CN113380309A - 寻找最佳读取电压的方法、闪存系统 - Google Patents

寻找最佳读取电压的方法、闪存系统 Download PDF

Info

Publication number
CN113380309A
CN113380309A CN202110772261.5A CN202110772261A CN113380309A CN 113380309 A CN113380309 A CN 113380309A CN 202110772261 A CN202110772261 A CN 202110772261A CN 113380309 A CN113380309 A CN 113380309A
Authority
CN
China
Prior art keywords
difference
bit count
offset
state bit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110772261.5A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingren Technology Shanghai Co ltd
Original Assignee
Yingren Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingren Technology Shanghai Co ltd filed Critical Yingren Technology Shanghai Co ltd
Priority to CN202110772261.5A priority Critical patent/CN113380309A/zh
Priority to US17/464,736 priority patent/US11776635B2/en
Publication of CN113380309A publication Critical patent/CN113380309A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)

Abstract

本申请涉及存储技术领域,公开了一种寻找最佳读取电压的方法、闪存系统。该方法包括:获取阈值电压范围内第一位置和第二位置的第一状态位计数的差值,第一位置处第一状态位计数与第二状态位计数的差值,第二位置和第三位置的第一状态位计数的差值,和第二位置处第一状态位计数与第二状态位计数的差值;基于各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找最佳读取电压的偏移量,将偏移量应用到当前参考电压进行读取,如果读取失败,根据该方向和偏移量获取新的第一位置和第二位置直至读取成功。

Description

寻找最佳读取电压的方法、闪存系统
技术领域
本申请涉及存储技术领域,特别涉及寻找最佳读取电压的方法、闪存系统。
背景技术
非易失性存储器系统由于储存在其中的数据不会因为断电而遗失,而变成一个重要的保存数据的方式。在这些非易失性存储器系统中,NAND闪存因为拥有低功耗与高效能的优点而受欢迎。
当对闪存进行编程操作时,每个存储单元都有特定的状态信息。该状态信息可以表示任何位或数据,并且形成阈值电压分布以对应于每个状态信息。在编程之后,执行读取操作以识别具有特定状态信息的存储单元(cell)。如专利文献[US8953373B1]所述,可以以单元电压的形式检测电池中存储的电荷。为了读取SLC(Single-level-cell)闪存单元,闪存控制器提供一个或多个参考电压(也称为读取电压)。如果单元电压大于参考电压,则闪存中的检测电路会将位表示为“0”,如果单元电压小于参考电压,则将位表示为“1”。因此,SLC闪存需要单个参考电压。相比之下,MLC(Multi-level-cell)闪存需要三个这样的参考电压,TLC(Triple-level-cell)闪存需要七个这样的参考电压。因此,从MLC或TLC闪存设备读取数据需要控制器提供具有最佳值的多个参考电压,以允许存储设备正确检测存储的数据值。
然而,随着闪存集成度的增加,闪存单元尺寸的减小和相邻单元之间噪声的增加会改变单元的目标电导率。使用参考电压辅助检测存储数据值的常规方法通常依赖于参考电压窗口具有高斯分布的假设。随着闪存的操作环境的改变,会引起阈值电压分布的变化,这些会产生与原始编程状态信息不同的错误。例如,由于温度变化和P/E周期(编程/擦除周期)的增加,可能会发生读取错误。随着闪存密度的增加和每个存储单元中编程的状态信息大小的增加,这种现象更加严重。例如,TLC对变化的容忍度比MLC低。
此外,盲目搜索导致成功页面读取的参考电压的传统读取重试方法可能很慢,因此不利地影响存储器吞吐量。这种方法会严重影响具有TLC闪存的系统中的存储器吞吐量,因为上页读取使用四个参考电压,导致读取重试时间呈指数增长。期望通过执行最少次数的读取重试使闪存控制器能够确定最佳参考电压。该现有技术在预设候选中选择在高频下工作的参考电压。换句话说,它是基于历史学习来决定最佳Vref。当历史没有积累或没有候选者可以进行纠错时,则失败。
确定最佳参考电压的另一现有技术[US8811076B2]是应用参考电压Vref加/减delta(或offset)的误差计数以找到最佳Vref的方向。当当前Vref与最佳Vref相差太远时,无法获得错误计数,因为ECC引擎在查找错误计数方面存在限制。所以当分布变化很大时,不能应用。另一个问题是它采用线性搜索概念,通过保持加/减delta参考电压并再次读取,尽管每次可以使参考电压delta变小。
发明内容
本申请的目的在于提供一种寻找最佳读取电压的方法、闪存系统,基于单个阈值电压分布确定最佳读取电压,提高软判决成功概率。
本申请一个实施例中公开了一种寻找最佳参考电压的方法,包括:
获取阈值电压范围内第一位置的第一状态位计数和第二位置的第一状态位计数的第一差值,所述第一位置处第一状态位计数与第二状态位计数的第二差值,所述第二位置的第一状态位计数和第三位置的第一状态位计数的第三差值,和所述第二位置处第一状态位计数与第二状态位计数的第四差值;
基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
在一个优选例中,所述基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第一差值大于所述第三差值且所述第二差值大于所述第四差值,确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值对应的偏移量;
如果所述第一差值小于所述第三差值且所述第二差值大于所述第四差值,确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第三差值对应的偏移量;
如果所述第一差值小于所述第三差值且所述第二差值小于所述第四差值,确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值对应的偏移量;
如果所述第一差值大于所述第三差值且所述第二差值小于所述第四差值,确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值对应的偏移量。
如果所述第一差值等于所述第三差值,重新获取第一位置、第二位置和第三位置的位计数。
在一个优选例中,所述位计数的差值与偏移量的对应关系被表示为
Figure BDA0003154141460000031
Figure BDA0003154141460000032
其中,K是各个组的预定偏移量,W是各个组的电压宽度,R1是所述第一位置的第一状态位计数,R2是所述第二位置的第一状态位计数,Δ是所述第一位置的第一状态位计数和所述第二位置的第一状态位计数的差值。
在一个优选例中,所述位计数的差值与偏移量的对应关系被表示为包括多个位计数差值组的查找表。
本申请一个实施例中公开了一种寻找最佳参考电压的方法,包括:
获取阈值电压范围内第一位置的第一状态位计数和第二位置的第一状态位计数的第一差值,所述第一位置处第一状态位计数与第二状态位计数的第二差值,和所述第二位置处第一状态位计数与第二状态位计数的第三差值;
基于所述各个差值和预定峰值阈值确定寻找最佳读取电压的方向,如果所述第一差值小于所述预定峰值阈值,根据所述第一差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;如果所述第一差值大于或等于所述预定峰值阈值,则根据所述第一差值、所述第二差值与所述第三差值的关系计算第三位置,读取所述第三位置的第一状态位计数并获取所述第二位置处第一状态位计数与所述第三位置处第一状态位计数的第四差值或获取所述第三位置处第一状态位计数与所述第一位置处第一状态位计数的第五差值,并且,根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
在一个优选例中,如果所述第一差值小于所述预定峰值阈值,根据所述第一差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第二差值大于所述第三差值,确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值对应的偏移量;
如果所述第二差值小于所述第三差值,确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值对应的偏移量。
在一个优选例中,如果所述第一差值大于或等于所述预定峰值阈值,则根据所述第一差值、所述第二差值与所述第三差值的关系计算第三位置,读取所述第三位置的第一状态位计数并获取所述第二位置处第一状态位计数与所述第三位置处第一状态位计数的第四差值或获取所述第三位置处第一状态位计数与所述第一位置处第一状态位计数的第五差值,并且,根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第二差值大于所述第三差值,所述第三位置位于所述第二位置的右侧,获取所述第三位置的第一状态位计数和所述第二位置的第一状态位计数与所述第三位置的第一状态位计数的第四差值,并且,确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第四差值对应的偏移量;
如果所述第二差值小于所述第三差值,所述第三位置位于所述第一位置的左侧,获取所述第三位置的第一状态位计数和所述第一位置的第一状态位计数与所述第三位置的第一状态位计数的第五差值,并且,确定所述最佳读取电压的方向为以所述第一位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第五差值对应的偏移量。
在一个优选例中,如果所述第二差值等于所述第三差值,重新获取第一位置和第二位置的位计数
在一个优选例中,所述位计数的差值与偏移量的对应关系被表示为
Figure BDA0003154141460000051
Figure BDA0003154141460000052
其中,K是各个组的预定偏移量,W是各个组的电压宽度,R1是所述第一位置的第一状态位计数,R2是所述第二位置的第一状态位计数,Δ是所述第一位置的第一状态位计数和所述第二位置的第一状态位计数的差值。
在一个优选例中,所述位计数的差值与偏移量的对应关系被表示为包括多个位计数差值组的查找表。
本申请一个实施例中公开了一种闪存系统,包括:
计数器,被配置为获取阈值电压范围内第一位置的第一状态位计数和第二位置的第一状态位计数的第一差值,所述第一位置处第一状态位计数与第二状态位计数的第二差值,所述第二位置的第一状态位计数和第三位置的第一状态位计数的第三差值,和所述第二位置处第一状态位计数与第二状态位计数的第四差值;
控制逻辑,被配置为:
基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
本申请实施方式中,基于单个阈值电压分布确定最佳读取电压,提高软判决成功概率。
与现有技术相比,本申请采用了对错误程度没有限制的比特计数。它达到了页面、程序和读取单元的状态统一点。为了减少相邻单元之间的物理干扰,本申请采用于编程的数据的随机化,这使得页面的所有单元之间的所有状态(对于TLC类型页面为八个)几乎相等的分配,并且每个状态被解码为一个位。当读取电压Vref处于最佳电平时,两个相邻状态对应的位计数差值最低。我们的方案在位计数中搜索较小的偏移量。如果数据不是在所有状态之间以统一分配方式写入,则该方案不起作用。但是写入时的数据随机化作为标准应用于目前所有NAND闪存。
本申请的另一个主要改进是通过基于两个Vref的位计数差值推断最佳读取电压Vref来提高速度。目标NAND芯片分布由不同的Vref预先表征为位计数分布,用于位计数差异和到最佳Vref的距离的查找表。将两个Vref处的当前位计数差异引用到查找表允许即时推断最佳Vref,而无需随着每个Vref变化连续读取。
本申请的说明书中记载了大量的技术特征,分布在各个技术方案中,如果要罗列出本申请所有可能的技术特征的组合(即技术方案)的话,会使得说明书过于冗长。为了避免这个问题,本申请上述发明内容中公开的各个技术特征、在下文各个实施方式和例子中公开的各技术特征、以及附图中公开的各个技术特征,都可以自由地互相组合,从而构成各种新的技术方案(这些技术方案均应该视为在本说明书中已经记载),除非这种技术特征的组合在技术上是不可行的。例如,在一个例子中公开了特征A+B+C,在另一个例子中公开了特征A+B+D+E,而特征C和D是起到相同作用的等同技术手段,技术上只要择一使用即可,不可能同时采用,特征E技术上可以与特征C相组合,则,A+B+C+D的方案因技术不可行而应当不被视为已经记载,而A+B+C+E的方案应当视为已经被记载。
附图说明
图1是根据本申请一个实施例中寻找最佳读取电压的方法的流程示意图。
图2A和图2B是本申请一个实施例中调整参考电压的过程示意图。
图3是根据本申请一个实施例中对阈值电压范围分组的示意图。
图4是根据本申请一个实施例中寻找最佳读取电压的方法的流程示意图。
图5A和图5B是本申请一个实施例中调整参考电压的过程示意图。
图6是根据本申请一个实施例中闪存系统的结构示意图。
具体实施方式
在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
如图1所示,本申请一个实施例中寻找最佳读取电压的方法包括如下步骤:
步骤102,获取阈值电压范围内第一位置的第一状态位计数R1和第二位置的第一状态位计数R2的第一差值R12,所述第一位置处第一状态位计数与第二状态位计数的第二差值R1Δ(0-1),第二位置的第一状态位计数R2和第三位置的第一状态位计数R3的第三差值R23,和第二位置处第一状态位计数与第二状态位计数的第四差值R2Δ(0-1)。本实施例中,第一状态为逻辑“1”,第二状态为逻辑“0”。应当注意,各个差值R12,R1Δ(0-1),R23,R2Δ(0-1)取绝对值。
步骤104,基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量。参考图2A和2B所示,在一个实施例中,该步骤进一步包括如下情况:
如果所述第一差值R12大于所述第三差值R23且所述第二差值R1Δ(0-1)大于所述第四差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值R12对应的偏移量,如图2A中箭头202所示,这种情况下确定的参考电压为R1+offset(R12),offset(R12)为差值R12对应的偏移量。
如果所述第一差值R12小于所述第三差值R23且所述第二差值R1Δ(0-1)大于所述第四差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第三差值R23对应的偏移量,如图2B中箭头206所示,此时,阈值电压峰向左边跨越。这种情况下确定的参考电压为R2+offset(R23),offset(R23)为差值R23对应的偏移量。
如果所述第一差值R12小于所述第三差值R23且所述第二差值R1Δ(0-1)小于所述第四差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值R12对应的偏移量,如图2A中箭头204所示,这种情况下确定的参考电压为R2-offset(R12),offset(R12)为差值R12对应的偏移量。
如果所述第一差值R12大于所述第三差值R23且所述第二差值R1Δ(0-1)小于所述第四差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值R12对应的偏移量,如图2B中箭头208所示,此时,阈值电压峰向右边跨越。这种情况下确定的参考电压为R2-offset(R12),offset(R12)为差值R12对应的偏移量。
此外,如果所述第一差值R12等于所述第三差值R23,重新获取第一位置、第二位置和第三位置的位计数R1、R2、R3。
在一个实施例中,所述位计数的差值与偏移量的对应关系可以被表示为
Figure BDA0003154141460000091
其中,K是各个组的预定偏移量,W是各个组的电压宽度,R1是所述第一位置的第一状态位计数,R2是所述第二位置的第一状态位计数,Δ是所述第一位置的第一状态位计数和所述第二位置的第一状态位计数的差值。
在一个实施例中,所述位计数的差值与偏移量的对应关系可以被表示为包括多个位计数差值组的查找表。具体的:假设两个相邻阈值电压状态呈对称分布,按位计数范围对阈值电压状态进行分组,并且每个区域(组)的线性梯度大致相同。如图3所示,将对称中心两侧的阈值电压范围左右对称各分成4组,左边的4组表示增加偏移量,右边的4组表示减去偏移量。从每个区域到最佳读取电压(两个相邻阈值电压状态分布的对称中心的电压值)的调整偏移量可以预先确定,并可以作为确定的查找表提供。与第一差值R12对应的偏移量查找表如下表一所示。其中,K1,K2,K3和K4分别表示第1至第4组的预定偏移量,W1,W2,W3和W4分别表示第1至第4组的电压宽度。
表一 与第一差值R12对应的偏移量查找表
R12 位置 偏移量
>3000 峰值(Summit) 无效
1500-3000 High2(第1组) ±K1±W1×(Δ-R2)/R12
500-1500 High1(第2组) ±K2±W2×(Δ-R2)/R12
200-500 Mid(第3组) ±K3±W3×(Δ-R2)/R12
0-200 Low(第4组) ±K4±W4×(Δ-R2)/R12
在一个实施例中,K1可以取30,K2可以取20,K3可以取10,K4可以取0,W1、W2、W3和W4可以均取10。
一般修正流程中,通常最后是采取软判决(soft decision)的方式来尝试修正错误。不过,当参考电压偏离中间值(最佳值)太远的时候,软判决所花的修正时间就会变得很长,其修正能力也会随之递减,最后也无法修正错误。如果采用偏移量查找表的搜寻算法,那么即使参考电压偏离中间值,低密度奇偶校验码(LDPC)还是可以修正错误,因此整体的修正能力会大幅提高,修正时间也会缩短许多。
步骤106,将确定的偏移量应用到当前参考电压进行读取,如果读取成功,则当前参考电压叠加该偏移量为最佳读取电压,如果读取失败,根据确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
如图4所示,本申请另一个实施例中寻找最佳读取电压的方法包括如下步骤:
步骤402,获取阈值电压范围内第一位置的第一状态位计数R1和第二位置的第一状态位计数R2的第一差值R12,所述第一位置处第一状态位计数与第二状态位计数的第二差值R1Δ(0-1),和所述第二位置处第一状态位计数与第二状态位计数的第三差值R2Δ(0-1)。
步骤404,基于所述各个差值和预定峰值阈值(ST)确定寻找最佳读取电压的方向,如果所述第一差值R12小于所述预定峰值阈值ST,根据所述第一差值R12与偏移量的对应关系确定寻找所述最佳读取电压的偏移量,参考图5A所示,在一个实施例中,该步骤进一步包括如下情况:
如果所述第二差值R1Δ(0-1)大于所述第三差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,如图5A中箭头502所示,并且,确定所述最佳读取电压的偏移量为所述第一差值R12对应的偏移量。这种情况下确定的参考电压为R1+offset(R12),offset(R12)为差值R12对应的偏移量。
如果所述第二差值R1Δ(0-1)小于所述第三差值R2Δ(0-1),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,如图5A中箭头504所示,并且,确定所述最佳读取电压的偏移量为所述第一差值R12对应的偏移量。这种情况下确定的参考电压为R2-offset(R12),offset(R12)为差值R12对应的偏移量。
在其他实施例中,如果所述第一差值R12大于或等于所述预定峰值阈值ST,则根据所述第一差值R12、所述第二差值R1Δ(0-1)与所述第三差值R2Δ(0-1)的关系计算第三位置,参考图5B所示,在一个实施例中,该步骤进一步包括如下情况:
如果所述第二差值R1Δ(0-1)大于所述第三差值R2Δ(0-1),所述第三位置位于所述第二位置的右侧,获取所述第三位置的第一状态位计数R3和所述第二位置的第一状态位计数R2与所述第三位置的第一状态位计数R3的第四差值R23,并且,确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,如图5B中箭头506所示。并且,确定所述最佳读取电压的偏移量为所述第四差值对应的偏移量。此时,阈值电压峰向左边跨越。这种情况下确定的参考电压为R2+offset(R23),offset(R23)为差值R23对应的偏移量。
如果所述第二差值R1Δ(0-1)小于所述第三差值R2Δ(0-1),所述第三位置位于所述第一位置的左侧,获取所述第三位置的第一状态位计数R3和所述第一位置的第一状态位计数R1与所述第三位置的第一状态位计数R3的第五差值R13,并且,确定所述最佳读取电压的方向为以所述第一位置为起点负向的方向,如图5B中箭头508所示。并且,确定所述最佳读取电压的偏移量为所述第五差值对应的偏移量。此时,阈值电压峰向右边跨越。这种情况下确定的参考电压为R1-offset(R13),offset(R13)为差值R13对应的偏移量。
此外,如果所述第二差值R1Δ(0-1)等于所述第三差值R2Δ(0-1),重新获取第一位置和第二位置的位计数R1、R2。
步骤406,将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
相对于寻找最佳读取电压的方法100,方法400首先仅需要获取第一位置和第二位置,出现跨越峰值的情况时,才需要获取第三位置,方法400可以进一步缩短寻找最佳读取电压的时间。
本申请一个实施例中公开了一种闪存系统,图6是根据本申请一个实施例的闪存系统600的框图,该闪存系统600可以包括存储控制器602和闪速存储器608。根据本实施例的闪速存储器608接收来自控制器602的控制信号,并且执行与控制信号对应的操作。闪速存储器608将与控制信号对应的操作的执行结果发送到存储器控制器。例如,响应于控制信号,闪速存储器608可以执行读取操作、编程操作或擦除操作,或者可以将读取的数据、关于编程是否己经完成以及擦除是否己经完成的信息发送到存储器控制器602。例如,执行上述位计数的读取操作。
在一个实施例中,存储控制器602可以包括计数器604和控制逻辑606。计数器被配置为获取阈值电压范围内第一位置的第一状态位计数和第二位置的第一状态位计数的第一差值,所述第一位置处第一状态位计数与第二状态位计数的第二差值,所述第二位置的第一状态位计数和第三位置的第一状态位计数的第三差值,和所述第二位置处第一状态位计数与第二状态位计数的第四差值。
控制逻辑606被配置为基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量,和将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
需要说明的是,在本专利的申请文件中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本专利的申请文件中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该要素执行该行为、和根据该要素和其它要素执行该行为。多个、多次、多种等表达包括2个、2次、2种以及2个以上、2次以上、2种以上。
在本说明书提及的所有文献都被认为是整体性地包括在本申请的公开内容中,以便在必要时可以作为修改的依据。此外应理解,以上所述仅为本说明书的较佳实施例而已,并非用于限定本说明书的保护范围。凡在本说明书一个或多个实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的保护范围之内。
在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。

Claims (11)

1.一种寻找最佳参考电压的方法,其特征在于,包括:
获取阈值电压范围内第一位置的第一状态位计数(R1)和第二位置的第一状态位计数(R2)的第一差值(R12),所述第一位置处第一状态位计数与第二状态位计数的第二差值(R1Δ(0-1)),所述第二位置的第一状态位计数(R2)和第三位置的第一状态位计数(R3)的第三差值(R23),和所述第二位置处第一状态位计数与第二状态位计数的第四差值(R2Δ(0-1));
基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
2.根据权利要求1所述的寻找最佳参考电压的方法,其特征在于,基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第一差值(R12)大于所述第三差(R23)值且所述第二差(R1Δ(0-1))值大于所述第四差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值(R12)对应的偏移量;
如果所述第一差值(R12)小于所述第三差(R23)值且所述第二差(R1Δ(0-1))值大于所述第四差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第三差值(R23)对应的偏移量;
如果所述第一差值(R12)小于所述第三差值(R23)且所述第二差(R1Δ(0-1))值小于所述第四差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值(R12)对应的偏移量;
如果所述第一差值(R12)大于所述第三差值(R23)且所述第二差(R1Δ(0-1))值小于所述第四差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值(R12)对应的偏移量。
如果所述第一差值(R12)等于所述第三差值(R23),重新获取第一位置、第二位置和第三位置的位计数。
3.根据权利要求2所述的寻找最佳参考电压的方法,其特征在于,所述位计数的差值与偏移量的对应关系被表示为
Figure FDA0003154141450000021
其中,K是各个组的预定偏移量,W是各个组的电压宽度,R1是所述第一位置的第一状态位计数,R2是所述第二位置的第一状态位计数,Δ是所述第一位置的第一状态位计数和所述第二位置的第一状态位计数的差值。
4.根据权利要求2所述的寻找最佳参考电压的方法,其特征在于,所述位计数的差值与偏移量的对应关系被表示为包括多个位计数差值组的查找表。
5.一种寻找最佳参考电压的方法,其特征在于,包括:
获取阈值电压范围内第一位置的第一状态位计数(R1)和第二位置的第一状态位计数(R2)的第一差值(R12),所述第一位置处第一状态位计数与第二状态位计数的第二差值(R1Δ(0-1)),和所述第二位置处第一状态位计数与第二状态位计数的第三差值(R2Δ(0-1));
基于所述各个差值和预定峰值阈值确定寻找最佳读取电压的方向,如果所述第一差值小于所述预定峰值阈值(ST),根据所述第一差值(R12)与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;如果所述第一差值大于或等于所述预定峰值阈值(ST),则根据所述第一差值(R12)、所述第二差值(R1Δ(0-1))与所述第三差值(R2Δ(0-1))的关系计算第三位置,读取所述第三位置的第一状态位计数(R3)并获取所述第二位置处第一状态位计数(R2)与所述第三位置处第一状态位计数(R3)的第四差值(R23)或获取所述第三位置处第一状态位计数(R3)与所述第一位置处第一状态位计数(R1)的第五差值(R13),并且,根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
6.根据权利要求5所述的寻找最佳参考电压的方法,其特征在于,如果所述第一差值(R12)小于所述预定峰值阈值(ST),根据所述第一差值(R12)与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第二差值(R1Δ(0-1))大于所述第三差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第一位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值(R12)对应的偏移量;
如果所述第二差值(R1Δ(0-1))小于所述第三差值(R2Δ(0-1)),确定所述最佳读取电压的方向为以所述第二位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第一差值(R12)对应的偏移量。
7.根据权利要求5所述的寻找最佳参考电压的方法,其特征在于,如果所述第一差值(R12)大于或等于所述预定峰值阈值(ST),则根据所述第一差值(R12),、所述第二差值(R1Δ(0-1))与所述第三差值(R2Δ(0-1))的关系计算第三位置,读取所述第三位置的第一状态位计数(R3)并获取所述第二位置处第一状态位计数(R2)与所述第三位置处第一状态位计数的第四差值(R23)或获取所述第三位置处第一状态位计数(R3)与所述第一位置处第一状态位计数(R1)的第五差值(R13),并且,根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量的步骤,进一步包括:
如果所述第二差值(R1Δ(0-1))大于所述第三差值(R2Δ(0-1)),所述第三位置位于所述第二位置的右侧,获取所述第三位置的第一状态位计数(R3)和所述第二位置的第一状态位计数(R2)与所述第三位置的第一状态位计数的第四差值(R23),并且,确定所述最佳读取电压的方向为以所述第二位置为起点正向的方向,并且,确定所述最佳读取电压的偏移量为所述第四差值(R23)对应的偏移量;
如果所述第二差值(R1Δ(0-1))小于所述第三差值(R2Δ(0-1)),所述第三位置位于所述第一位置的左侧,获取所述第三位置的第一状态位计数(R3)和所述第一位置的第一状态位计数(R1)与所述第三位置的第一状态位计数的第五差值(R13),并且,确定所述最佳读取电压的方向为以所述第一位置为起点负向的方向,并且,确定所述最佳读取电压的偏移量为所述第五差值(R13)对应的偏移量。
8.根据权利要求6或7所述的寻找最佳参考电压的方法,其特征在于,如果所述第二差值(R1Δ(0-1))等于所述第三差值(R2Δ(0-1)),重新获取第一位置和第二位置的位计数。
9.根据权利要求6或7所述的寻找最佳参考电压的方法,其特征在于,所述位计数的差值与偏移量的对应关系被表示为
Figure FDA0003154141450000041
其中,K是各个组的预定偏移量,W是各个组的电压宽度,R1是所述第一位置的第一状态位计数,R2是所述第二位置的第一状态位计数,Δ是所述第一位置的第一状态位计数和所述第二位置的第一状态位计数的差值。
10.根据权利要求6或7所述的寻找最佳参考电压的方法,其特征在于,所述位计数的差值与偏移量的对应关系被表示为包括多个位计数差值组的查找表。
11.一种闪存系统,其特征在于,包括:
计数器,被配置为获取阈值电压范围内第一位置的第一状态位计数(R1)和第二位置的第一状态位计数(R2)的第一差值(R12),所述第一位置处第一状态位计数与第二状态位计数的第二差值(R1Δ(0-1)),所述第二位置的第一状态位计数(R2)和第三位置的第一状态位计数(R3)的第三差值(R23),和所述第二位置处第一状态位计数与第二状态位计数的第四差值(R2Δ(0-1));
控制逻辑,被配置为:
基于所述各个差值确定寻找最佳读取电压的方向并根据位计数的差值与偏移量的对应关系确定寻找所述最佳读取电压的偏移量;
将所述确定的偏移量应用到当前参考电压进行读取,如果读取成功,则所述当前参考电压叠加该偏移量后的电压为最佳读取电压,如果读取失败,根据所述确定的方向和偏移量获取新的第一位置和第二位置直至读取成功。
CN202110772261.5A 2021-07-08 2021-07-08 寻找最佳读取电压的方法、闪存系统 Pending CN113380309A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110772261.5A CN113380309A (zh) 2021-07-08 2021-07-08 寻找最佳读取电压的方法、闪存系统
US17/464,736 US11776635B2 (en) 2021-07-08 2021-09-02 Method for finding optimum read voltage and flash memory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110772261.5A CN113380309A (zh) 2021-07-08 2021-07-08 寻找最佳读取电压的方法、闪存系统

Publications (1)

Publication Number Publication Date
CN113380309A true CN113380309A (zh) 2021-09-10

Family

ID=77581480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110772261.5A Pending CN113380309A (zh) 2021-07-08 2021-07-08 寻找最佳读取电压的方法、闪存系统

Country Status (2)

Country Link
US (1) US11776635B2 (zh)
CN (1) CN113380309A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116682475B (zh) * 2023-05-24 2024-01-23 珠海妙存科技有限公司 电压偏移量确定方法、电压偏移量调整方法和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811076B2 (en) 2012-07-30 2014-08-19 Sandisk Technologies Inc. Systems and methods of updating read voltages
KR102050475B1 (ko) 2013-01-14 2020-01-08 삼성전자주식회사 플래시 메모리, 플래시 메모리 장치 및 이의 동작 방법
US8953373B1 (en) 2013-10-03 2015-02-10 Lsi Corporation Flash memory read retry using histograms
JP2018156696A (ja) * 2017-03-15 2018-10-04 東芝メモリ株式会社 半導体記憶装置及びメモリシステム
US10629247B2 (en) * 2017-12-21 2020-04-21 Western Digital Technologies, Inc. Read threshold adjustment using reference data

Also Published As

Publication number Publication date
US20230019347A1 (en) 2023-01-19
US11776635B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US9141475B2 (en) Methods for tag-grouping of blocks in storage devices
US10790035B2 (en) Method of operating storage device
EP2368186B1 (en) Data error recovery in non-volatile memory
US8531888B2 (en) Determining optimal reference voltages for progressive reads in flash memory systems
US9229644B2 (en) Targeted copy of data relocation
US8958250B2 (en) Method and apparatus for optimizing reference voltages in a nonvolatile memory
US11099931B2 (en) Memory system
US20080244338A1 (en) Soft bit data transmission for error correction control in non-volatile memory
US8365039B2 (en) Adjustable read reference for non-volatile memory
US20130155776A1 (en) Inter-cell interference cancellation
US20090292970A1 (en) Using error information from nearby locations to recover uncorrectable data in non-volatile memory
CN110795270B (zh) 固态储存装置及其读取重试方法
US11600354B2 (en) Determination of state metrics of memory sub-systems following power events
US11955194B2 (en) Tracking and refreshing state metrics in memory sub-systems
CN110232947B (zh) 用于决定非挥发性内存中位值的方法和系统
US9490024B1 (en) Solid state storage device and reading control method thereof
CN109378027A (zh) 固态储存装置的控制方法
CN113380309A (zh) 寻找最佳读取电压的方法、闪存系统
US20240013843A1 (en) Method for finding common optimal read voltage of multi-dies, storage system
CN109215716B (zh) 提高nand型浮栅存储器可靠性的方法及装置
CN110265083B (zh) 存储器装置的数据探测方法
US12020751B2 (en) Read threshold calibration for cross-temperature long, sequential reads
CN111427713B (zh) 训练人工智能估测存储装置的使用寿命的方法
TWI690860B (zh) 訓練人工智慧估測儲存裝置的使用壽命的方法
US20210295937A1 (en) Memory system and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Room 601-606, No. 40, Lane 565, Shengxia Road, China (Shanghai) Pilot Free Trade Zone, Pudong New Area, Shanghai, 201210 (nominal floor 6, actual floor 5)

Applicant after: Yingren Technology Co.,Ltd.

Address before: 2 / F, No.1, Lane 500, shengxia Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai 201210

Applicant before: Yingren Technology (Shanghai) Co.,Ltd.

CB02 Change of applicant information