CN113387770A - 一种异三聚茚及其同分异构体的拆分方法 - Google Patents

一种异三聚茚及其同分异构体的拆分方法 Download PDF

Info

Publication number
CN113387770A
CN113387770A CN202110674288.0A CN202110674288A CN113387770A CN 113387770 A CN113387770 A CN 113387770A CN 202110674288 A CN202110674288 A CN 202110674288A CN 113387770 A CN113387770 A CN 113387770A
Authority
CN
China
Prior art keywords
acetonitrile
truxene
indene
isomers
isotridecyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110674288.0A
Other languages
English (en)
Inventor
陈璐
何静雯
倪文鑫
陈毅挺
周岑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN202110674288.0A priority Critical patent/CN113387770A/zh
Publication of CN113387770A publication Critical patent/CN113387770A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种异三聚茚及其同分异构体的拆分方法,利用高效液相色谱拆分异三聚茚及其同分异构体,包括以下步骤:将异三聚茚与正三聚茚等比例称取并混合,以乙腈为溶剂,超声使其充分溶解;以85‑95%乙腈+5‑15%水为流动相,等梯度洗脱。本发明可以实现异三聚茚及其同分异构体的分离和测定,并能直观地检验正三聚茚与异三聚茚的纯度。

Description

一种异三聚茚及其同分异构体的拆分方法
技术领域
本发明属于光电材料纯化分离领域,具体涉及一种异三聚茚及其同分异构体的拆分方法。
背景技术
异三聚茚(isotuxene)是正三聚茚(truxene)的同分异构体,其与正三聚茚虽然具有相似的扩展型骨架,但不同的苯环排列导致了不同的共轭效应,使异三聚茚的最大吸收波长比正三聚茚红移了将近50 nm,更接近可见光区。理论计算的结果也证明,异三聚茚的HOMO-LUMO 能级差比正三聚茚更小。因此,理论上异三聚茚的光电性质应优于正三聚茚。但受合成方法的制约,目前科学界对异三聚茚的研究远小于正三聚茚,仅有台湾大学杨吉水等人考察了部分衍生物在有机电子器件(如有机太阳能电池)领域的应用潜力。
异三聚茚、正三聚茚的结构式如下:
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
2018年,周岑等人公开了一种一步大量合成异三聚茚的方法,为异三聚茚及其衍生物的性质研究提供了充分保障。该合成方法同时生成副产物正三聚茚,并且在后处理过程中有部分正三聚茚会残留在主产物中。由于异三聚茚和正三聚茚结构极其相似,它们的极性非常相近,而混有正三聚茚的异三聚茚,由于纯度不够,会导致其性能明显下降,因此,需要一种可靠的分析方法拆分主产物异三聚茚和副产物正三聚茚,以判断主产物的纯度。然而,迄今为止,对该混合体系的有效拆分尚未见报道。若能发展一种有效的拆分分离手段,监控异三聚茚生产过程中的纯化步骤,则可以为高纯度异三聚茚的制备奠定基础。
发明内容
本发明的目的在于提供一种异三聚茚及其同分异构体的拆分方法,可以实现异三聚茚及其同分异构体的分离和测定,并能直观地检验异三聚茚的纯度。
为实现上述目的,本发明采用如下技术方案:
一种异三聚茚及其同分异构体的拆分方法,其特征在于:利用高效液相色谱拆分异三聚茚及其同分异构体,包括以下步骤:
(1)将异三聚茚与正三聚茚等比例称取并混合,加入溶剂,超声使其充分溶解;
(2)以乙腈和水为流动相,等梯度洗脱。
异三聚茚与正三聚茚各取1mg。
所述的溶剂为乙腈、甲醇、乙醇中的一种或几种的混合物。
色谱柱为苯基键合硅胶担体柱,150 mm× 4.6 mm,1.8 μm。
流动相中乙腈与水的体积比为85-95:5-15;高效液相色谱仪运行时间 15 min;进样量5-20μL;柱温25~40 ℃;流速0.5-1.5mL/min,检测波长270~300nm。
本发明的有益效果在于:本发明采用高效液相色谱仪对异三聚茚及其同分异构体进行拆分,固定相为苯基键合硅胶担体,以乙腈和水的混合溶剂为流动相,不仅实现了异三聚茚及其同分异构体的分离和测定,还能直观地检验异三聚茚的纯度。方法简便,易操作,有利于推广应用。
附图说明
图1是异三聚茚及其同分异构体的分离谱图;
图2是异三聚茚及其同分异构体含量检测图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
一种异三聚茚及其同分异构体的拆分方法:将常规反应制得的异三聚茚与正三聚茚等比例取1mg混合,稀释液稀释至0.1mg/mL,经超声波振荡仪振荡使其充分溶解。以苯基乙基键合硅胶担体为固定相,以水和乙腈混合溶液为流动相,用高效液相色谱系统拆分异三聚茚异构体正三聚茚:所述的稀释液选自乙腈、甲醇、乙醇中一种或者几种组成的混合物。所述的色谱柱为 Agilent Eclipse PAH柱。所述的流动相流速为0.5mL/min,色谱柱温度为25℃,检测波长为273nm。所述的进样量为5μL。所述流动相中,按体积比计算,乙腈:水为17:3。
实施例2
一种异三聚茚及其同分异构体的拆分方法:将常规反应制得的异三聚茚与正三聚茚等比例取1mg混合,稀释液稀释至0.5 mg/mL,经超声波振荡仪振荡使其充分溶解。以苯基乙基键合硅胶担体 为固定相,以水和乙腈混合溶液为流动相,用高效液相色谱系统拆分异三聚茚异构体正三聚茚:所述的稀释液选自乙腈、甲醇、乙醇中一种或者几种组成的混合物。所述的色谱柱为 Agilent Eclipse PAH柱。所述的流动相流速为1.0mL/min,色谱柱温度为30℃,检测波长为273nm。所述的进样量为10μL。所述流动相中,按体积比计算,乙腈:水为17:3。
实施例3
一种异三聚茚及其同分异构体的拆分方法:将常规反应制得的异三聚茚与正三聚茚等比例取1mg混合,稀释液稀释至1.0 mg/mL,经超声波振荡仪振荡使其充分溶解。以五氟苯基键合硅胶担体 为固定相,以水和乙腈混合溶液为流动相,用高效液相色谱系统拆分异三聚茚异构体正三聚茚:所述的稀释液选自乙腈、甲醇、乙醇中一种或者几种组成的混合物。所述的色谱柱为 Agilent Eclipse PAH柱。所述的流动相流速为1.5mL/min,色谱柱温度为40℃,检测波长为273nm。所述的进样量为20μL。所述流动相中,按体积比计算,乙腈:水为19:1。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种异三聚茚及其同分异构体的拆分方法,其特征在于:利用高效液相色谱拆分异三聚茚及其同分异构体,包括以下步骤:
将异三聚茚与正三聚茚等比例称取并混合,加入溶剂,超声使其充分溶解;
以乙腈和水为流动相,等梯度洗脱。
2.根据权利要求1所述的方法,其特征在于:异三聚茚与正三聚茚各取1mg。
3.根据权利要求1所述的方法,其特征在于:所述的溶剂为乙腈、甲醇、乙醇中的一种或几种的混合物。
4.根据权利要求1所述的方法,其特征在于:色谱柱为苯基键合硅胶担体柱,150 mm×4.6 mm,1.8 μm。
5.根据权利要求1所述的方法,其特征在于:流动相中乙腈与水的体积比为85-95:5-15;高效液相色谱仪运行时间 15 min;进样量5-20μL;柱温25~40 ℃;流速0.5-1.5mL/min,检测波长270~300nm。
CN202110674288.0A 2021-06-18 2021-06-18 一种异三聚茚及其同分异构体的拆分方法 Pending CN113387770A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110674288.0A CN113387770A (zh) 2021-06-18 2021-06-18 一种异三聚茚及其同分异构体的拆分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110674288.0A CN113387770A (zh) 2021-06-18 2021-06-18 一种异三聚茚及其同分异构体的拆分方法

Publications (1)

Publication Number Publication Date
CN113387770A true CN113387770A (zh) 2021-09-14

Family

ID=77621731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110674288.0A Pending CN113387770A (zh) 2021-06-18 2021-06-18 一种异三聚茚及其同分异构体的拆分方法

Country Status (1)

Country Link
CN (1) CN113387770A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906467A (zh) * 2016-04-27 2016-08-31 厦门大学 一种有机光电材料异三聚茚的合成方法
CN105929084A (zh) * 2016-07-18 2016-09-07 江苏德源药业股份有限公司 高效液相色谱拆分苯甲酸阿格列汀及其对映异构体的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906467A (zh) * 2016-04-27 2016-08-31 厦门大学 一种有机光电材料异三聚茚的合成方法
CN105929084A (zh) * 2016-07-18 2016-09-07 江苏德源药业股份有限公司 高效液相色谱拆分苯甲酸阿格列汀及其对映异构体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周莹等: "《有机化学实验》", vol. 1, 湖南大学出版社, pages: 87 - 88 *

Similar Documents

Publication Publication Date Title
Delannay et al. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications
Peng et al. Application of preparative high-speed counter-current chromatography for isolation and separation of schizandrin and gomisin A from Schisandra chinensis
Yang et al. Separation of anthraquinone compounds from the seed of Cassia obtusifolia L. using recycling counter‐current chromatography
Hou et al. Separation of minor coumarins from Peucedanum praeruptorum using HSCCC and preparative HPLC guided by HPLC/MS
Wang et al. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium‐pressure liquid chromatography combined with macroporous resin chromatography
Wang et al. High‐performance purification of quaternary alkaloids from Corydalis yanhusuo WT Wang using a new polar‐copolymerized stationary phase
San et al. Single‐Step Gas‐Phase Polyperfluoroalkylation of Naphthalene Leads to Thermodynamic Products
Kim et al. Structural elucidation of nitrogen-containing compounds in polar fractions using double bond equivalence distributions and hydrogen–deuterium exchange mass spectra
CN114660214A (zh) 一种司美格鲁肽的液相色谱检测方法及其应用
Lv et al. Features of a truxene-based stationary phase in capillary gas chromatography for separation of some challenging isomers
Sang et al. Combination of a deep eutectic solvent and macroporous resin for green recovery of anthocyanins from Nitraria tangutorun Bobr. fruit
CN113387770A (zh) 一种异三聚茚及其同分异构体的拆分方法
Ohwada Orbital distortion arising from remote substituents. Nitration, reduction, and epoxidation of fluorenes bearing a carbonyl or an olefin group in spiro geometry
VanMiddlesworth et al. Characterization of surface confined ionic liquid stationary phases: impact of cation revisited
Diao et al. Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID
Peng et al. Supercritical fluid extraction of aurentiamide acetate from Patrinia villosa Juss and subsequent isolation by silica gel and high-speed counter-current chromatography
Tang et al. Separation of flavonoids from Millettia griffithii with high‐performance counter‐current chromatography guided by anti‐inflammatory activity
Wang et al. Chiral derivatives of covalent organic framework TpBD (NH2) 2 used as stationary phases in gas chromatography
Luo et al. Predictable and linear scale-up of four phenolic alkaloids separation from the roots of Menispermum dauricum using high-performance counter-current chromatography
CN106582579B (zh) 四氧萘杂杯[2]芳烃[2]三嗪键合硅胶固定相及其制备方法和用途
Lampert et al. Determination of non-steroidal anti-inflammatory analgesics in solid dosage forms by high-performance liquid chromatography on underivatized silica with aqueous mobile phase
Field et al. The conformation of biphenyls in nematic liquid crystalline solution. An investigation of the torsional angles in 2, 6-dihalogenated derivatives
Zhao et al. A selective and inert stationary phase combining triptycene with tocopheryl polyethylene glycol succinate for capillary gas chromatography
Shi et al. Purification of honokiol derivatives from one-pot synthesis by high-performance counter-current chromatography
CN109851618A (zh) 一种含有氢化吩噻嗪基团的n杂环苯甲酮类衍生物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination