CN113388537A - Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain - Google Patents

Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain Download PDF

Info

Publication number
CN113388537A
CN113388537A CN202110639162.XA CN202110639162A CN113388537A CN 113388537 A CN113388537 A CN 113388537A CN 202110639162 A CN202110639162 A CN 202110639162A CN 113388537 A CN113388537 A CN 113388537A
Authority
CN
China
Prior art keywords
leu
ser
val
lys
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110639162.XA
Other languages
Chinese (zh)
Inventor
元英进
周蒙雨
丁明珠
王敏蓁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110639162.XA priority Critical patent/CN113388537A/en
Publication of CN113388537A publication Critical patent/CN113388537A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01007Glutathione-disulfide reductase (1.8.1.7), i.e. glutathione reductase (NADPH)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01009Glutathione peroxidase (1.11.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y115/00Oxidoreductases acting on superoxide as acceptor (1.15)
    • C12Y115/01Oxidoreductases acting on superoxide as acceptor (1.15) with NAD or NADP as acceptor (1.15.1)
    • C12Y115/01001Superoxide dismutase (1.15.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01086NADH kinase (2.7.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02002Glutamate-cysteine ligase (6.3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02003Glutathione synthase (6.3.2.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to the technical field of microorganisms, and discloses application of GSH (glutathione) synthesis and circulation related genes and recombinant saccharomyces cerevisiaeAnd (4) strain. The invention selects GSH synthesis and circulation related genes from Kluyveromyces marxianus, acid-fast marine bacterium Wallemia mellicol and extreme thermophilic bacterium Thermus thermophilus HB27 to construct a recombinant saccharomyces cerevisiae strain with excellent stress resistance, compared with wild saccharomyces cerevisiae, the recombinant saccharomyces cerevisiae has H resistance according to different exogenous genes2O2The yeast strain has different effects on heat resistance, high temperature resistance, acid resistance and salt resistance, provides an excellent yeast strain for industrial fermentation production, and provides a cell model for researching the generation or protection of ROS in eukaryotes.

Description

Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain
Technical Field
The invention relates to the technical field of microorganisms, in particular to application of GSH synthesis and circulation related protein and a recombinant saccharomyces cerevisiae strain.
Background
Under unfavorable survival conditions of high temperature, high salt, acid and alkali and the like, the saccharomyces cerevisiae can generate excessive Reactive Oxygen Species (ROS), so that the saccharomyces cerevisiae suffers from oxidative damage and even dies. Saccharomyces cerevisiae, when exposed to ROS, initiates an intracellular oxidative stress response, and thus its stress resistance is closely related to oxidative stress. The major site of ROS production is the mitochondria, the most oxidatively damaged organelles, and thus protection of mitochondria from oxidative damage is the focus of antioxidant defense. The anti-oxidation defense system of the saccharomyces cerevisiae consists of an enzymatic defense system and a non-enzymatic defense system. Antioxidant protective enzymes are important mechanisms for dealing with oxidative stress, including superoxide dismutase (SOD), Catalase (CAT), and peroxidase (Prx). The non-enzymatic defense system consists of small molecules capable of scavenging free radicals, mainly consisting of thioredoxin (Trx), ascorbic acid, Glutathione (GSH) and other reducing agents.
SOD is the most common and important antioxidant that will catalyze superoxide anion (O)2-) is reduced to (H2O2) Then CAT or Prx catalyzes H2O2Then reduced to water (H)2O). The thioredoxin system includes thioredoxin reductase (TRR1) and two thioredoxins (TRX1 and TRX2), and in yeast cells, TRX has antioxidant activity and plays a key role in the protection against oxidative damage by the thioredoxin system. The alkylene glycol group in ascorbic acid molecule is easily oxidized, and can bind and scavenge oxygen, thus having antioxidant effect. However, Saccharomyces cerevisiae does not produce L-AA, and it can synthesize D-erythro ascorbic acid (D-EAA), a functional analogue thereof. Research has shown that D-EAA plays a certain role in resisting stress, and yeast strains of gene ALO1 for catalyzing last step enzyme of D-EAA synthesis are deleted, and the strain can be used for H2O2And O2-sensitive. Monteiro et alIt was suggested that ascorbic acid may be involved in the reduction of 1-Cys Prx, revealing additional antioxidant capacity of ascorbic acid.
The cysteine residue of GSH has redox activity, and can be used for scavenging free radicals and helping cells resist oxidative damage in various life activities of organisms. In addition, GSH also plays a key role in the response of saccharomyces cerevisiae to NaCl stress. ROS-mediated oxidative damage, one of the earliest responding antioxidant stresses, is the oxidation of sulfhydryls, suggesting that GSH plays a very important role in antioxidant as a cofactor for stress defense enzymes. Glutathione peroxidase (GPx) catalyzes the oxidation of GSH to its disulfide bond form (GSSG) with concomitant H-stimulation due to oxidative stress caused by conditions such as high temperature2O2And reduction of lipid peroxides. Conversely, under the action of GSSG reductase (Glr1), GSSG can also be reduced to GSH with concomitant consumption of NADPH, thus forming a GSH redox cycle. CAT can also reduce H2O2But only in the peroxisome. Mitochondria are the most oxidatively damaged organelles, and thus the GSH system plays a key role in protecting mitochondria from oxidative damage. Qiu et al increase the copy number of GCSGS of GSH synthase gene by Cre-LoxP system, integrate it into Saccharomyces cerevisiae ribosomal DNA, increase the accumulation of GSH by three times, thus make the yeast able to bear 40 degrees of high temperature. This indicates that stress resistance can be improved by increasing GSH content in saccharomyces cerevisiae.
Disclosure of Invention
In view of the above, the present invention aims to provide a recombinant saccharomyces cerevisiae strain, which starts with optimization of GSH synthesis and recycling, so that the constructed recombinant saccharomyces cerevisiae strain can show better H-tolerance2O2One or more of heat resistance, salt resistance, acid resistance, high temperature resistance and the like;
another object of the present invention is to provide the application of GSH synthesis and cycle related protein or its coding gene in constructing stress-resistant recombinant Saccharomyces cerevisiae.
In order to achieve the above purpose, the invention provides the following technical scheme:
a recombinant saccharomyces cerevisiae strain with improved stress resistance capable of expressing any one or more of exogenous GSH synthesis and circulation-related proteins (achieved by transforming a vector expressing exogenous GSH synthesis and circulation-related protein genes, or chromosomally integrating exogenous GSH synthesis and circulation-related protein genes):
(1) superoxide dismutase derived from Kluyveromyces marxianus, wherein the coding gene of the superoxide dismutase is sod 1;
(2) superoxide dismutase derived from Thermus thermophilus HB27, wherein the coding gene is ttc 0189;
(3) gamma-glutamylcysteine synthetase from Kluyveromyces marxianus, the coding gene of which is gsh 1;
(4) glutathione synthetase derived from Kluyveromyces marxianus, and encoding gene of the glutathione synthetase is gsh 2;
(5) glutathione synthetase derived from Wallemia mellicol, and a coding gene of the glutathione synthetase is gs 61512;
(6) glutathione peroxidase derived from Kluyveromyces marxianus, wherein the coding gene of the glutathione peroxidase is gpx.km;
(7) glutathione peroxidase derived from Wallemia mellicol, and a coding gene of the glutathione peroxidase is gpx.wm;
(8) cytoplasmic glutaredoxin derived from Kluyveromyces marxianus, encoding a gene grx 2;
(9) cytoplasmic glutaredoxin derived from Wallemia mellicol, encoding a gene grx 35095;
(10) glutathione oxidoreductase originated from Kluyveromyces marxianus in cytoplasm and mitochondria, and the encoding gene is glr 1;
(11) NADH kinase derived from Kluyveromyces marxianus, and encoding gene thereof is pos 5;
(12) NADH kinase derived from Wallemia mellicol, and the coding gene thereof is nk 60672;
the stress resistance comprises H resistance2O2Heat resistance, high temperature resistance, salt resistance and acid resistance.
Twelve genes related to GSH synthesis and antioxidation from Kluyveromyces marxianus, acid-fast marine bacteria Wallemia mellicol and extreme thermophilic bacteria Thermus thermophilus HB27 are selected, are cloned on a carrier after being optimized by a saccharomyces cerevisiae codon, and are transformed into a chassis cell to obtain a recombinant saccharomyces cerevisiae strain for optimizing GSH synthesis and circulation; in a specific embodiment of the invention, the amino acid sequences of the exogenous GSH synthesis and circulation related proteins in the items (1) to (12) are sequentially shown as SEQ ID NO.1-12, and the corresponding coding gene sequences are sequentially shown as SEQ ID NO. 13-24; the vector is preferably pRS series plasmid (such as pRS 416);
preferably, the starting Saccharomyces cerevisiae used for recombination may be selected from the BY series Saccharomyces cerevisiae (e.g., BY4741) and the CEN. PK series Saccharomyces cerevisiae.
Preferably, the recombinant saccharomyces cerevisiae is H-resistant2O2A recombinant Saccharomyces cerevisiae expressing one or more of the exogenous GSH synthesis and circulation associated proteins of (1) and (4) to (12) above. More preferably, the H resistance2O2A recombinant Saccharomyces cerevisiae expressing one or more of the exogenous GSH synthesis and circulation associated proteins of (4) and (8) to (9) above.
Preferably, the recombinant saccharomyces cerevisiae is heat shock resistant recombinant saccharomyces cerevisiae, and expresses one or more exogenous GSH synthesis and circulation related proteins in the aforementioned items (1) - (8) and (10) - (12). More preferably, one or more of the exogenous GSH synthesis and circulation-related proteins of (1), (4) - (5) above are expressed.
Preferably, the recombinant saccharomyces cerevisiae is a high-temperature resistant recombinant saccharomyces cerevisiae and expresses one or more exogenous GSH synthesis and circulation related proteins in the (10) th and (11) th steps.
Preferably, the recombinant saccharomyces cerevisiae is salt-tolerant recombinant saccharomyces cerevisiae and expresses one or more exogenous GSH synthesis and circulation-related proteins in the steps (1) to (12). More preferably, one or more of the exogenous GSH synthesis and circulation-related proteins of (4), (6) - (10), and (12) above are expressed.
Preferably, the recombinant saccharomyces cerevisiae is acid-tolerant recombinant saccharomyces cerevisiae and expresses one or more exogenous GSH synthesis and circulation-related proteins in the aforementioned items (1) - (2), (4), (6) - (10) and (12). More preferably, one or more of the exogenous GSH synthesis and circulation-related proteins of (6), (8), and (10) above are expressed.
Meanwhile, the invention also provides the recombinant saccharomyces cerevisiae with various excellent stress resistance, which is H-resistant2O2And two or more of heat-resistant, salt-resistant and acid-resistant recombinant saccharomyces cerevisiae, and expresses the exogenous GSH synthesis and circulation-related protein of the item (4).
Or it has H resistance2O2And (3) the recombinant saccharomyces cerevisiae with two or more of heat resistance and salt resistance expresses the exogenous GSH synthesis and circulation related protein of the item (5).
Or it has H resistance2O2And two or more of heat-resistant, salt-resistant, high-temperature-resistant and acid-resistant recombinant saccharomyces cerevisiae, and expresses the exogenous GSH synthesis and circulation related protein of the item (10).
Or it has H resistance2O2And two or more of heat-resistant, salt-resistant and high-temperature-resistant recombinant saccharomyces cerevisiae, and expresses the exogenous GSH synthesis and circulation related protein of the item (11).
The invention also provides a construction method of the recombinant saccharomyces cerevisiae, fragment enzyme cutting sites 1-promoter-enzyme cutting sites 2-enzyme cutting sites 3-terminator-enzyme cutting sites 4 are obtained through an overlap extension PCR technology, enzyme cutting is carried out on a vector by utilizing the enzyme cutting sites 1 and the enzyme cutting sites 4, and the fragments are accessed to the vector to obtain a vector box;
and then, assembling twelve genes of the above-mentioned foreign GSH synthesis and circulation related proteins by Gibson, respectively cloning on a vector box which is linearized after enzyme digestion by an enzyme digestion site 2 and an enzyme digestion site 3, verifying a transformed host bacterium to obtain a positive clone, extracting a plasmid vector, and selecting the plasmid vector containing the foreign genes to transform saccharomyces cerevisiae according to requirements to obtain the recombinant saccharomyces cerevisiae.
In a specific embodiment of the present invention, the construction method is:
firstly, a fragment XhoI-TDH3p-HindIII-BamHI-GPM1T-SpeI is obtained by an overlap extension PCR technology, then the fragment is cut by restriction enzymes XhoI and SpeI, and the fragment is cloned on a vector pRS416 linearized by the same endonuclease through T4 connection, so that a plasmid box EGSH-HE is obtained. The twelve obtained exogenous GSH synthesis and circulation related protein genes were then assembled by Gibson, cloned into HindIII and BamHI linearized vector EGSH-HE, and transformed into E.coli competent Trans-T1. Positive clones are obtained through PCR verification of escherichia coli colonies, and escherichia coli strains EGSH-1-12 are obtained. After extracting the large intestine plasmids 416-sod1, 416-ttc0189, 416-gsh1, 416-gsh2, 416-gs61512, 416-gpx.km, 416-gpx.wm, 416-grx2, 416-grx35095, 416-glr1, 416-pos5 and 416-nk60672, respectively, Saccharomyces cerevisiae BY4741 is transformed. And obtaining optimized GSH synthesis and circulating yeast strains YGSH-1-12 through saccharomyces cerevisiae colony PCR verification.
In addition, the invention also provides the application of one or more of the exogenous GSH synthesis and circulation related proteins or the coding genes thereof in the construction of stress-resistant recombinant saccharomyces cerevisiae in the items (1) to (12); the stress resistance comprises H resistance2O2Heat resistance, high temperature resistance, salt resistance and acid resistance.
According to the technical scheme, GSH synthesis and circulation related genes from Kluyveromyces marxianus, acid-fast marine bacterium Wallemia mellicol and extreme thermophilic bacterium Thermus thermophilus HB27 are selected to construct the recombinant saccharomyces cerevisiae strain with excellent stress resistance, and compared with wild saccharomyces cerevisiae, the recombinant saccharomyces cerevisiae is resistant to H according to different exogenous genes2O2The yeast strain has different effects on heat resistance, high temperature resistance, acid resistance and salt resistance, provides an excellent yeast strain for industrial fermentation production, and provides a cell model for researching the generation or protection of ROS in eukaryotes.
Drawings
FIG. 1 is a schematic diagram showing the construction of recombinant Saccharomyces cerevisiae;
FIG. 2 shows that the strains are resistant to H2O2The characterization result of (1);
FIG. 3 shows the results of cell survival of heat shock injury of strains;
FIG. 4 shows the characterization results of the strains resistant to high temperature;
FIG. 5 shows the results of characterization of the strains for salt tolerance;
FIG. 6 shows the results of the characterization of the strains with respect to their resistance to mineral acids.
Detailed Description
The embodiment of the invention discloses application of GSH synthesis and circulation related protein and a recombinant saccharomyces cerevisiae strain, and a person skilled in the art can realize the synthesis and circulation related protein by appropriately improving process parameters by referring to the content. It is expressly intended that all such similar substitutes and modifications which would be obvious to those skilled in the art are deemed to be included within the invention. While the use of the invention and recombinant strains of Saccharomyces cerevisiae have been described in terms of preferred embodiments, it will be apparent to those skilled in the art that the techniques of the invention can be practiced and applied by modifying or appropriately modifying and combining the use and recombinant strains of Saccharomyces cerevisiae described herein without departing from the spirit, scope and spirit of the invention.
The use of the GSH synthesis and cycle-related proteins provided by the invention and recombinant Saccharomyces cerevisiae strains are further described below.
Example 1: obtaining of foreign Gene
The present invention provides 12 genes encoding GSH synthesis and circulation-related enzymes, each of which is: superoxide dismutase (SOD) encoding gene SOD1, gamma-glutamylcysteine synthetase (GSH1) encoding gene GSH1, glutathione synthetase (GSH2) encoding gene GSH2, Glutathione Peroxidase (GPX) encoding gene gpx.km, Glutaredoxin (GRX) encoding gene GRX2 in cytoplasm, NADH kinase (NADHK) encoding gene pos5, glutathione oxidoreductase (GLR) encoding gene GLR1 in cytoplasm and mitochondria, derived from Kluyveromyces marxianus; from Wallemia mellicol a gene GPX. wm encoding GPX, a gene GRX35095 encoding GRX, a gene NK60672 encoding NADHK, a gene gs61512 encoding glutathione synthetase; gene ttc0189 encoding SOD derived from Thermus thermophilus HB 27. Twelve exogenous genes related to GSH synthesis and circulation are obtained by PCR after codon optimization.
Example 2: construction of recombinant Saccharomyces cerevisiae
Firstly, a fragment XhoI-TDH3p-HindIII-BamHI-GPM1T-SpeI is obtained by an overlap extension PCR technology, then the fragment is cut by restriction enzymes XhoI and SpeI, and the fragment is cloned on a vector pRS416 linearized by the same endonuclease through T4 connection, so that a plasmid box EGSH-HE is obtained. The twelve foreign genes obtained were then assembled by Gibson, cloned into the HindIII and BamHI linearized vector EGSH-HE, and transformed into E.coli competent Trans-T1. Positive clones are obtained through PCR verification of escherichia coli colonies, and escherichia coli strains EGSH-1-12 are obtained. After extracting the large intestine plasmids 416-sod1, 416-ttc0189, 416-gsh1, 416-gsh2, 416-gs61512, 416-gpx.km, 416-gpx.wm, 416-grx2, 416-grx35095, 416-glr1, 416-pos5 and 416-nk60672, respectively, Saccharomyces cerevisiae BY4741 is transformed. And obtaining optimized GSH synthesis and circulating yeast strains YGSH-1-12 through saccharomyces cerevisiae colony PCR verification.
Example 3: strain tolerance to H2O2Is characterized by
Experimental materials:
YGSH-1-12 strains and BY 4741;
the experimental method comprises the following steps:
SC medium: 6.7g/L of synthetic yeast nitrogen source YNB, 20g/L of glucose, 2g/L of mixed amino acid powder of uracil, histidine, leucine and tryptophan, 0.1g/L of histidine, 0.1g/L of leucine and 0.02g/L of tryptophan, and pH is adjusted to 6.0 by 1M NaOH. (or adjusting the pH to 3.0 with HCL);
YPD medium: 20g/L of glucose, 20g/L of peptone and 10g/L of yeast powder.
YGSH-1 to YGSH-12 and BY4741 single colonies were picked from the solid streaking plate and inoculated into 3ml of the corresponding SC auxotrophic liquid medium, and cultured overnight at 220rpm at 30 ℃. Then at the initial OD600Inoculating 0.2 to 5ml of SC liquid culture medium, culturing at 30 deg.C and 220rpm for 10-12 hr until thallus grows to middle logarithmic phase to obtain secondary seed, and culturing at initial OD6000.2 inoculation in a seed containing 40mMH2O2The YPD medium of (5) was cultured for 48 hours, and the influence of the transformed foreign gene on the acid resistance of the strain was analyzed.
The experimental results are as follows:
strain H2O2The tolerance of the gene is characterized in FIG. 2, the corresponding data are shown in Table 1, and it is evident that YGSH-4 derived from K.marxianus gene GSH2 is expressed in twelve yeast strains from H2O2The oxidative damage of the cells has the fastest recovery speed and the highest cell concentration, and presents an obvious secondary growth phenomenon. anti-H2O2The best of the capacity were the strains YGSH-1, YGSH-9 and YGSH-8, the worst being the strain YGSH-3, the remaining strains were compared with BY4741 against H2O2The sensitivity difference was not significant.
TABLE 1
Figure BDA0003106449880000061
Figure BDA0003106449880000071
Example 4: survival of Heat-shock-injured cells of Strain
Experimental materials:
YGSH-1-12 strains and BY 4741;
the experimental method comprises the following steps:
after obtaining secondary seeds as described in example 3, the seeds were diluted to OD with sterile water600The test group is thermally shocked in a metal bath at 55 ℃ for 15min, BY4741 is not subjected to any treatment, three biological parallels are made for each group, and then the yeast cell number under two conditions is obtained BY a gradient dilution plating method, and the cell lethality caused BY the thermal shock at 55 ℃ is calculated.
The experimental results are as follows:
the results of cell lethality caused BY heat shock of the strain at 55 ℃ for 15min are shown in FIG. 3, and the remaining eleven strains except the strain YGSH-9 have lower cell lethality than that of the wild-type yeast BY4741 under the heat shock injury at 55 ℃ and have higher cell survival number. Among the eleven strains, the strain with the highest heat shock tolerance at 55 ℃ is YGSH-5, then YGSH-4 and YGSH-1, and the lethality of the remaining strains is about 50%.
Example 5: characterization of strains resistant to high temperatures
Experimental materials:
YGSH-1-12 strains and BY 4741;
the experimental method comprises the following steps:
after secondary seeds were obtained as described in example 3, the final OD was used600The culture was inoculated in YPD liquid medium at 0.2 and cultured at 40 ℃ and 220rpm for 48 hours.
The experimental results are as follows:
the results of the high temperature tolerance of the strain are shown in fig. 4, the corresponding data are shown in table 2, the heat resistance of the strain YGSH-10 is obviously better than that of other strains, and the specific manifestations are short lag phase, long log phase and high cell concentration, which proves that the recovery speed from high temperature injury is fast, and the strain can keep longer higher cell activity at the high temperature of 40 ℃. Although the cell recovery activity of the strain YGSH-11 from high temperature was slow, its log phase was shorter than that of YGSH-10, demonstrating that it maintained the cell activity higher than that of YGSH-10 at high temperature and its final OD600Second only to YGSH-10. In addition, the strains YGSH-12, YGSH-9, YGSH-1, YGSH-6 and YGSH-4 (in order from fast to slow) were able to recover the cell viability at a faster rate under high temperature and pressure and to reach the cell concentration comparable to the level of wild-type yeast. While the remaining strains YGSH-3, YGSH-7, YGSH-8, YGSH-2 and YGSH-5 failed to restore cell viability at high temperature, which was significantly more sensitive to high temperature than BY 4741.
TABLE 2
Figure BDA0003106449880000081
Example 6: characterization of the osmotic tolerance (salt tolerance) of the strains
Experimental materials:
YGSH-1-12 strains and BY 4741;
the experimental method comprises the following steps:
after secondary seeds were obtained as described in example 3, the final OD was used600When the culture medium is 0.2, the medium is inoculated into YPD liquid medium with NaCl content of 5% for 48 h.
The experimental results are as follows:
the results are shown in the figure5 and corresponding data Table 3, twelve yeast strains can be divided into two categories by their salt tolerance: YGSH-12, YGSH-8, YGSH-9, YGSH-6, YGSH-10, YGSH-7 and YGSH-4 (in the order from strong to weak) have improved salt tolerance compared with wild type strains; the salt tolerance of YGSH-2, YGSH-11, YGSH-3, YGSH-5 and YGSH-1 is slightly better than or equal to BY 4741. In addition, 5% NaCl brought about the stress on the yeast compared to H2O2Lesser and thermal stress, terminal OD600Both of these pressures were higher, but it is clear that 5% NaCl had a greater effect on the yeast in the log phase, with a significantly slower growth rate. In addition, twelve strains all showed a tendency to secondary growth during the stationary phase.
TABLE 3
Figure BDA0003106449880000091
Example 7: characterization of inorganic acid tolerance of strains
Experimental materials:
YGSH-1-12 strains and BY 4741;
the experimental method comprises the following steps:
after secondary seeds were obtained as described in example 3, the final OD was used6000.2 was inoculated into SC-Ura broth adjusted to pH 3.0 with HCl for 48 h.
The experimental results are as follows:
the results are shown in FIG. 6 and the corresponding data Table 4, where it is clear that YGSH-10 is able to recover cell viability faster from inorganic acid stress and is the only secondary growth tendency among the twelve strains. Next, the strains YGSH-6, YGSH-8, YGSH-12, YGSH-4 and YGSH-7, which had a final OD600 of about 4.0 at pH 3.0, were used. And the sensitivity of the rest strains to inorganic acid is basically the same as BY 4741.
TABLE 4
Figure BDA0003106449880000101
The foregoing is only for the purpose of understanding the method of the present invention and the core concept thereof, and it will be understood by those skilled in the art that various changes and modifications may be made without departing from the principle of the invention, and the invention also falls within the scope of the appended claims.
Sequence listing
<110> Tianjin university
<120> application of GSH synthesis and cycle-related protein and recombinant saccharomyces cerevisiae strain
<130> MP21012310
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 154
<212> PRT
<213> Kluyveromyces marxianus
<400> 1
Met Val Lys Ala Ile Ala Val Leu Lys Gly Asp Ser Asn Val Ser Gly
1 5 10 15
Ile Val Arg Phe Glu Gln Glu Ser Glu Asp Gln Ser Thr Lys Ile Ser
20 25 30
Trp Glu Ile Thr Gly Asn Asp Ala Asn Ala Leu Arg Gly Phe His Ile
35 40 45
His Glu Phe Gly Asp Asn Ser Asn Gly Cys Thr Ser Ala Gly Pro His
50 55 60
Phe Asn Pro Tyr Lys Lys Thr His Gly Ala Pro Ser Asp Glu Thr Arg
65 70 75 80
His Val Gly Asp Leu Gly Asn Ile Ser Thr Asp Ala Gln Gly Val Ala
85 90 95
Lys Gly Ser Val Thr Asp Lys His Val Lys Leu Leu Gly Pro Leu Ser
100 105 110
Val Ile Gly Arg Thr Val Val Val His Gly Gly Gln Asp Asp Leu Gly
115 120 125
Lys Gly Gly Asn Glu Glu Ser Leu Lys Thr Gly Asn Ala Gly Gly Arg
130 135 140
Val Ala Cys Gly Val Ile Gly Ile Ser Asn
145 150
<210> 2
<211> 204
<212> PRT
<213> Thermus thermophilus HB27
<400> 2
Met Pro Tyr Pro Phe Lys Leu Pro Asp Leu Gly Tyr Pro Tyr Glu Ala
1 5 10 15
Leu Glu Pro His Ile Asp Ala Lys Thr Met Glu Ile His His Gln Lys
20 25 30
His His Gly Ala Tyr Val Thr Asn Leu Asn Ala Ala Leu Glu Lys Tyr
35 40 45
Pro Tyr Leu His Gly Val Glu Val Glu Val Leu Leu Arg His Leu Ala
50 55 60
Ala Leu Pro Gln Asp Ile Gln Thr Ala Val Arg Asn Asn Gly Gly Gly
65 70 75 80
His Leu Asn His Ser Leu Phe Trp Arg Leu Leu Thr Pro Gly Gly Ala
85 90 95
Lys Glu Pro Val Gly Glu Leu Lys Lys Ala Ile Asp Glu Gln Phe Gly
100 105 110
Gly Phe Gln Ala Leu Lys Glu Lys Leu Thr Gln Ala Ala Met Gly Arg
115 120 125
Phe Gly Ser Gly Trp Ala Trp Leu Val Lys Asp Pro Phe Gly Lys Leu
130 135 140
His Val Leu Ser Thr Pro Asn Gln Asp Asn Pro Val Met Glu Gly Phe
145 150 155 160
Thr Pro Ile Val Gly Ile Asp Val Trp Glu His Ala Tyr Tyr Leu Lys
165 170 175
Tyr Gln Asn Arg Arg Ala Asp Tyr Leu Gln Ala Ile Trp Asn Val Leu
180 185 190
Asn Trp Asp Val Ala Glu Glu Phe Phe Lys Lys Ala
195 200
<210> 3
<211> 668
<212> PRT
<213> Kluyveromyces marxianus
<400> 3
Met Gly Leu Leu Ser Leu Gly Thr Pro Leu Pro Trp Leu Glu Ser Arg
1 5 10 15
Gln Tyr Asn Glu His Val Arg Asp Asn Gly Ile Glu Gln Leu Ile Gln
20 25 30
Ser Phe Arg Lys Ala Gly Gly Arg Asp Asn Asp Glu Leu Tyr Trp Gly
35 40 45
Asp Glu Val Glu Tyr Met Ile Cys Glu Phe Asp Glu Ala Gly Glu Asn
50 55 60
Val Val Leu Ser Val Glu His Asp Glu Ile Leu Glu Gln Leu Asn Arg
65 70 75 80
Glu Tyr His Glu Glu Cys Glu Arg Leu Asn Val His Phe His Pro Glu
85 90 95
Tyr Gly Arg Phe Met Leu Glu Ala Thr Pro Ala Arg Pro Tyr His Leu
100 105 110
Tyr Glu Gly Val Glu Val Glu Lys Asn Met Arg Thr Arg Arg Val Val
115 120 125
Ala Glu Glu Lys Leu Gln Lys Leu Asn Arg Lys Ser Gly Asn Glu Val
130 135 140
Val Pro Leu Ser Leu Thr Val Phe Pro Arg Met Gly Arg Asp Gly Phe
145 150 155 160
Thr Asn Leu Lys Asp Pro Trp Asp His Lys Asn Ser Ala Ser Arg Ser
165 170 175
Leu Phe Leu Pro Asp Glu Val Ile Asn Arg His Ala Arg Phe Pro Thr
180 185 190
Leu Thr Ala Asn Ile Arg Thr Arg Arg Gly Glu Lys Val Cys Ile Asn
195 200 205
Val Pro Met Tyr Gln Asp Ser Arg Thr Ala Pro Arg Asp Glu Ser Ile
210 215 220
Tyr Glu Arg Asp Trp Phe Val Pro Glu Asp Leu Glu Ser Ala Lys Ala
225 230 235 240
Ser Lys Pro Gly His Ile Tyr Met Asp Ser Met Gly Phe Gly Met Gly
245 250 255
Cys Ser Cys Leu Gln Leu Thr Phe Gln Ala Pro Asn Ile Asp Lys Ala
260 265 270
Arg Tyr Leu Tyr Asp Thr Leu Ala Asn Phe Ala Pro Val Phe Leu Ala
275 280 285
Ala Thr Ala Ala Ser Pro Val Phe Lys Gly Phe Leu Ala Asp Gln Asp
290 295 300
Val Arg Trp Asn Val Ile Ser Gly Ala Val Asp Asp Arg Thr Pro Tyr
305 310 315 320
Glu Arg Ser Glu Glu Pro Leu Leu Pro Lys Tyr Asn Asn Gly Tyr Gly
325 330 335
Ser Ile Ala Pro Glu Glu Val Pro Ser Val Arg Arg Ile Asn Lys Ser
340 345 350
Arg Tyr Ser Val Val Asp Leu Phe Leu Gly Gly Asn Gly Phe Phe Asp
355 360 365
Ala Lys Phe Asn Asp Thr Glu Val Pro Ile Asn Glu Lys Val Phe Lys
370 375 380
Arg Leu Thr Thr Asn Asp Ile His Pro Met Asp Lys Asp Leu Ala Arg
385 390 395 400
His Phe Ala His Leu Phe Ile Arg Asp Pro Leu Val Ile Phe Glu Glu
405 410 415
Arg Ile Glu Gln Asp Asn Met Thr Glu Thr Asp His Phe Glu Asn Ile
420 425 430
Gln Ser Thr Asn Trp Gln Ser Leu Arg Phe Lys Val Pro Ala Gln Asp
435 440 445
Ala Thr Pro Asn Asn Lys Lys Ala Pro Gly Trp Arg Val Glu Phe Arg
450 455 460
Pro Met Glu Val Gln Leu Thr Asp Phe Glu Asn Ala Ala Tyr Ser Asn
465 470 475 480
Phe Ile Tyr Leu Val Ile Glu Ser Ile Leu Thr Phe Ser Asp Lys Ile
485 490 495
Asn Ala Tyr Met Tyr Met Ser Glu Ile Trp Glu Asn Met Glu Thr Ala
500 505 510
His Arg Arg Asp Ala Thr Leu Lys Glu Lys Phe Tyr Trp Lys Ser Asp
515 520 525
Phe Ala Asp Thr Gln Gly Lys Thr Glu Leu Leu Thr Ile Asn Glu Ile
530 535 540
Phe His Asn Ala His Asn Gly Ile Phe Ser Val Phe Ile Asn Pro Ile
545 550 555 560
Leu Val His Lys Gly Leu Val Ser Lys Ser Trp Thr Glu Leu Leu His
565 570 575
Asn Ser Gly Asp Asn Ala Asp Leu Ile Arg Leu Tyr Tyr Tyr Leu Lys
580 585 590
Leu Ile Ser Asp Arg Ala Ser Gly Val Leu Pro Ser Glu Ala Ser Phe
595 600 605
Ile Arg Ser Tyr Val Leu Asn His Pro Glu Tyr Asp His Thr Ser Asn
610 615 620
Val Thr Lys Lys Ile Asn Tyr Asp Leu Leu His Leu Ser Tyr Arg Ile
625 630 635 640
Ser His Tyr Asp Asn Ser Lys Gly Glu Leu Thr Ala Leu Leu Gly Gln
645 650 655
Glu Ile Ala Thr Tyr Leu Ile Asn Asn Ser Ile Leu
660 665
<210> 4
<211> 487
<212> PRT
<213> Kluyveromyces marxianus
<400> 4
Met Ser Ser Leu Lys Gly Tyr Pro Lys Phe Pro Asp Val Thr Lys Glu
1 5 10 15
Lys Leu Glu Arg Glu Leu Leu Pro Glu Val Phe Gln Trp Ala Ile Ser
20 25 30
Asn Gly Leu Thr Ile Tyr Pro Pro Asp Phe Lys Ile Ser Glu Ala Gln
35 40 45
Val Ala Pro Ile Thr Leu Phe Pro Thr Pro Leu Pro Arg Lys Ala Phe
50 55 60
Glu Asp Ala Ile Asp Val Gln Lys Ser Phe Asn Ser Leu Tyr Ala Lys
65 70 75 80
Ile Ser Gln Asn His Asn Gly Trp Leu Glu Glu Glu Ser Glu Lys Leu
85 90 95
Ala Lys Ser Asp Pro Glu Phe Thr Gly Lys Leu Trp Glu Ile Tyr Lys
100 105 110
Arg Ala Lys Glu His Gly Ile Ser Gln Asp Leu Ala Leu Gly Val Phe
115 120 125
Arg Ser Asp Tyr Leu Ile Asn Asp Asn Asp Asn Gln Ile Lys Gln Val
130 135 140
Glu Phe Asn Thr Val Ser Val Ser Phe Ala Gly Leu Ser Thr Lys Val
145 150 155 160
Gly Gln Leu His Gln Tyr Leu Asn Asp Ser Gly Arg Tyr Ser Ala Asp
165 170 175
Gly Glu Ser Phe Phe Asn Glu Glu Ile Pro Val Ser Pro Ser Ala Glu
180 185 190
Leu Leu Ala Glu Gly Leu Thr Lys Ala Ile Gln His Phe Lys Pro Ala
195 200 205
Ala Ser Asp Lys Lys Pro Ile Val Ala Phe Ile Val Gln Glu Gly Glu
210 215 220
Arg Asn Val Phe Asp Gln Ser Val Leu Ala Phe Asn Leu Leu Ser Lys
225 230 235 240
His Gly Ile Gln Ser Cys Arg Leu Thr Met Gln Glu Ile His Leu Lys
245 250 255
Thr Thr Leu Asp Lys Ser Thr Lys Arg Leu Tyr Leu Asn Ser Thr Gly
260 265 270
Lys Glu Ile Gly Leu Val Tyr Phe Arg Ser Gly Tyr Ala Pro Asn Asp
275 280 285
Phe Val Thr Gln Gln Asp Trp Glu Asn Arg Phe Thr Leu Glu Ile Ser
290 295 300
Tyr Ala Ile Lys Ala Pro Asn Leu Leu Thr Gln Leu Ser Gly Thr Lys
305 310 315 320
Lys Ile Gln Gln Leu Leu Thr Asn Lys Asn Ile Leu Thr Lys Phe Leu
325 330 335
Pro Asp Ala Asn Ser Ala Asp Ala Leu Leu Gln Thr Phe Val Arg Ile
340 345 350
Tyr Pro Leu Asp Ser Ser Glu Leu Gly Glu Met Gly Lys Lys Leu Ala
355 360 365
Phe Thr Asn Pro Glu Asn Phe Val Leu Lys Pro Gln Arg Glu Gly Gly
370 375 380
Gly Asn Asn Ile Tyr Lys Glu Asp Ile Pro Thr Phe Leu Lys Ser Ile
385 390 395 400
Asp Glu Lys Asp Trp Pro Ala Tyr Ile Leu Met Glu Leu Ile Asn Pro
405 410 415
Arg Pro Thr Glu Glu Asn Ile Val Ile Arg Gly Glu Gln Thr Phe Gln
420 425 430
Val Pro Ile Leu Ser Glu Leu Gly Val Phe Gly Thr Ile Leu Phe Asp
435 440 445
Asn Lys Thr Val His Ser Asn Asp Tyr Ala Gly Trp Leu Leu Arg Ser
450 455 460
Lys Phe Ser Ala Ser Asn Glu Gly Gly Val Ala Ala Gly Phe Gly Cys
465 470 475 480
Val Asp Ser Val Val Leu Tyr
485
<210> 5
<211> 480
<212> PRT
<213> Wallemia mellicola
<400> 5
Met Glu Phe Pro Pro Lys Ile Glu Glu Ser Phe Glu Lys Glu Leu Ile
1 5 10 15
Glu Asn Leu Arg Ala Phe Cys Leu Gly Asn Gly Leu Val Leu Leu Pro
20 25 30
Pro Ile Lys Ala Gly Glu Thr Thr Val Ser Ser Ser Glu Gly Val Gln
35 40 45
Ala Pro Val Ser Leu Phe Pro Thr Pro Phe Pro Arg Lys Leu Tyr Asn
50 55 60
Gln Ala Leu Ser Ile Gln Pro Val Phe Asn Glu Leu Tyr Ala Asn Val
65 70 75 80
Ala Arg Asp Val Glu Phe Leu Asp Lys Val Met Ser Asp Val Ser Arg
85 90 95
Phe Asp Thr Phe Gln Ala Ser Leu Trp Asp Gln Trp Lys Ser Ile Arg
100 105 110
Asp Ser Ile Val Gln Pro Asn Gln Leu Leu Val Ala Arg Ser Asp Tyr
115 120 125
Leu Cys Asn Thr Ser Val Ser Ser Lys Gly Asp Val Lys Gly Leu Ser
130 135 140
Gln Val Glu Phe Asn Thr Ile Ala Ala Ser Phe Gly Ala Leu Ser Asn
145 150 155 160
Gln Val His Gln Leu His Asp Tyr Leu Ser Lys Asp Val Arg Tyr Ser
165 170 175
Gly Leu His Pro Leu Leu Lys Asn Asp Ile Ala Glu Asn Asn Thr Leu
180 185 190
Asn Gly Leu Ile Asp Gly Phe Glu Ala Ala His Lys Ile Tyr Lys Ser
195 200 205
Gly Tyr Leu Arg Ser Lys His Ser Pro Tyr Ile Leu Phe Val Val Gln
210 215 220
Asp Asn Glu Arg Asn Val Phe Asp Gln Arg Leu Leu Glu Phe Glu Leu
225 230 235 240
Ser Arg Arg Gly Ile Arg Thr Ile Arg Arg Thr Leu Thr Gln Leu Thr
245 250 255
Gln Gln Ala Ser Leu Ser Asp Glu Asn Ala Leu Lys Val Asn Gly Ile
260 265 270
Glu Ile Ser Val Val Tyr Tyr Arg Ser Gly Tyr Ser Pro Asp Asp Tyr
275 280 285
Thr Ser Lys Lys Glu Trp Asp Val Arg Lys Leu Ile Glu Leu Ser Leu
290 295 300
Ala Ile Lys Cys Pro Thr Leu Ala Leu Gln Leu Ala Gly Cys Lys Lys
305 310 315 320
Val Gln Gln Val Leu Val Asp Glu Asn Thr Leu Ser Lys Tyr Leu Asn
325 330 335
Pro Ser Gln Val Arg Lys Ile Lys Thr Tyr Phe Val Glu Ile Leu Pro
340 345 350
Phe Asp Glu Ser Asp Arg Gly Lys Leu Ala His Ser Ile Val Asn Asn
355 360 365
Val Glu Lys Cys Arg Asp Phe Val Leu Lys Pro Gln Arg Glu Gly Gly
370 375 380
Gly Asn Asn Ile Tyr Lys Glu Gln Ile Lys Asp Phe Val Lys Gly Val
385 390 395 400
Lys Lys Glu Glu Leu Ser Gln Tyr Ile Leu Met Glu Leu Ile Lys Pro
405 410 415
Pro Ala Asn Leu Asn Asn Tyr Leu Val Arg Tyr Thr Asp Asp Arg Val
420 425 430
Ile Pro Ser Asp Val Val Ser Glu Leu Gly Ile Tyr Gly Thr Val Ile
435 440 445
Phe Asn Asn His Thr Ile Thr Arg Asn Glu Thr Ala Gly His Leu Leu
450 455 460
Arg Thr Lys Ser Lys Glu Ser Asp Glu Gly Gly Val Ala Val Gly Ile
465 470 475 480
<210> 6
<211> 165
<212> PRT
<213> Kluyveromyces marxianus
<400> 6
Met Ser Gly Asp Phe Tyr Ser Tyr Thr Cys Glu Glu Arg Asp Gly Ser
1 5 10 15
Glu Phe Pro Met Ser Lys Leu Arg Gly Lys Val Val Leu Ile Val Asn
20 25 30
Val Ala Ser Lys Cys Gly Phe Arg Met Gln Phe Gly Glu Leu Gln Asp
35 40 45
Leu Tyr Arg Glu Phe Gln Asn Gln Gly Leu Glu Ile Leu Ala Phe Pro
50 55 60
Cys Asn Gln Phe Ile Asn Gln Glu Pro Gly Thr Asp Glu Glu Ile Gly
65 70 75 80
Lys Phe Cys Gln Glu Tyr Tyr Gly Val Thr Tyr Lys Val Met Lys Lys
85 90 95
Cys Lys Val Asn Gly Gly Asp Ala Ile Pro Leu Tyr Asn Tyr Leu Lys
100 105 110
Asp Gln Lys Pro Gly Thr Leu Ser Phe Lys Phe Ile Arg Trp Asn Phe
115 120 125
Glu Lys Phe Leu Val Asp Arg Ser Gly Lys Val Ile Lys Arg Tyr Ser
130 135 140
Thr Leu Val Lys Pro Lys Asp Met Arg Asp Asp Ile Ile Lys Leu Leu
145 150 155 160
Asn Gly Glu Glu Val
165
<210> 7
<211> 160
<212> PRT
<213> Wallemia mellicola
<400> 7
Met Ser Ala Ser Glu Phe Tyr Asn Leu Lys Ala Glu Lys Pro Asn Gly
1 5 10 15
Gln Glu Tyr Ser Phe Asp Thr Leu Lys Asp Lys Val Val Leu Val Val
20 25 30
Asn Thr Ala Ser Lys Cys Gly Phe Thr Pro Gln Tyr Thr Gly Leu Glu
35 40 45
Glu Leu His Gln Lys Tyr Lys Asp Arg Gly Leu Val Val Leu Gly Phe
50 55 60
Pro Cys Asn Gln Phe Gly Gly Gln Glu Pro Gly Thr Asp Asp Asp Ile
65 70 75 80
Asp Asn Phe Cys Lys Ile Asn His Gly Val Ser Phe Gln Leu Phe Lys
85 90 95
Lys Ser Asp Val Asn Gly Asp Lys Thr Asn Glu Val Phe Lys Tyr Leu
100 105 110
Lys Asp Lys Lys Ser Gln Leu Gly Leu Thr Arg Ile Lys Trp Asn Phe
115 120 125
Glu Lys Phe Leu Val Asp Lys Gln Gly Asn Val Val Asn Arg Tyr Ser
130 135 140
Ser Met Ala Lys Pro Ser Asp Ile Gly Asn Asp Val Glu Lys Leu Leu
145 150 155 160
<210> 8
<211> 107
<212> PRT
<213> Kluyveromyces marxianus
<400> 8
Met Ala Pro Val Ser Thr Val Ser Arg Val Gln Gly Leu Ile Asn Ser
1 5 10 15
Ser Lys Ile Phe Val Ala Ala Lys Thr Tyr Cys Pro Tyr Cys Gln Ala
20 25 30
Thr Leu Lys Thr Leu Phe Asp Asp Lys Lys Val Asn Lys Asp Ile Ala
35 40 45
Thr Val Leu Gln Leu Asn Glu Leu Asp Asp Gly Ala Glu Ile Gln Asp
50 55 60
Ala Leu Leu Glu Ile Ser Gly Gln Arg Thr Val Pro Asn Ile Tyr Ile
65 70 75 80
Asn Gly Lys His Ile Gly Gly Asn Ser Asp Leu Gln Glu Leu Asn Ser
85 90 95
Ser Gly Glu Leu Asp Lys Leu Leu Ala Ala Leu
100 105
<210> 9
<211> 151
<212> PRT
<213> Wallemia mellicola
<400> 9
Met Met Phe Asn Leu Leu Arg Asn Ser Ala Ser Thr Arg Ala Ala Lys
1 5 10 15
Leu Leu Gln Pro Val Tyr Thr Pro Ser Thr Leu Thr Arg Leu Asn Asn
20 25 30
Phe Arg Gln Leu Ser Thr Glu Ser Arg Lys Leu Ile Asp Gln Ala Val
35 40 45
Asn Ala His Pro Ile Val Leu Phe Met Lys Gly Lys Pro Ser Ala Pro
50 55 60
Leu Cys Gly Phe Ser Arg Ala Val Val Gln Ile Leu Asp Val Gln Gly
65 70 75 80
Ala Asp Pro Glu Lys Ile Arg Ala Tyr Asp Cys Leu Glu Asp Asp Glu
85 90 95
Leu Arg Asn Gly Ile Lys Glu Tyr Ser Asp Trp Pro Thr Ile Pro Gln
100 105 110
Val Tyr Val Asn Gly Glu Phe Val Gly Gly Cys Asp Ile Leu Leu Ser
115 120 125
Met His Gln Ser Gly Glu Leu Ser Gln Leu Leu Lys Asp Lys Asn Leu
130 135 140
Leu Leu Glu Phe Ala Asn Glu
145 150
<210> 10
<211> 469
<212> PRT
<213> Kluyveromyces marxianus
<400> 10
Met Ser Ala Ala Thr Asn His Tyr Asp Tyr Leu Val Ile Gly Gly Gly
1 5 10 15
Ser Gly Gly Val Ala Ser Ser Arg Arg Ala Ala Lys Tyr Gly Ala Lys
20 25 30
Thr Leu Leu Ile Glu Gly Lys Ala Met Gly Gly Thr Cys Val Asn Lys
35 40 45
Gly Cys Val Pro Lys Lys Val Met Trp Tyr Ala Ser Asp Leu Ala Thr
50 55 60
Arg Ile Thr His Ala His Ser Tyr Asn Leu Phe Glu Asp Leu Pro Leu
65 70 75 80
Thr Lys Asp Asn Leu Thr Phe Asn Trp Pro Glu Phe Lys Lys Lys Arg
85 90 95
Asp Ala Tyr Ile His Arg Leu Asn Gly Ile Tyr Glu Arg Asn Leu Thr
100 105 110
Lys Glu Gly Val Asp Phe Ile Tyr Gly Trp Ala Ser Phe Thr Glu Asp
115 120 125
Gly Lys Val Gln Val Arg Lys Ala Asp Asn Ser Val Glu Thr Tyr Thr
130 135 140
Ala Glu His Ile Leu Ile Ala Thr Gly Gly Lys Pro Val Phe Pro Ser
145 150 155 160
Lys Val Pro Gly Tyr Glu Tyr Gly Ile Ser Ser Asp Gly Phe Phe Glu
165 170 175
Leu Glu Lys Gln Pro Glu Lys Val Val Val Val Gly Ala Gly Tyr Ile
180 185 190
Gly Val Glu Leu Ala Gly Val Phe Asn Gly Leu Gly Ser Asp Ser His
195 200 205
Leu Val Ile Arg Gly Glu Thr Val Leu Arg Lys Phe Asp Gln Cys Ile
210 215 220
Gln Asp Thr Val Thr Asp Thr Tyr Ile Lys Glu Gly Val Asn Ile His
225 230 235 240
Lys Ser Ser Asn Val Thr Lys Val Glu Lys Asp Glu Lys Thr Gly Lys
245 250 255
Leu Thr Ile Phe Leu Asp Thr Gly Lys Asn Ile Thr Asp Val Asp Ser
260 265 270
Leu Ile Trp Thr Ile Gly Arg Arg Ser Met Leu Gly Leu Gly Leu Glu
275 280 285
Asn Ile Gly Val Lys Leu Asn Glu Arg Glu Gln Ile Ile Val Asp Glu
290 295 300
Tyr Gln Asn Thr Asn Val Lys Asn Val Tyr Ser Leu Gly Asp Val Val
305 310 315 320
Gly Lys Val Glu Leu Thr Pro Val Ala Ile Ala Ala Gly Arg Lys Leu
325 330 335
Ala Asn Arg Leu Phe Gly Pro Asp Gln Phe Lys Asn Gln Lys Gln Asp
340 345 350
Tyr Glu Asn Val Pro Ser Val Ile Phe Ser His Pro Glu Ala Gly Ser
355 360 365
Ile Gly Leu Ser Glu Lys Glu Ala Ile Glu Lys Phe Gly Lys Glu Asn
370 375 380
Val Lys Val Tyr Asn Ser Lys Phe Asn Ala Met Tyr Tyr Ala Met Met
385 390 395 400
Asn Glu Glu Asn Lys Thr Pro Thr Arg Tyr Lys Leu Val Cys Ala Gly
405 410 415
Glu Glu Glu Lys Val Val Gly Leu His Ile Val Gly Asp Ser Ser Ala
420 425 430
Glu Ile Leu Gln Gly Phe Gly Val Ala Ile Lys Met Gly Ala Thr Lys
435 440 445
Ala Asp Phe Asp Ser Cys Val Ala Ile His Pro Thr Ser Ala Glu Glu
450 455 460
Ile Val Thr Leu Thr
465
<210> 11
<211> 411
<212> PRT
<213> Kluyveromyces marxianus
<400> 11
Met Ile His Phe Trp Arg Lys Glu Cys Asn Ala Phe Ser Gln His Ile
1 5 10 15
Gly Leu Leu Gln Arg Arg Phe Tyr Thr Glu Val Lys Leu Arg Asp Ser
20 25 30
Ser Arg Phe Val Thr Leu Lys Asp Val Gly Asn Leu Arg Ala Thr Ser
35 40 45
Leu Pro Asp Phe Ile Ser Ser Pro Ser Ser Lys Leu Gln Ser Leu Ile
50 55 60
Trp His Arg Pro Met Gln Asn Val Phe Leu Met Lys Lys Pro Trp Thr
65 70 75 80
Asn Thr Thr Arg Lys Ala Met Val Glu Phe Ile Thr His Leu His Asp
85 90 95
Ser Tyr Pro Glu Ile Asn Val Ile Val Gln Pro Asp Val Ala Glu Glu
100 105 110
Ile Ser Gln Asp Phe Arg Ser Met Pro Lys Ser Asn Pro Asn Gln Pro
115 120 125
His Val Leu Tyr Thr Gly Pro Asn Ser Glu Ile Ile Lys Lys Thr Asp
130 135 140
Leu Leu Val Thr Leu Gly Gly Asp Gly Thr Ile Leu Arg Ser Val Ser
145 150 155 160
Leu Phe Ser His Thr Gln Val Pro Pro Val Leu Ala Phe Ser Leu Gly
165 170 175
Thr Leu Gly Phe Leu Leu Pro Phe Asp Phe Lys Asp His Lys Glu Val
180 185 190
Phe Glu Arg Val Leu Thr Ser Arg Ala Lys Cys Leu His Arg Thr Arg
195 200 205
Leu Glu Cys His Leu Val Arg Asn Gly Gln Thr Lys Gln Thr Lys Ser
210 215 220
Leu His Ala Met Asn Asp Ile Phe Leu His Arg Gly Asp Ser Ser His
225 230 235 240
Leu Thr Asn Leu Asp Ile Tyr Ile Asp Gly Glu Phe Leu Thr Arg Thr
245 250 255
Thr Ala Asp Gly Val Thr Leu Ala Thr Pro Thr Gly Ser Thr Ala Tyr
260 265 270
Ser Leu Ser Ala Gly Gly Ser Ile Val Ser Pro Leu Val Pro Ser Ile
275 280 285
Leu Leu Thr Pro Ile Cys Pro Arg Ser Leu Ser Phe Arg Pro Leu Ile
290 295 300
Leu Pro Glu Thr Ser His Ile Lys Ile Lys Ile Gly Ser Lys Asn Asn
305 310 315 320
Gly Gly Pro Asp Ser Ser Val Val Lys Leu Ser Ile Asp Gly Ile Pro
325 330 335
Gln Asp Asp Val Tyr Val Asn Asp Glu Ile His Ile Val Asn Glu Ile
340 345 350
Gly Thr Ile Tyr Val Asn Gly Thr Lys Leu Pro Leu Pro Gln Glu Ala
355 360 365
Leu Lys Ser Ala Lys Pro Ser Val Lys Asn Ala Gly Ile Tyr Cys Val
370 375 380
Ala Lys Thr Glu Asn Asp Trp Thr Lys Gly Ile Asn Glu Leu Leu Gly
385 390 395 400
Phe Asn Ser Ser Phe Arg Phe Ala Ser Lys Pro
405 410
<210> 12
<211> 405
<212> PRT
<213> Wallemia mellicola
<400> 12
Met Leu Arg Ser Leu Val Arg Tyr Thr Lys Ser Ala Leu Asp Lys Leu
1 5 10 15
Pro Asn Lys Val Asp Phe Glu Leu Lys Pro Leu Gly Arg Leu Asn Lys
20 25 30
Gln Val Thr Ser Lys Arg Val Pro His Val Thr Gln Ser Val Gly Ser
35 40 45
Met Phe Gly Gly Asn His Ser Leu Lys Trp Thr Ser Gln Pro Arg Asn
50 55 60
Val Leu Ile Val Lys Lys Ser Asp Ser Glu Cys Ser Thr Arg Ala Met
65 70 75 80
Glu Glu Val Ile Ala His Leu Arg Thr Asn Tyr Cys Asp Thr Asn Ile
85 90 95
Ile Val Glu Asn Gly Val Lys Glu Glu Leu Lys Ala Ser Arg Glu Leu
100 105 110
Tyr Thr Thr Thr Glu Thr Asp Glu Phe Thr Leu Ser Ser Lys Val Asp
115 120 125
Phe Ala Ile Thr Leu Gly Gly Asp Gly Thr Ala Leu His Thr Ala Ser
130 135 140
Leu Phe Pro Thr Gly Pro Val Pro Pro Val Leu Ser Phe Ser Thr Gly
145 150 155 160
Thr Leu Gly Phe Leu Leu Pro Phe His Ile Asn Ser Tyr Lys Ser Ala
165 170 175
Ile Asp Asp Val Leu Asn Ser Asn Val Ser Val Ile Lys Arg Met Arg
180 185 190
Leu Met Cys Thr Leu His Asp Ala Ser Gly Gly Leu Ile Asp Asp Leu
195 200 205
Asp Val Thr His Val Leu Asn Glu Val Ala Leu His Arg Gly Arg Tyr
210 215 220
Pro His Leu Val Gln Ile Glu Ile Tyr Val Asp Gly Met Pro Leu Thr
225 230 235 240
Glu Thr Val Ala Asp Gly Leu Ile Val Ser Thr Pro Thr Gly Ser Ser
245 250 255
Ala Tyr Ser Leu Ser Ala Gly Gly Pro Leu Val His Pro Cys Val Gln
260 265 270
Ser Ile Val Leu Thr Pro Ile Cys Pro Arg Ser Leu Ser Phe Arg Pro
275 280 285
Val Ile Leu Pro Ser Asp Ser Thr Val Gln Leu Arg Met Ser Thr Lys
290 295 300
Ala Arg Ser Lys Pro Asp Val Ser Leu Asp Gly Arg Glu Val Met Gln
305 310 315 320
Leu Asp Ser Asp Asn Tyr Ile Gln Ile Ser Met Ser Pro Phe Pro Leu
325 330 335
Pro Ser Ile Asn Arg Ala Ala Ile Tyr Asp Pro Glu Ser Arg Gln Gly
340 345 350
Thr Pro Arg Leu Pro Ser Glu Lys Gln Leu Ala Gln Ser Ala Leu Asp
355 360 365
Arg Leu Gly Arg Ala Gln Asp Asp Trp Val Arg Asp Ile Asn Asp Leu
370 375 380
Leu Asn Phe Asn Ser Arg Phe Glu Ser Lys Gly Gln Glu Ile Tyr His
385 390 395 400
Gly Gly Gln Asp Asp
405
<210> 13
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atggttaaag ctattgcagt tttgaagggt gactctaatg tttcaggtat cgttagattc 60
gaacaagaat ctgaagatca atcaactaaa atttcttggg aaatcactgg taacgatgct 120
aacgcattga gaggtttcca tatccatgaa tttggtgaca actcaaatgg ttgtacttct 180
gctggtccac atttcaaccc atacaagaaa actcatggtg ctccatcaga tgaaacaaga 240
catgttggtg acttgggtaa tatttcaact gatgctcaag gtgttgcaaa gggttctgtt 300
acagataagc atgttaaatt gttgggtcca ttgtctgtta ttggtagaac tgttgttgtt 360
catggtggtc aagatgattt gggtaaaggt ggtaacgaag aatcattaaa gactggtaat 420
gctggtggta gagttgcatg tggtgttatt ggtatttcta attaa 465
<210> 14
<211> 615
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
atgccatatc cttttaaatt gccagatttg ggttatccat acgaagcatt ggaaccacat 60
atcgatgcaa agactatgga aatccatcat caaaagcatc atggtgcata cgttacaaat 120
ttgaacgctg cattggaaaa gtacccatac ttacatggtg ttgaagttga agttttgttg 180
agacatttgg ctgcattacc acaagatatt caaactgctg ttagaaacaa tggtggtggt 240
catttgaacc attctttatt ttggagattg ttaacaccag gtggtgctaa agaaccagtt 300
ggtgaattga agaaagcaat cgatgaacaa tttggtggtt tccaagcatt gaaggaaaaa 360
ttgactcaag ctgcaatggg tagatttggt tctggttggg catggttggt taaagatcca 420
ttcggtaaat tgcatgtttt atcaactcca aaccaagata acccagttat ggaaggtttt 480
acaccaattg ttggtattga tgtttgggaa catgcttact acttgaagta ccaaaacaga 540
agagctgatt acttgcaagc aatctggaac gttttgaact gggatgttgc tgaagaattt 600
ttcaagaaag cataa 615
<210> 15
<211> 2007
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atgggtttgt tatcattggg tactccattg ccatggttgg aatctagaca atacaacgaa 60
catgttagag ataacggtat cgaacaattg atccaatctt ttagaaaagc tggtggtaga 120
gataatgatg aattatactg gggtgacgaa gttgaataca tgatctgtga atttgatgaa 180
gcaggtgaaa atgttgtttt gtctgttgaa catgatgaaa ttttggaaca attgaacaga 240
gaataccatg aagaatgtga aagattaaac gttcatttcc atccagaata tggtagattc 300
atgttggaag ctacaccagc aagaccatac catttgtatg aaggtgttga agttgaaaag 360
aatatgagaa ctagaagagt tgttgctgaa gaaaaattgc aaaaattgaa cagaaagtct 420
ggtaatgaag ttgttccatt gtctttaaca gtttttccaa gaatgggtag agatggtttt 480
actaatttga aagatccatg ggatcataaa aattctgctt ctagatcatt gtttttgcca 540
gatgaagtta ttaatagaca tgctagattc ccaactttga ctgcaaacat cagaacaaga 600
agaggtgaaa aggtttgtat caacgttcca atgtaccaag attcaagaac tgctccaaga 660
gatgaatcta tctatgaaag agattggttt gttccagaag atttggaatc agctaaagca 720
tctaaaccag gtcatatcta tatggattca atgggttttg gtatgggttg ttcttgtttg 780
caattgacat tccaagctcc aaacatcgat aaggcaagat acttgtacga tacattggct 840
aactttgcac cagttttctt ggctgcaact gctgcatctc cagtttttaa aggtttcttg 900
gctgatcaag atgttagatg gaatgttatt tcaggtgcag ttgatgatag aactccatac 960
gaaagatcag aagaaccatt gttgccaaag tacaacaacg gttacggttc aattgctcca 1020
gaagaagttc catctgttag aagaattaat aagtcaagat attctgttgt tgatttgttt 1080
ttaggtggta acggtttctt tgatgcaaag tttaatgata cagaagttcc aattaatgaa 1140
aaggttttta aaagattgac tacaaacgat attcatccaa tggataaaga tttggctaga 1200
catttcgcac atttgtttat tagagatcca ttagttattt ttgaagaaag aatcgaacaa 1260
gataacatga ctgaaacaga tcatttcgaa aacatccaat caacaaactg gcaatctttg 1320
agattcaaag ttccagctca agatgcaact ccaaataata agaaagctcc aggttggaga 1380
gttgagttta gaccaatgga agttcaattg acagatttcg aaaacgctgc atactcaaac 1440
ttcatatatt tggttattga atcaatttta actttttctg ataagattaa tgcatacatg 1500
tacatgtctg aaatttggga aaacatggaa acagctcata gaagagatgc aactttgaag 1560
gaaaagttct actggaagtc agatttcgct gatactcaag gtaaaacaga attgttgact 1620
attaatgaaa tttttcataa tgcacataat ggtattttct ctgtttttat taacccaatc 1680
ttggttcata agggtttagt ttcaaagtct tggactgaat tgttgcataa ttcaggtgac 1740
aatgctgatt tgatcagatt atactactat ttgaaattaa tttcagatag agcttctggt 1800
gttttgccat cagaagcatc ttttattaga tcatacgttt tgaaccatcc agaatacgat 1860
catacatcta acgttactaa gaaaattaat tacgatttgt tacatttgtc atacagaatt 1920
tctcattacg ataactcaaa gggtgaatta acagctttgt tgggtcaaga aatcgcaact 1980
tatttgatta ataattctat tttataa 2007
<210> 16
<211> 1464
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atgtcttcat tgaagggtta tccaaagttc ccagatgtta ctaaggaaaa attggaaaga 60
gaattgttgc cagaagtttt ccaatgggct atttctaatg gtttgacaat ctatccacca 120
gatttcaaaa tttcagaagc tcaagttgca ccaattactt tgtttccaac accattacca 180
agaaaagcat ttgaagatgc aatcgatgtt caaaaatctt ttaattcatt gtatgctaaa 240
atttctcaaa accataacgg ttggttggaa gaagaatctg aaaaattggc aaaatcagat 300
ccagagttta ctggtaaatt atgggaaata tataagagag ctaaggaaca tggtatttct 360
caagatttgg cattaggtgt ttttagatca gattacttga ttaatgataa cgataaccaa 420
attaaacaag ttgagtttaa tactgtttct gtttcatttg ctggtttatc tacaaaggtt 480
ggtcaattgc atcaatattt gaacgattct ggtagatact cagcagatgg tgaatctttc 540
tttaacgaag aaatcccagt ttctccatca gctgaattgt tagcagaagg tttgactaag 600
gctatccaac atttcaaacc agctgcatct gataagaaac caatcgttgc ttttattgtt 660
caagaaggtg aaagaaacgt tttcgatcaa tcagttttgg cttttaattt gttgtctaag 720
catggtattc aatcatgtag attaacaatg caagaaatcc atttgaagac tacattggat 780
aaatctacta aaagattgta cttaaattct actggtaaag aaatcggttt agtttacttc 840
agatcaggtt acgctccaaa tgatttcgtt actcaacaag attgggaaaa cagattcact 900
ttggaaattt cttacgctat taaagcacca aatttgttga ctcaattgtc aggtactaag 960
aaaattcaac aattgttgac taataagaac atcttgacaa agttcttacc agatgctaat 1020
tctgctgatg cattgttaca aactttcgtt agaatctatc cattggattc ttcagaatta 1080
ggtgaaatgg gtaaaaagtt ggcttttact aacccagaaa acttcgtttt gaaaccacaa 1140
agagaaggtg gtggtaataa tatctataag gaagatattc caacattttt aaagtctatt 1200
gatgaaaaag attggccagc ttacatcttg atggaattaa ttaatccaag accaactgaa 1260
gaaaacatcg ttatcagagg tgaacaaaca ttccaagttc caatcttgtc agaattaggt 1320
gttttcggta ctatcttgtt cgataataag acagttcatt ctaatgatta tgctggttgg 1380
ttgttgagat caaaattttc tgcatcaaac gaaggtggtg ttgctgctgg tttcggttgt 1440
gttgattctg ttgttttgta ctaa 1464
<210> 17
<211> 1443
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
atggaatttc caccaaaaat tgaagaatct tttgaaaagg aattaatcga aaatttgaga 60
gctttctgtt tgggtaacgg tttggttttg ttaccaccaa ttaaagctgg tgaaactaca 120
gtttcttcat ctgaaggtgt tcaagcacca gtttcattat tcccaactcc attcccaaga 180
aaattgtaca accaagcatt gtctatccaa ccagttttta atgaattata cgctaatgtt 240
gcaagagatg ttgaattttt ggataaagtt atgtcagatg tttctagatt cgatacattc 300
caagcatctt tgtgggatca atggaagtca atcagagatt ctatcgttca accaaaccaa 360
ttgttggttg caagatcaga ttatttgtgt aacacttctg tttcatctaa aggtgacgtt 420
aagggtttgt ctcaagttga gtttaataca attgctgcat catttggtgc tttatctaac 480
caagttcatc aattgcatga ttatttgtca aaagatgtta gatactctgg tttgcatcca 540
ttgttgaaaa atgatattgc agaaaacaac actttgaatg gtttgattga tggtttcgaa 600
gctgcacata aaatctataa gtcaggttac ttaagatcaa agcattctcc atacatcttg 660
ttcgttgttc aagataacga aagaaacgtt ttcgatcaaa gattgttaga atttgaatta 720
tctagaagag gtattagaac tatcagaaga actttgacac aattgacaca acaagcatct 780
ttgtctgatg aaaacgcatt gaaggttaac ggtatcgaaa tttctgttgt ttactacaga 840
tcaggttatt ctccagatga ttacacttct aagaaagaat gggatgttag aaaattgatc 900
gaattgtctt tagctattaa atgtccaaca ttggctttac aattggcagg ttgtaagaaa 960
gttcaacaag ttttggttga tgaaaacact ttgtcaaagt atttgaaccc atctcaagtt 1020
agaaagatta aaacatactt cgttgaaatt ttaccatttg atgaatcaga tcgtggtaaa 1080
ttggctcatt ctatcgttaa caacgttgaa aagtgtagag atttcgtttt gaagccacaa 1140
agagaaggtg gtggtaacaa catctataag gaacaaatta aagattttgt taaaggtgtt 1200
aagaaagaag aattgtctca atacatcttg atggaattga ttaaaccacc agctaatttg 1260
aacaactatt tggttagata cactgatgat agagttattc catcagatgt tgtttctgaa 1320
ttgggtatct atggtacagt tatttttaat aaccatacta tcacaagaaa tgaaactgct 1380
ggtcatttgt tgagaacaaa gtcaaaggaa tctgatgaag gtggtgttgc agttggtatt 1440
taa 1443
<210> 18
<211> 498
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
atgtctggtg acttctactc atacacttgt gaagaaagag atggttctga atttccaatg 60
tcaaaattgc gtggtaaagt tgttttgatc gttaacgttg cttctaagtg tggttttaga 120
atgcaatttg gtgaattgca agatttgtac agagaatttc aaaaccaagg tttggaaatt 180
ttagcattcc catgtaacca attcattaat caagaaccag gtactgatga agaaatcggt 240
aaattctgtc aagaatacta cggtgttaca tacaaagtta tgaagaaatg caaggttaat 300
ggtggtgacg ctatcccatt gtacaactac ttaaaggatc aaaagccagg tactttgtct 360
tttaagttta ttagatggaa cttcgaaaag ttcttggttg atagatcagg taaagttatt 420
aaaagatatt caacattggt taaaccaaaa gatatgagag atgatattat taaattgtta 480
aatggtgaag aagtttaa 498
<210> 19
<211> 483
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
atgtctgctt cagaatttta caatttgaag gcagaaaaac caaacggtca agaatactct 60
ttcgatactt tgaaggataa ggttgtttta gttgttaaca cagcttcaaa gtgtggtttt 120
actccacaat acacaggttt ggaagaatta catcaaaagt acaaggatag aggtttggtt 180
gttttgggtt tcccatgtaa ccaattcggt ggtcaagaac caggtactga tgatgatatt 240
gataacttct gtaagattaa tcatggtgtt tcttttcaat tgtttaagaa atctgatgtt 300
aacggtgaca agactaacga agtttttaaa tatttgaagg ataagaaatc tcaattgggt 360
ttaacaagaa ttaaatggaa cttcgaaaag ttcttagttg ataaacaggg taacgttgtt 420
aacagatact cttcaatggc aaaaccatca gatattggta atgatgttga aaaattgtta 480
taa 483
<210> 20
<211> 324
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
atggctccag tttctactgt ttcaagagtt caaggtttga ttaattcttc aaagattttt 60
gttgctgcaa agacatattg tccatactgt caagctactt tgaagacatt gttcgatgat 120
aagaaagtta ataaggatat tgcaactgtt ttgcaattga acgaattaga tgatggtgct 180
gaaatccaag atgcattgtt ggaaatttct ggtcaaagaa cagttccaaa catctatatc 240
aacggtaaac atattggtgg taattcagat ttgcaagaat taaattcttc tggtgaattg 300
gataaattgt tagctgcatt ataa 324
<210> 21
<211> 456
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
atgatgttca atttgttgag aaattctgct tcaactagag ctgcaaaatt gttacaacca 60
gtttacacac catcaacttt gacaagattg aacaacttca gacaattatc tactgaatca 120
agaaaattga tcgatcaagc tgttaacgca catccaatcg ttttgtttat gaagggtaaa 180
ccatcagctc cattgtgtgg tttttctaga gcagttgttc aaattttaga tgttcaaggt 240
gctgatccag aaaagattag agcatacgat tgtttggaag atgatgaatt gagaaacggt 300
attaaagaat actctgattg gccaacaatt ccacaagttt acgttaatgg tgaatttgtt 360
ggtggttgtg atattttgtt gtctatgcat caatctggtg aattgtctca attgttaaaa 420
gataaaaatt tgttattgga atttgcaaat gaataa 456
<210> 22
<211> 1407
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
atgtctgctg caacaaacca ttacgattac ttagttattg gtggtggttc aggtggtgtt 60
gcttcttcaa gaagagctgc aaagtacggt gctaagacat tgttgatcga gggtaaagca 120
atgggtggta cttgtgttaa taagggttgt gttccaaaga aagttatgtg gtatgcttct 180
gatttggcaa caagaatcac tcatgctcat tcatacaatt tgttcgaaga tttgccattg 240
acaaaggata atttgacttt taattggcca gagtttaaaa agaaaagaga tgcttacatc 300
catagattaa atggtatcta tgaaagaaat ttgacaaagg aaggtgttga tttcatctat 360
ggttgggctt cttttactga agatggtaaa gttcaagtta gaaaggcaga taactcagtt 420
gaaacttaca cagctgaaca tatcttgatt gcaacaggtg gtaaaccagt ttttccatct 480
aaagttccag gttatgaata cggtatttct tcagatggtt tctttgaatt agaaaagcaa 540
ccagaaaaag ttgttgttgt tggtgctggt tatattggtg ttgaattggc aggtgttttt 600
aatggtttag gttctgattc acatttggtt attagaggtg aaactgtttt gagaaagttc 660
gatcaatgta tccaagatac tgttacagat acttacatta aagaaggtgt taacatccat 720
aaatcttcaa acgttacaaa agttgaaaag gatgaaaaga ctggtaaatt aactattttc 780
ttggatacag gtaaaaatat cactgatgtt gattctttga tctggactat cggtagaaga 840
tcaatgttgg gtttaggttt ggaaaatatt ggtgttaaat tgaatgaaag agaacaaatt 900
attgttgatg aataccaaaa cacaaacgtt aaaaatgttt actctttagg tgacgttgtt 960
ggtaaagttg aattgactcc agttgctatt gctgctggta gaaaattggc aaatagattg 1020
ttcggtccag atcaattcaa aaaccaaaag caagattacg aaaatgttcc atctgttatt 1080
ttctctcatc cagaagctgg ttctatcggt ttatcagaaa aggaagcaat tgaaaaattt 1140
ggtaaagaaa acgttaaggt ttacaactct aagtttaatg ctatgtacta cgcaatgatg 1200
aacgaagaaa ataagacacc aactagatac aaattggttt gtgctggtga agaagaaaag 1260
gttgttggtt tacatattgt tggtgactct tcagctgaaa ttttgcaagg ttttggtgtt 1320
gcaattaaaa tgggtgctac aaaagcagat tttgattctt gtgttgctat tcatccaact 1380
tcagcagaag aaattgttac attaact 1407
<210> 23
<211> 1236
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
atgatccatt tctggagaaa ggaatgtaac gctttttctc aacatatcgg tttgttacaa 60
agaagattct acacagaagt taaattgaga gattcttcaa gattcgttac attgaaggat 120
gttggtaatt tgagagcaac ttctttacca gatttcatct cttcaccatc ttcaaaattg 180
caatcattaa tctggcatag accaatgcaa aatgttttct tgatgaagaa accatggaca 240
aatactacaa gaaaggctat ggttgagttt attactcatt tgcatgattc ttacccagaa 300
attaatgtta tcgttcaacc agatgttgca gaagaaattt cacaagattt cagatcaatg 360
ccaaagtcaa acccaaacca accacatgtt ttgtacacag gtccaaattc tgaaattatt 420
aagaaaactg atttgttagt tacattaggt ggtgacggta ctatcttgag atcagtttct 480
ttgttttctc atactcaagt tccaccagtt ttggcttttt cattgggtac tttaggtttc 540
ttgttaccat tcgatttcaa ggatcataag gaagtttttg aaagagtttt gacatctaga 600
gcaaagtgtt tgcatagaac tagattggaa tgtcatttgg ttagaaacgg tcaaactaag 660
caaacaaaat cattgcatgc aatgaacgat attttcttgc atcgtggtga ctcttcacat 720
ttgactaatt tggatatata tattgatggt gaatttttga ctagaactac agctgatggt 780
gttacattag caactccaac aggttctact gcttactctt tgtcagcagg tggttctatt 840
gtttcaccat tagttccatc aatcttgttg acaccaattt gtccaagatc attgtctttt 900
agaccattga tcttaccaga aacttctcat atcaagatta aaatcggttc taaaaataat 960
ggtggtccag attcttcagt tgttaaattg tctatcgatg gtattccaca agatgatgtt 1020
tacgttaacg atgaaatcca tatcgttaat gaaatcggta ctatctatgt taacggtaca 1080
aaattgccat taccacaaga agcattgaag tctgcaaagc catcagttaa aaatgctggt 1140
atctattgtg ttgcaaagac tgaaaacgat tggacaaagg gtattaatga attgttaggt 1200
tttaattctt cttttagatt tgcttctaaa ccataa 1236
<210> 24
<211> 1218
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
atgttgagat cattagttag atacacaaag tctgctttgg ataaattgcc aaataaggtt 60
gatttcgaat tgaagccatt gggtagattg aataagcaag ttacatctaa gagagttcca 120
catgttactc aatctgttgg ttcaatgttc ggtggtaacc attctttgaa atggacatca 180
caaccaagaa acgttttgat cgttaagaaa tctgattcag aatgttcaac tagagctatg 240
gaagaagtta ttgcacattt gagaacaaac tactgtgata ctaacatcat cgttgaaaat 300
ggtgttaagg aagaattaaa agcatctaga gaattgtaca ctacaactga aacagatgag 360
tttactttat cttcaaaggt tgattttgca attacattgg gtggtgacgg tactgcttta 420
catactgcat cattgtttcc aactggtcca gttccaccag ttttatcttt ttcaacaggt 480
actttgggtt tcttgttgcc attccatatc aattcttata aatcagcaat tgatgatgtt 540
ttaaattcta atgtttcagt tattaaaaga atgagattaa tgtgtacatt gcatgatgct 600
tctggtggtt taatcgatga tttggatgtt actcatgttt tgaacgaagt tgcattgcat 660
agaggtagat acccacattt ggttcaaatc gaaatatatg ttgatggtat gccattaaca 720
gaaactgttg ctgatggttt gattgtttca acaccaactg gttcttcagc ttactcttta 780
tcagcaggtg gtccattggt tcatccatgt gttcaatcta tcgttttgac accaatctgt 840
ccaagatcat tgtcttttag accagttatt ttgccatctg attcaacagt tcaattgaga 900
atgtctacta aagcaagatc aaaaccagat gtttctttag atggtagaga agttatgcaa 960
ttggattctg ataactacat ccaaatttct atgtcaccat ttccattgcc atcaattaat 1020
agagctgcaa tctatgatcc agaatctaga caaggtactc caagattacc atcagaaaaa 1080
caattggctc aatctgcatt agatagattg ggtagagcac aagatgattg ggttagagat 1140
attaacgatt tgttgaactt caactctaga tttgaatcaa aaggtcaaga aatatatcat 1200
ggtggtcaag atgattaa 1218

Claims (12)

1. A recombinant strain of saccharomyces cerevisiae with improved stress resistance, capable of expressing any one or more of the following exogenous GSH synthesis and circulation-related proteins:
(1) superoxide dismutase derived from Kluyveromyces marxianus;
(2) superoxide dismutase derived from Thermus thermophilus HB 27;
(3) gamma-glutamylcysteine synthetase derived from Kluyveromyces marxianus;
(4) glutathione synthetase derived from Kluyveromyces marxianus;
(5) glutathione synthetase derived from Wallemia mellicol;
(6) glutathione peroxidase derived from Kluyveromyces marxianus;
(7) glutathione peroxidase from Wallemia mellicol;
(8) cytoplasmic glutaredoxin derived from Kluyveromyces marxianus;
(9) cytoplasmic glutaredoxin derived from Wallemia mellicol
(10) Glutathione oxidoreductase from Kluyveromyces marxianus in cytoplasm and mitochondria;
(11) NADH kinase derived from Kluyveromyces marxianus;
(12) NADH kinase derived from Wallemia mellicol;
the stress resistance comprises H resistance2O2Heat resistance, high temperature resistance, salt resistance and acid resistance.
2. The recombinant Saccharomyces cerevisiae according to claim 1, characterized in that it is H-tolerant2O2A recombinant Saccharomyces cerevisiae expressing one or more of the exogenous GSH synthesis and circulation associated proteins of (1), (4) - (12) of claim 1.
3. The recombinant Saccharomyces cerevisiae of claim 1, which is a thermotolerant recombinant Saccharomyces cerevisiae expressing one or more of the exogenous GSH synthesis and circulation associated proteins of (1) - (8) and (10) - (12) of claim 1.
4. The recombinant Saccharomyces cerevisiae of claim 1, which is a high temperature resistant recombinant Saccharomyces cerevisiae, expressing one or more exogenous GSH synthesis and cycle associated proteins of claim 1 (10), (11).
5. The recombinant Saccharomyces cerevisiae of claim 1, which is a salt tolerant recombinant Saccharomyces cerevisiae expressing one or more exogenous GSH synthesis and circulation associated proteins of (1) - (12) of claim 1.
6. The recombinant Saccharomyces cerevisiae of claim 1, which is acid-tolerant recombinant Saccharomyces cerevisiae transformed to express one or more of the exogenous GSH synthesis and circulation-associated proteins of claim 1 (1) - (2), (4), (6) - (10), (12).
7. The recombinant Saccharomyces cerevisiae according to claim 1, characterized in that it is H-tolerant2O2A recombinant saccharomyces cerevisiae resistant to two or more of heat, salt and acid, expressing the exogenous GSH synthesis and circulation-associated protein of claim 1, item (4).
8. The recombinant Saccharomyces cerevisiae according to claim 1, characterized in that it is H-tolerant2O2A recombinant saccharomyces cerevisiae resistant to two or more of heat shock and salt, expressing the exogenous GSH synthesis and cycle-associated protein of claim 1 (5).
9. The recombinant Saccharomyces cerevisiae according to claim 1, characterized in that it is H-tolerant2O2Recombinant Saccharomyces cerevisiae resistant to two or more of heat, salt, heat and acid, expressing the exogenous GSH synthesis and circulation associated protein of claim 1, item (10).
10. The recombinant Saccharomyces cerevisiae according to claim 1, characterized in that it is H-tolerant2O2A recombinant saccharomyces cerevisiae resistant to two or more of heat shock, salt and high temperature, expressing the exogenous GSH synthesis and circulation related protein of claim 1 (11).
11. The construction method of the recombinant saccharomyces cerevisiae as claimed in claim 1, characterized in that, by the overlap extension PCR technique, fragment restriction sites 1-promoter-restriction sites 2-restriction sites 3-terminator-restriction sites 4 are obtained, the restriction sites 1 and 4 are utilized to perform enzyme cutting on the vector, and the fragment is inserted into the vector to obtain a vector cassette;
and then, the twelve genes of the exogenous GSH synthesis and circulation related proteins recorded in the claim 1 are assembled by Gibson, respectively cloned on a linearized vector box after enzyme digestion by an enzyme digestion site 2 and an enzyme digestion site 3, a positive clone is obtained by verification of a transformed host bacterium, a plasmid vector containing the exogenous genes is selected to transform saccharomyces cerevisiae according to requirements after the plasmid vector is extracted, and the recombinant saccharomyces cerevisiae is obtained.
12. Use of the exogenous GSH synthesis and circulation-associated protein of claim 1 in items (1) to (12) or one or more of its encoding genes in the construction of stress-resistant recombinant saccharomyces cerevisiae; the stress resistance comprises H resistance2O2Heat resistance, high temperature resistance, salt resistance and acid resistance.
CN202110639162.XA 2021-06-08 2021-06-08 Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain Pending CN113388537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110639162.XA CN113388537A (en) 2021-06-08 2021-06-08 Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110639162.XA CN113388537A (en) 2021-06-08 2021-06-08 Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain

Publications (1)

Publication Number Publication Date
CN113388537A true CN113388537A (en) 2021-09-14

Family

ID=77618615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110639162.XA Pending CN113388537A (en) 2021-06-08 2021-06-08 Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain

Country Status (1)

Country Link
CN (1) CN113388537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525307A (en) * 2021-12-29 2022-05-24 河北医科大学 Grx-roGFP Gpx3-roGFP gene overexpression 16HBE monoclonal cell line model
CN115011493A (en) * 2022-06-14 2022-09-06 深圳中科欣扬生物科技有限公司 Saccharomyces cerevisiae strain for separating and producing SOD (superoxide dismutase) from hot spring soil in Quzhuomu region in Tibet and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849576A (en) * 2014-03-19 2014-06-11 大连理工大学 Recombined saccharomyces cerevisiae strain with stress tolerance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849576A (en) * 2014-03-19 2014-06-11 大连理工大学 Recombined saccharomyces cerevisiae strain with stress tolerance

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JIANGUO LIU等: "Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27", vol. 15, no. 15, pages 221 - 226 *
S RAIMONDI等: "Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity", 《APPLIED MICROBIOLOGY AND BIOTECHNOLOGY》 *
S RAIMONDI等: "Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity", 《APPLIED MICROBIOLOGY AND BIOTECHNOLOGY》, vol. 77, no. 6, 1 January 2008 (2008-01-01) *
张小华 等: "酿酒酵母SOD1、SOD2基因缺失对胁迫耐受性的影响", 《中国酿造》, vol. 31, no. 9, pages 115 - 118 *
李文凤等: "乳酸克鲁维酵母Cu/Zn-SOD基因的克隆及在酿酒酵母中的表达研究", 《中国生物工程杂志》 *
李文凤等: "乳酸克鲁维酵母Cu/Zn-SOD基因的克隆及在酿酒酵母中的表达研究", 《中国生物工程杂志》, vol. 30, no. 08, 31 December 2010 (2010-12-31), pages 62 - 64 *
赵美琳等: "工业酵母抗逆机理研究进展", 《微生物学通报》 *
赵美琳等: "工业酵母抗逆机理研究进展", 《微生物学通报》, no. 05, 31 December 2019 (2019-12-31), pages 188 - 197 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525307A (en) * 2021-12-29 2022-05-24 河北医科大学 Grx-roGFP Gpx3-roGFP gene overexpression 16HBE monoclonal cell line model
CN115011493A (en) * 2022-06-14 2022-09-06 深圳中科欣扬生物科技有限公司 Saccharomyces cerevisiae strain for separating and producing SOD (superoxide dismutase) from hot spring soil in Quzhuomu region in Tibet and application thereof
CN115011493B (en) * 2022-06-14 2023-07-18 深圳中科欣扬生物科技有限公司 Saccharomyces cerevisiae strain for producing SOD by separating hot spring soil in Qu Zhuomu-Tibet region and application thereof

Similar Documents

Publication Publication Date Title
US8163516B2 (en) Selection of ADH in genetically modified cyanobacteria for the production of ethanol
JP6758703B2 (en) How to produce ergothioneine
Liu et al. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3, 5-bis (trifluoromethyl) acetophenone
KR20090039738A (en) Microbial synthesis of d-1,2,4-butanetriol
Yun et al. Production of 1, 3-propanediol using a novel 1, 3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells
US9957497B2 (en) Hydrocarbon synthase gene and use thereof
CN113388537A (en) Application of GSH synthesis and circulation related protein and recombinant saccharomyces cerevisiae strain
Mojzita et al. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger
Zhang et al. Biosynthesis of γ-aminobutyric acid by a recombinant Bacillus subtilis strain expressing the glutamate decarboxylase gene derived from Streptococcus salivarius ssp. thermophilus Y2
Kormanová et al. Comparison of simple expression procedures in novel expression host Vibrio natriegens and established Escherichia coli system
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
KR20150121789A (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
Kong et al. Functional identification of glutamate cysteine ligase and glutathione synthetase in the marine yeast Rhodosporidium diobovatum
CN111057686B (en) Alcohol dehydrogenase mutant and application thereof
Kato et al. Expression of alanine: glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii
KR101929400B1 (en) Novel beta-agarase producing gene and transformed bacterial strain using thereof
Ogura et al. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme
Biswas et al. Cloning and characterization of thermotolerant xylitol dehydrogenases from yeast Pichia angusta
JPWO2018084165A1 (en) Modified enzyme and use thereof
Schwentner et al. Exploring the potential of Corynebacterium glutamicum to produce the compatible solute mannosylglycerate
Elmahmoudy et al. Identification and characterization of a novel 2R, 3R-Butanediol dehydrogenase from Bacillus sp. DL01
JP6219064B2 (en) Serine palmitoyltransferase
KR101863239B1 (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
Masud et al. Molecular cloning and characterization of two inducible NAD+-adh genes encoding NAD+-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108
WO2005123921A1 (en) Novel glycerol dehydrogenase, gene therefor, and method of utilizing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210914