgcg ggagctccac 120
<210> 615
<211> 120
<212> DNA
<213> artificial sequence
<400> 615
tccacgggca agctgggttt cacgctccct gtcttctagg tctcctgtgg gcgagttcct 60
cctagcgggt ggcaggacca aaacctggct ggttgggaac aagcttgtca ctgtgacgac 120
<210> 616
<211> 120
<212> DNA
<213> artificial sequence
<400> 616
acgacaagcg tgggaaccgg gacccggtcg ttactaggcc tggactcggg ggagctgcag 60
tccggcccgg agtcgaggtg actgcacctt cctttcctcc gcgcctgcca gcctcgacac 120
<210> 617
<211> 120
<212> DNA
<213> artificial sequence
<400> 617
gacaccggct gtcccgagcc caggcccacg tggcaccctc gtaccagcct ggggactaag 60
tccaccctgt gcgtgggatt ctcttctcag ctccagcccc ggggtgcatg tgagacagac 120
<210> 618
<211> 120
<212> DNA
<213> artificial sequence
<400> 618
cagaccaagg aggcgccggc caagctggag tcccaggctg ggcagcaggt gtcccgtggg 60
gcccgggatc gggtccgttc catgtcgggt gagccttggc cccagccacc tccacacagg 120
<210> 619
<211> 120
<212> DNA
<213> artificial sequence
<400> 619
acaggcaccg gggctccctc agttgctgct ggtcccagtg ttcaggaagg ccccgagccc 60
aggggccggg gtggctggct tcaggcccgg cccacgtcct gactctgggg tgagccttcc 120
<210> 620
<211> 120
<212> DNA
<213> artificial sequence
<400> 620
cttccacagc tcaccccaga gccgtggagt ggtggagtgt ggcccgcttg ctgcagaggg 60
gcctgctctg ggtgctggtg tttcctgcgg gttttcagct cggctcagtc ctggagccct 120
<210> 621
<211> 120
<212> DNA
<213> artificial sequence
<400> 621
gcccttctct gctccagcga gccgtggtct gactgcagga caggttctgg gtccctccct 60
gtggccctgg gttcactgag gccagcactg tggtgggccg tgccccaagg gcagagctgc 120
<210> 622
<211> 120
<212> DNA
<213> artificial sequence
<400> 622
gctgccaccg tctctggctg cctgtggcac tagcttgcca ggctcggggg gagcattcag 60
cttgaggctg gtggttttgc atcaggtaag tggtggtcac cagtcctctg ccctcttctt 120
<210> 623
<211> 120
<212> DNA
<213> artificial sequence
<400> 623
ttcttcaggg ggccatggtc ttcgagttgg cgccctggac gtgccggcct cccagttcct 60
gggcagtgcc acttctccag gaccacggac tgcaccagcc gcgaaacctg agaaggcctc 120
<210> 624
<211> 120
<212> DNA
<213> artificial sequence
<400> 624
gcctcagctg gcacccgggt tcctgtgcag gagaagacga acctggcggc ctatgtgccc 60
ctgctgaccc agggctgggc ggagatcctg gtccggaggc ccacaggtac tgggcggggc 120
<210> 625
<211> 120
<212> DNA
<213> artificial sequence
<400> 625
ggggctggcc tgagcgccat ctttctgcca gtcacccaca gagctgtgga cactcagggg 60
cgattgcaga cttggccctc ttgggatatt tgggggtaac ttttgttttt tttttgagac 120
<210> 626
<211> 120
<212> DNA
<213> artificial sequence
<400> 626
gtgagccacc gcgcccagcc atttgggggt aacttgtaag tctccagagg tgagctgtga 60
ggggcgatcc aggtggctga ggtggggcag gggcctgtgg cgaaccaagt gacttccatg 120
<210> 627
<211> 120
<212> DNA
<213> artificial sequence
<400> 627
ccagaggtga gctgtgaggg gcgatccagg tggctgaggt ggggcagggg cctgtggcga 60
accaagtgac ttccatggca gagagttgcc ctccccgcct ggaggctgca agtccgagac 120
<210> 628
<211> 120
<212> DNA
<213> artificial sequence
<400> 628
tggtcccttg ctagccgtaa ttagctttct gaaacccagt ctccagagac agtcccgttc 60
tgagttcctg gggttgggac taaagcatac caacatgggg gcacagctca gcctgttccc 120
<210> 629
<211> 120
<212> DNA
<213> artificial sequence
<400> 629
gaggcccaga gcccaggggc gcctgggtgt gccgtggctg aggggtgcaa agagtagggg 60
ttccagccct cgtggaggcc ttgggtccgg actgtgaggc tgtgggctgg aggccgctgc 120
<210> 630
<211> 120
<212> DNA
<213> artificial sequence
<400> 630
tgctctgagg tgcctggcgg agcctggcct cgaggcaggg gctgagcggg gcagcagggt 60
gggtggccgt cagagcagcg ctggctccga catcgtggtc ctgaggattg tgggagggag 120
<210> 631
<211> 120
<212> DNA
<213> artificial sequence
<400> 631
gagcatgagg gcaaaaccag ggcccaggcc aggaggcccc tggggggcca gagatgggta 60
aggggaggta ctggcctcag gccaaaggtg ctgccgcctc cgcagggaac accagctggc 120
<210> 632
<211> 120
<212> DNA
<213> artificial sequence
<400> 632
ggctgatgag cctggagaac ccgctcagcc ctttctcctc ggacatcaac aacatgcccc 60
tgcaggagct gtctaacgcc ctcatggcgg ctgagcgctt caaggagcac cgggacacag 120
<210> 633
<211> 120
<212> DNA
<213> artificial sequence
<400> 633
cagccctgta caagtcactg tcggtgccgg cagccagcac ggccaaaccc cctcctctgc 60
ctcgctccaa cacaggtgag tggcatggcg ggccttggca cgggctctgc tcccactggc 120
<210> 634
<211> 120
<212> DNA
<213> artificial sequence
<400> 634
ggcctggtgc tcccggtgac ggcaatgtgg ctcctctctg ctgagggcgc ccacacggct 60
gggagtggtc cctggcctgc ctcagcacca ttgttctccg gtgtttggga ggaggctgac 120
<210> 635
<211> 120
<212> DNA
<213> artificial sequence
<400> 635
gacccgtggg aggtgtctgc cctgctcagg aagctggggc tggcagcttc agaagcagta 60
ggggccctgt ggagcctctg cccagcatcc tccgtgggga gtccagcact gcgggctcca 120
<210> 636
<211> 120
<212> DNA
<213> artificial sequence
<400> 636
ccaggaggct ctgcggcagc ctccctccct gcctgggccc aggtttggac acctgagccc 60
gcctgcgcac tctgggcccc caccccactc ggcaccgtgc ttctcgccag gccctctggc 120
<210> 637
<211> 120
<212> DNA
<213> artificial sequence
<400> 637
ggctcttccc tgtggctgca gatggcactt agcggcctag gacgtctatt cacgggagga 60
gggaggcact gccctcctca ggtctgccca agcagcttgt agctagcact gggccccgtg 120
<210> 638
<211> 120
<212> DNA
<213> artificial sequence
<400> 638
gtgcgcgccc ctgccggccg ctggccctgc cctctctcct ctgcaggcac ggggcctgtg 60
ctctctgctc gacctgtgtg tagcccctcc tcctgctgac gtggccgcac acggccttcc 120
<210> 639
<211> 120
<212> DNA
<213> artificial sequence
<400> 639
tcccttgcag tggcctcttt ctcctccctg taccagtcca gctgccaagg acagctgcac 60
aggagcgttt cctgggcagg tatcgcctct cagagggaag cggttggctg cagagcgcca 120
<210> 640
<211> 120
<212> DNA
<213> artificial sequence
<400> 640
ccactctgcc tcataggtgc tgtgctcgtc gcctcatccg cccaccccca tggtccgtct 60
gcctccattg ccctggggag caggtcccga ctcgcatgag gacgtctgtg cagaatgtct 120
<210> 641
<211> 120
<212> DNA
<213> artificial sequence
<400> 641
tctttggctt ggccagcggg atccccttga cttggtccct ttgtggctga gccctgttcc 60
cacgctgtgc gagcactccc ggcccagctt caggcctgag gggtgggggt ggcctgagtc 120
<210> 642
<211> 120
<212> DNA
<213> artificial sequence
<400> 642
gtctccatgg tgacatcagc tgagctgcag actctgatgg gtggcagctg tttaggggga 60
agcccacccc tgggcctgca ccgagcgggc cttgccctgg cctttggtgg ctcccctggc 120
<210> 643
<211> 120
<212> DNA
<213> artificial sequence
<400> 643
ggcctctgga acccacagat ggggctgcct caagtcccag gttgaccagg ggccctgcag 60
accgacctct gcctgttgcc cccaagccct ggtggggagt gctgtgacct gcatggtgct 120
<210> 644
<211> 120
<212> DNA
<213> artificial sequence
<400> 644
gctcccctgc caggtctcca cgtgcagacg agctggtttg gaagggctgc gtgggacggg 60
ccctggggtg gctgactgcg cgtgtgcagg gctgtggggc gcccgggggc tgtgatggtc 120
<210> 645
<211> 120
<212> DNA
<213> artificial sequence
<400> 645
gtcccctctg ttgctgcttc tacttcctct ccccctgtcc tgacgctggc acaggaaatg 60
ctgctttggg acctcccacc ctctctcctt agcgtcccca gctgtgggtc tggcttggag 120
<210> 646
<211> 120
<212> DNA
<213> artificial sequence
<400> 646
gagttggagg gtgagcctct gctcttggga gcagtctgtt tgcaaacagg gacttccccc 60
acgtcacgga gtctccgcag ctctcctcgg ttacgagggc tggtttcagg ctcccgctct 120
<210> 647
<211> 120
<212> DNA
<213> artificial sequence
<400> 647
tcttttagag ctgaggcccg tcgggcggag agcgtcttgc ccctgcctac ctggaggcac 60
aggggtggct gctggtggac actagggtgg gcagagccga ttgcctgccc aacccccggg 120
<210> 648
<211> 120
<212> DNA
<213> artificial sequence
<400> 648
gggcactcat gcaggagagg cctgtgtcgg ggtcacgtgc aggccttccc agcgtcctcc 60
ctgcccgctc ggtggatggc agcagtaagc agagccctgg ggaggctcgc agggctgctg 120
<210> 649
<211> 120
<212> DNA
<213> artificial sequence
<400> 649
ctgtccctct ggtcaggaga aggctggttc tcggaggcca cgtcagggcc agggcctggc 60
ccagccccac atccagcagc cccgtctgtg tcctcccaga ctccgccgtg gtcatggagg 120
<210> 650
<211> 120
<212> DNA
<213> artificial sequence
<400> 650
aggagggaag tccgggcgag gttcctgtgc tggtggagcc cccagggttg gaggacgttg 60
aggcagcgct aggcatggac aggcgcacgg atgcctacag cagggtgagt gtggctcaga 120
<210> 651
<211> 120
<212> DNA
<213> artificial sequence
<400> 651
agagcctgga ccctgctgac ctcggggggc tccttagggg aggcagggct ctgcgtgggt 60
gtgcctgcac cctgggaact ggctctgaac ttgggggaga tgttcttcca catccctcgt 120
<210> 652
<211> 120
<212> DNA
<213> artificial sequence
<400> 652
cgtgcacaga cggtctgcac tttgcagcca tccacctggg ccggccctgg ctgctgggca 60
gcctgtggtc tcaggggatg ctgatacctc tgctcacgca gtgtggggca cagctggtgg 120
<210> 653
<211> 120
<212> DNA
<213> artificial sequence
<400> 653
tggcagtgct gctgcgtcaa cgggcggggg ccgtagcctg gtgctcgggc tggtctgtgg 60
ccctgggatg gaggacagat agggcctcac cacctccagg tcaaccccag gtgggctcga 120
<210> 654
<211> 120
<212> DNA
<213> artificial sequence
<400> 654
cgagggtgcc tgctgacagg ggttctcttt gggatggtcc tttctagtcg tcctcagtct 60
ccagccagga ggagaagtcg ctccacgcgg aggagctggt tggcaggggc atccccatcg 120
<210> 655
<211> 120
<212> DNA
<213> artificial sequence
<400> 655
tcgagcgagt cgtctcctcg gagggtggcc ggccctctgt ggacctctcc ttccagccct 60
cgcagcccct gagcaagtcc agctcctctc ccgagctgca gactctgcag gacatcctcg 120
<210> 656
<211> 120
<212> DNA
<213> artificial sequence
<400> 656
tcggggaccc tggggacaag gccgacgtgg gccggctgag ccctgaggtt aaggcccggt 60
cacagtcagg gaccctggac ggggaaagtg ctgcctggtc ggcctcgggc gaagacagtc 120
<210> 657
<211> 120
<212> DNA
<213> artificial sequence
<400> 657
gtcggggcca gcccgagggt cccttgcctt ccagctcccc ccgctcgccc agtggcctcc 60
ggccccgagg ttacaccatc tccgactcgg ccccatcacg caggggcaag agagtagaga 120
<210> 658
<211> 120
<212> DNA
<213> artificial sequence
<400> 658
agagggacgc cttaaagagc agagccacag cctccaatgc agagaaagtg ccaggcatca 60
accccaggtg ggcctcttgc ttccgggcgg ggctcctgac acctctcctg cgggaacctg 120
<210> 659
<211> 120
<212> DNA
<213> artificial sequence
<400> 659
ctggtgcctc acttgcccca ggccgagcgg gctggggtgg ggtcctcgcc tgtgccctag 60
ggctggctgg aacccctggg agggcggtgg agtgggagat ggccaggctc tgtgttcctc 120
<210> 660
<211> 120
<212> DNA
<213> artificial sequence
<400> 660
ctccctgtgg gctgtggctg ccctggccag gccctcacct gggtgcccac catcccctcc 60
ctgtgcagtt tcgtgttcct gcagctctac cattccccct tctttggcga cgagtcaaac 120
<210> 661
<211> 120
<212> DNA
<213> artificial sequence
<400> 661
aacaagccaa tcctgctgcc caatgaggta ggcgtggcct ccctctcctg catccgctgg 60
agctgtgtgg ctcgggtgaa tggtgggggg cccagctctg ctgctgggag ctcaggcttg 120
<210> 662
<211> 120
<212> DNA
<213> artificial sequence
<400> 662
ttgcagaggg ctctggccta agctccctgt ggcagcctgc cgtgaccggc ctgggtgggg 60
cggcctcctg tggacgggcg tctggggctc aggcagggct ctgtgtgcca cagtcacagt 120
<210> 663
<211> 120
<212> DNA
<213> artificial sequence
<400> 663
agtcctttga gcggtcggtg cagctcctcg accagatccc atcatacgac acccacaaga 60
tcgccgtcct gtatgttgga gaaggccagg tgaggctgcg gggccggcct aggtgcctgg 120
<210> 664
<211> 118
<212> DNA
<213> artificial sequence
<400> 664
tggacagggc cagctgggcc tcagcctgca gtgggtaggg agtctgggcc cccaacgccc 60
cacagagctc aacactgccg ggtcccctac agcatgaagt gctcattgag ctctgtgc 118
<210> 665
<211> 120
<212> DNA
<213> artificial sequence
<400> 665
gctgctctga gtgctgggga ccccggtgcg agtgacaggt tagcgtggga gcacccggca 60
caccaaggag tgggaaggac tgggcgggtg gcaccggtcg cagggctggg gagggcgctg 120
<210> 666
<211> 120
<212> DNA
<213> artificial sequence
<400> 666
gggctgggga gggcgctgtt ggtcagtgag ctgacagctg agtggtgagg gagcgggcag 60
ggggagcctg cataaggggt gggggcatcc cacacaccag cagcgggggc cgggcgcacc 120
<210> 667
<211> 120
<212> DNA
<213> artificial sequence
<400> 667
gcgggggccg ggcgcaccct gcccagcttg agcactggtg ctgggcgagc acgggagccg 60
acaggatggg cagcctcagc gccctatagg ctgcaccttc atcccaaggg aaagggcagg 120
<210> 668
<211> 120
<212> DNA
<213> artificial sequence
<400> 668
cccaagggaa agggcagggc ctgggctgct tctgagcaga gggcacatgg cctgactccg 60
cccagtctca gtgagtccct cctgctgtgt ggctcgagga ggtgggtggt gatggttccc 120
<210> 669
<211> 120
<212> DNA
<213> artificial sequence
<400> 669
ggcccctggg ggcaggctgc tgaggggcca gggccccggg tgtgctttga gtgtggagct 60
ccctgatttt gccggccagg cacacacggg gctgagggaa gagagggagt caaggatgac 120
<210> 670
<211> 120
<212> DNA
<213> artificial sequence
<400> 670
tgggtggctg ctggaatgga tggtcttgtc tgcctcaggg atcagagtgg ggctcccggc 60
agagcctgct gggcaccccc accctctgcg gggcagggcc cggcccggga gtgatgccac 120
<210> 671
<211> 120
<212> DNA
<213> artificial sequence
<400> 671
cctgcctctc ccctctcccc acagagcaac agcgagctcg ccatcctgtc caatgagcat 60
ggctcctaca ggtacacgga gttcctgacg ggcctgggcc ggctcatcga gctgaaggac 120
<210> 672
<211> 120
<212> DNA
<213> artificial sequence
<400> 672
tgccagccgg acaaggtgta cctgggaggc ctggacgtgt gtggtgagga cggccagttc 60
acctactgct ggcacgatga catcatgcaa ggtacggcct ggcgcctacc cgctcctgct 120
<210> 673
<211> 120
<212> DNA
<213> artificial sequence
<400> 673
gccccaggcc tcagggcacg gctcccatcc agtcctgcta ccccacgccc tggggcatgg 60
ccctggcacc cccacctgct ccagctcccc acgcctcagg ttccgagcct aacagcgtgg 120
<210> 674
<211> 120
<212> DNA
<213> artificial sequence
<400> 674
gcatggaggc agtgatgggg ctggtggctt tgcgtcccaa agccctgccc ctggggagag 60
ccgaggacca ctggccaggc accagaggac gtggtccccg caggccccca gagcccctgg 120
<210> 675
<211> 120
<212> DNA
<213> artificial sequence
<400> 675
agtaatcagg aggtgcccca gtgcaaggca cagagggcct cagcactggc cccacaaacc 60
catccggccc tgctcaccct cagccgtctt ccacatcgcc accctgatgc ccaccaagga 120
<210> 676
<211> 120
<212> DNA
<213> artificial sequence
<400> 676
cgtggacaag caccgctgcg acaagaagcg ccacctgggc aacgactttg tgtccattgt 60
ctacaatgac tccggtgagg acttcaagct tggcaccatc aaggtgagtg aggggccgtc 120
<210> 677
<211> 120
<212> DNA
<213> artificial sequence
<400> 677
agtgaggctg ggccccaggc aggtgcccac tgctgtgtcc cgggttggtg gcaggtcctc 60
ctccctgagc ttcggtcacg aggagcagga ggagaggccg cagtgctcag ggccccgtgg 120
<210> 678
<211> 120
<212> DNA
<213> artificial sequence
<400> 678
gcacgagctt caccccgagc ctgcgttgtg tcctctgtgc cctgaagcct gtggcgcctg 60
ctgctgagtg tctgtcagga gtaactggca agtgcagact gggtgtgctg ggtgggcaca 120
<210> 679
<211> 120
<212> DNA
<213> artificial sequence
<400> 679
gtgtagttgg tgcttcctgt ctgtccggcg cggcccttgg gcccccacca tctccccagt 60
ggcagctgtc aggctgctca gttggttatc gccacgcacc actaggcagc aaccagcgtc 120
<210> 680
<211> 120
<212> DNA
<213> artificial sequence
<400> 680
accctcttcc tggaggtggg ctgggtcggc cagtgtcaca gcacggtccg ggtgagcccc 60
agcatggcgg ggagagctgg catggcccag gcagggcaga taggctggag gcctcactcc 120
<210> 681
<211> 120
<212> DNA
<213> artificial sequence
<400> 681
aagggcccca ggatgctgag gcagccactg aaccaaaacc ccggggctgg tagtcagagt 60
ccaggagggg caggagcata gggaggtggg ctctgctaga tgccaagaca accagttggg 120
<210> 682
<211> 120
<212> DNA
<213> artificial sequence
<400> 682
gggggggggg cacctgggcg gctgaggagg gtgtggtggt gccgagatgg ggtgcacggc 60
tcacttcatg gctgggcaga cggattcgga cgtgtggctg cagacaccct gggggcccca 120
<210> 683
<211> 120
<212> DNA
<213> artificial sequence
<400> 683
gtgagtggag gtgccccagc aattagaggt gtcttgcctg tggctgcagc atatgtgggt 60
gctgcgccca gatgtggagg gggcttggcc tgggggaggc cagacaaaca cagccccgct 120
<210> 684
<211> 120
<212> DNA
<213> artificial sequence
<400> 684
gccagagggg aaagttcagg ggcagatgct gcccatggag ctgacaggtg tctagcagtg 60
caaccaggca gtagccgaga tcagccttca gcacacgctg tgtgcgggga tgaccctttc 120
<210> 685
<211> 120
<212> DNA
<213> artificial sequence
<400> 685
aggaaaggta gggccgggtg gggccctgca gtgtggcgcc aagagccctg ggcctggcgt 60
gaccaccaag tctccccaga catggagggc cttgtggaca ccagcgtggc caagatcgtg 120
<210> 686
<211> 120
<212> DNA
<213> artificial sequence
<400> 686
tctgaccgca acctgccctt cgtggcccgc cagatggccc tgcacgcaaa tgtgagtggg 60
ggtgggtcca ggcgtgagct ggtgggacag gcccaggtgc cacctgatag tgagctcacc 120
<210> 687
<211> 120
<212> DNA
<213> artificial sequence
<400> 687
ccctgcctac gtccccagat ggcctcacag gtgcatcata gccgctccaa ccccaccgat 60
atctacccct ccaagtggat tgcccggctc cgccacatca agcggctccg ccagcgggta 120
<210> 688
<211> 120
<212> DNA
<213> artificial sequence
<400> 688
gggaatatgg ggctccctca gcggggtgtg ctggctgccc aagctgtggg gcgggtgtgt 60
gggcagagcg gttgccacgc ctcccagact tactgcccaa gccgcctctg ccttcagatc 120
<210> 689
<211> 120
<212> DNA
<213> artificial sequence
<400> 689
tgcgaggaag ccgcctactc caaccccagc ctacctctgg tgcaccctcc gtcccatagc 60
aaagcccctg cacagactcc agccgagccc acacctggct atgaggtggg ccagcggaag 120
<210> 690
<211> 120
<212> DNA
<213> artificial sequence
<400> 690
cgcctcatct cctcggtgga ggacttcacc gagtttgtgt gaggccgggg ccctccctcc 60
tgcactggcc ttggacggta ttgcctgtca gtgaaataaa taaagtcctg accccagtgc 120
<210> 691
<211> 120
<212> DNA
<213> artificial sequence
<400> 691
acagacatag aggcacagat tgcagtcaga cagctctttt attgactttg tctgcttggt 60
gcgggggttg ggggggtgtc gaggctctag aagcggccat gcccacagaa gtggtacaca 120

Claims (8)

1. A probe set is characterized by comprising nucleotide sequences shown as SEQ ID NO. 1-SEQ ID NO. 691.
2. A kit comprising the probe set according to claim 1.
3. The kit of claim 2, further comprising a buffer for dissolving the probe set.
4. The kit of claim 3, wherein the buffer comprises a TE buffer.
5. Use of the probe set of claim 1, or the kit of any one of claims 2 to 4, for the preparation of a diagnostic reagent for tuberous sclerosis.
6. A method of library construction comprising: a hybridization capture of a target sequence using the probe set of claim 1, resulting in a hybridization captured library.
7. The method of claim 6, further comprising subjecting the DNA sample to disruption, fragment screening, end repair and A-addition reaction, linker ligation, product purification, library amplification, amplified library purification, quality control quantification, library concentration in sequence to obtain a library to be tested, and subjecting the library to be tested to target sequence hybrid capture before performing hybrid capture on the target sequence.
8. The method of constructing a library according to claim 6, wherein the library for sequencing on-machine is obtained by capturing the hybridization fragment by magnetic beads, amplifying and enriching the library, purifying the library, quantifying the quality control, denaturing the library, cyclizing the single strand, digesting the enzyme, purifying the digested product, and quantifying the quality control.
CN202110666461.2A 2021-06-16 2021-06-16 Probe set for detecting tuberous sclerosis gene mutation and kit thereof Active CN113388676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110666461.2A CN113388676B (en) 2021-06-16 2021-06-16 Probe set for detecting tuberous sclerosis gene mutation and kit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110666461.2A CN113388676B (en) 2021-06-16 2021-06-16 Probe set for detecting tuberous sclerosis gene mutation and kit thereof

Publications (2)

Publication Number Publication Date
CN113388676A CN113388676A (en) 2021-09-14
CN113388676B true CN113388676B (en) 2023-07-25

Family

ID=77621351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110666461.2A Active CN113388676B (en) 2021-06-16 2021-06-16 Probe set for detecting tuberous sclerosis gene mutation and kit thereof

Country Status (1)

Country Link
CN (1) CN113388676B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480579A (en) * 2021-12-28 2022-05-13 上海英基生物科技有限公司 Hybridization capture kit for sequencing genome target region, capture method and application
CN114657176B (en) * 2022-01-12 2023-10-27 南昌艾迪康医学检验实验室有限公司 A set of probes and a kit for constructing a library for detecting polymorphism of CYP3A4 gene related to pharmacogenomics by utilizing hybridization capture method
CN114774515A (en) * 2022-03-24 2022-07-22 北京安智因生物技术有限公司 Capture probe, kit and detection method for detecting polycystic kidney disease gene mutation
CN116287217B (en) * 2023-04-11 2023-12-05 广州凯普医药科技有限公司 Kit for detecting tuberous sclerosis gene mutation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008201989A1 (en) * 2000-12-08 2008-05-29 Curagen Corporation Method of Detecting and Treating Tuberous Sclerosis Complex Associated Disorders
CN105339507A (en) * 2013-02-21 2016-02-17 托马生物科学公司 Methods, compositions, and kits for nucleic acid analysis
WO2017193833A1 (en) * 2016-05-10 2017-11-16 广州嘉检医学检测有限公司 Method and kit comprising 4,000 human pathogenic target genes
CN107619867A (en) * 2017-10-18 2018-01-23 广州漫瑞生物信息技术有限公司 For detecting the combined sequence and probe of lung cancer several genes mutation type simultaneously

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535332A (en) * 2002-08-12 2005-11-24 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Diagnosis and treatment of tuberous sclerosis
US20190316112A1 (en) * 2018-04-12 2019-10-17 Cellmax, Ltd. Methods of capturing a nucleic acid including a target oligonucleotide sequence and uses thereof
CN110527724A (en) * 2018-05-23 2019-12-03 深圳华大智造科技有限公司 Set of probes and application thereof
CN111500679A (en) * 2019-06-28 2020-08-07 北京希望组生物科技有限公司 Preparation method of long fragment capture sequencing probe set

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008201989A1 (en) * 2000-12-08 2008-05-29 Curagen Corporation Method of Detecting and Treating Tuberous Sclerosis Complex Associated Disorders
CN105339507A (en) * 2013-02-21 2016-02-17 托马生物科学公司 Methods, compositions, and kits for nucleic acid analysis
WO2017193833A1 (en) * 2016-05-10 2017-11-16 广州嘉检医学检测有限公司 Method and kit comprising 4,000 human pathogenic target genes
CN107619867A (en) * 2017-10-18 2018-01-23 广州漫瑞生物信息技术有限公司 For detecting the combined sequence and probe of lung cancer several genes mutation type simultaneously

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Distribution of Tsc1 Protein Detected by Immunohistochemistry in Various Normal Rat Tissues and the Renal Carcinomas of Eker Rat: Detection of Limited Colocalization with Tsc1 and Tsc2 Gene Products In Vivo;Tomokazu Fukud等;Laboratory Investigation;第80卷(第9期);第1347-1359页 *
结节性硬化症TSC1/TSC2基因突变的高通量测序快速诊断;黄昌艳;;细胞与分子免疫学杂志(01);第96-99页 *

Also Published As

Publication number Publication date
CN113388676A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113388676B (en) Probe set for detecting tuberous sclerosis gene mutation and kit thereof
AU2017267184B2 (en) Method for assessing a prognosis and predicting the response of patients with malignant diseases to immunotherapy
CN107941681B (en) Method for identifying quantitative cellular composition in biological sample
RU2719194C2 (en) Assessing activity of cell signaling pathways using probabilistic modeling of expression of target genes
RU2721130C2 (en) Assessment of activity of cell signaling pathways using a linear combination(s) of target gene expression
ES2374954T3 (en) GENETIC VARIATIONS ASSOCIATED WITH TUMORS.
CN107223159A (en) The detection of DNA from particular cell types and correlation technique
CN106636344B (en) Gene detection kit for thalassemia based on second-generation high-throughput sequencing technology
AU2018210695A1 (en) Molecular subtyping, prognosis, and treatment of bladder cancer
KR100964193B1 (en) Markers for liver cancer prognosis
KR20120082906A (en) Methods for modulation of autophagy through the modulation of autophagy-enhancing gene products
CN101258249A (en) Methods and reagents for the detection of melanoma
GB2424886A (en) Polynucleotide primers against epidermal growth factor receptor and method of detecting gene mutations
KR20060045950A (en) Prognostic for hematological malignancy
KR20070099564A (en) Methods for assessing patients with acute myeloid leukemia
CA2666057C (en) Genetic variations associated with tumors
CN114127314A (en) Genetic genomes, methods and kits for identifying or classifying subtypes (subtypes) of breast cancer
KR20160059446A (en) Cancer panel for identification of genomic variations in cancer
CN108179186A (en) For detecting DNA probe pond, the preparation method and the usage with Kawasaki disease related gene and SNP site
US20020137077A1 (en) Genes regulated in activated T cells
CN110541031A (en) Method for in vitro diagnosis or prognosis of ovarian cancer
CN114214408B (en) Method, probe library and kit for detecting tumor ctDNA methylation with high throughput and high sensitivity
CN113832189B (en) gRNA for knocking out pig immunoglobulin heavy chain IGHG region and application thereof
KR101653131B1 (en) Composition or Kit and Method for predicting prognosis of liver cancer
CN111575379B (en) Kit for detecting 58 genes related to thyroid cancer and using method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518000 a3803, building 11, Shenzhen Bay science and technology ecological park, No. 16, Keji South Road, community, high tech Zone, Yuehai street, Nanshan District, Shenzhen, Guangdong

Applicant after: Shenzhen Yaji Technology Co.,Ltd.

Address before: 518000 room 1901, building 6, Baoneng Science Park, Qinghu community, Longhua street, Longhua District, Shenzhen City, Guangdong Province

Applicant before: AEGICARE (SHENZHEN) TECHNOLOGY CO.,LTD.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant