CN113373372A - 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method - Google Patents

1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method Download PDF

Info

Publication number
CN113373372A
CN113373372A CN202110575034.3A CN202110575034A CN113373372A CN 113373372 A CN113373372 A CN 113373372A CN 202110575034 A CN202110575034 A CN 202110575034A CN 113373372 A CN113373372 A CN 113373372A
Authority
CN
China
Prior art keywords
steel
temperature
generator rotor
manufacturing
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110575034.3A
Other languages
Chinese (zh)
Other versions
CN113373372B (en
Inventor
宋畅
骆海贺
刘斌
李利巍
芮晓龙
陈吉清
徐进桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202110575034.3A priority Critical patent/CN113373372B/en
Publication of CN113373372A publication Critical patent/CN113373372A/en
Application granted granted Critical
Publication of CN113373372B publication Critical patent/CN113373372B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

A1300 MPa-grade magnet yoke steel for manufacturing a hydraulic generator rotor comprises the following chemical components in percentage by weight: c: 0.15 to 0.25%, Si: 0.45-0.55%, Mn: 1.8-2.0%, Nb: 0.04-0.06%, Mo: 0.20-0.30%, P: less than or equal to 0.015 percent, S: less than or equal to 0.002%, B: 0.002-0.003%, Als: 0.02-0.10%, RE: 0.30-0.40%; the production method comprises the following steps: continuously casting into a blank after smelting in a converter and refining by LF and RH; heating a casting blank; hot rolling after descaling; laminar cooling; coiling; quenching; tempering; naturally cooling to room temperature. The yield strength of the steel is more than or equal to 1300MPa, the tensile strength of the steel is more than or equal to 1350MPa, the elongation of the steel is more than or equal to 10 percent, the magnetic induction performance B50 is more than or equal to 1.46T, the elements are simple, the production cost is lower, and the steel can completely meet the requirement of the steel for the rotor yoke of the hydraulic generator with the capacity of more than 1300MPa required by a single model of 130 ten thousand kilowatts.

Description

1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method
Technical Field
The invention relates to steel for a motor and a production method thereof, in particular to steel for a magnetic yoke of a hydraulic generator rotor and a production method thereof, which are more suitable for the use of the hydraulic generator rotor with the single-machine capacity of 130 kilokilowatts at 1300MPa or above.
Background
The rotor magnetic yoke in the hydraulic generator structure is one of the most core components, and the main function of the hydraulic generator structure is to generate rotational inertia and hang and install magnetic poles, and is also a part of a magnetic circuit. High strength, high precision and good magnetic properties are required. With the large-scale development of hydroelectric engineering, the rotor volume is continuously increased, and the safety performance requirement is also continuously improved, so that higher requirements are also provided for the strength of the magnetic yoke steel.
After retrieval: chinese patent application No. ZL201711087052.7 describes 'ultrahigh strength magnet yoke steel and a manufacturing method thereof', and the ultrahigh strength magnet yoke steel comprises the following chemical components in percentage by weight: 0.10 to 0.15, Si: less than or equal to 0.15, Mn: 1.85-2.00, P: 0.015 or less, S: less than or equal to 0.010, Ti: 0.20 to 0.30, Nb: 0.05 to 0.07, Mo: 0.35-0.55, B: 0.001 to 0.003, Als: 0.02-0.10, N: less than or equal to 0.010 percent, and the balance of Fe and inevitable impurities. After the steel plate is subjected to controlled rolling and controlled cooling treatment, the yield strength of the steel plate can only reach 900MPa, and the requirement of a single-machine capacity 130 ten thousand kilowatts hydraulic generator rotor on 1300MPa ultrahigh-strength magnet yoke steel cannot be met.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a magnetic induction property B with the yield strength of more than or equal to 1300MPa, the tensile strength of more than or equal to 1350MPa, the elongation of more than or equal to 9 percent501300 MPa-grade yield strength magnetic yoke steel for hydro-generator rotor with unit capacity of 130 ten thousand kilowatts and production thereof, wherein the magnetic yoke steel is more than or equal to 1.46T and simple in elementsA method.
The measures for realizing the aim are as follows:
a1300 MPa-grade magnetic yoke steel for manufacturing a hydraulic generator rotor comprises the following chemical components in percentage by weight: c: 0.15 to 0.25%, Si: 0.45-0.55%, Mn: 1.8-2.0%, Nb: 0.04-0.06%, Mo: 0.20-0.30%, P:
less than or equal to 0.015 percent, S: less than or equal to 0.002%, B: 0.002-0.003%, Als: 0.02-0.10%, RE: 0.30 to 0.40% by weight, and the balance Fe and inevitable impurities.
Preferably: the weight percentage content of the RE is 0.33-0.39%.
Preferably: the weight percentage of Mn is 1.83-1.93%.
Preferably: the weight percentage content of Nb is 0.045-0.055%.
A production method of 1300 MPa-grade magnet yoke steel for manufacturing a hydraulic generator rotor comprises the following steps:
1) continuously casting into a blank after smelting in a converter and refining by LF and RH;
2) heating a casting blank at 1180-1220 ℃;
3) carrying out hot rolling after descaling, and carrying out finish rolling at the finish rolling temperature of 850-900 ℃ by adopting the traditional two-stage rolling;
4) carrying out laminar cooling, and cooling to the coiling temperature at the cooling speed of 20-35 ℃/s;
5) coiling, wherein the coiling temperature is controlled to be 550-600 ℃;
6) quenching, wherein the quenching temperature is controlled to be 910-930 ℃;
7) tempering is carried out, the tempering temperature is controlled to be 300-350 ℃, and heat preservation is carried out for 50-100 min at the temperature;
8) naturally cooling to room temperature.
Preferably: the heating temperature of the casting blank is 1180-1200 ℃.
Preferably: the finishing temperature is 860-880 ℃.
Preferably: the coiling temperature is 550-580 ℃.
The action and mechanism of each element and main process in the invention
The content of carbon (C) is 0.15-0.25%, carbon is one of indispensable elements for improving the strength of steel in steel, and the magnetic induction performance of the steel is influenced by the excessively high content of carbon. The carbon content is limited to 0.15-0.25%, so that the strength of the steel can be improved, and the magnetic induction performance of the steel can be ensured.
The content of silicon (Si) is 0.45-0.55%, Si has solid solution strengthening effect and can improve hardenability. Si can reduce the diffusion speed of carbon in ferrite, so that carbide precipitated during tempering is not easy to aggregate, the tempering stability is improved, the strength and the hardness of steel are improved along with the increase of silicon, and when the content of silicon exceeds a certain range, crystal grains are coarsened, so that the content of Si is controlled to be 0.45-0.55 percent.
The content of manganese (Mn) is 1.8-2.0%, the manganese can reduce the phase transition temperature of austenite transformed into ferrite, expand the hot working temperature area, be beneficial to refining the ferrite grain size and improve the yield strength and tensile strength of steel. However, if the Mn content is too high, the temper brittleness and center segregation of the steel are increased, so the Mn content is controlled to be 1.8-2.0 percent by the invention.
The content of niobium (Nb) is 0.04-0.06%, and trace niobium can obviously refine grains and improve the tensile strength of the steel. In the controlled rolling process, niobium can improve the recrystallization temperature of steel, reduce the load of a rolling mill and facilitate the control of plate shape. Meanwhile, the austenite grain size can be refined by inhibiting recrystallization and preventing grain growth. In the cooling process after rolling, the small particles of NbC and NbN are separated out, and can play a role in strengthening precipitation. Therefore, the content of niobium (Nb) in the invention is 0.04-0.06%.
The content of molybdenum (Mo) in the invention is 0.20-0.30%, and molybdenum exists in solid solution and carbide of steel and has the function of solid solution strengthening. When molybdenum and niobium are added simultaneously, the molybdenum can increase the inhibition of austenite recrystallization in the controlled rolling process, thereby promoting the refinement of the austenite microstructure. Meanwhile, Mo has better tempering stability, and is beneficial to the performance stability of the steel after tempering. Therefore, the content of molybdenum (Mo) in the invention is 0.20-0.30%
The content of phosphorus (P) is less than or equal to 0.015 percent, the content of sulfur (S) is less than or equal to 0.002 percent, phosphorus is easy to cause segregation in steel, and sulfur is easy to combine with manganese to generate MnS inclusions which are all unfavorable for strength. Therefore, the invention should minimize the adverse effects of phosphorus and sulfur on the magnetic properties and strength of the steel, and the P, S content of the steel is controlled as P: 0.015 or less, S: less than or equal to 0.002.
The content of boron (B) is 0.002% -0.003%, B has the main function of improving the hardenability of steel, and boron is taken as a surface active element, is adsorbed on austenite grain boundaries, delays the transformation from austenite to ferrite, and is segregated in the austenite grain boundaries to block the nucleation of ferrite, thereby being beneficial to the formation of martensite and further improving the structure strengthening effect. However, the B content is too high, the hardenability is lowered, and eutectic crystals having a low melting point are formed and concentrated on the grain boundaries, thereby causing hot brittleness. Therefore, the boron content range of the invention is 0.002% -0.003%.
The content of Rare Earth (RE) in the invention is 0.30-0.40%: the strength and magnetic performance of the yoke steel are a pair of spears, because the grain boundary and the precipitated phase have a pinning effect on the movement of a domain wall while the strength of the steel plate is improved through fine grain strengthening and precipitation strengthening, and the magnetic induction performance is reduced. Meanwhile, the magnetism of the rare earth element is derived from an unfilled 4f electron layer, and atoms or molecules containing odd electrons are generally added into steel, so that the magnetism of the steel plate can be improved. Therefore, in order to obtain high strength and high magnetic induction properties at the same time, the RE element having high magnetic properties is added along with the addition of the reinforcing element to obtain high strength and high magnetic induction properties at the same time.
The rare earth has obvious solid solution strengthening effect, the solid solution rare earth is mainly distributed in a crystal boundary, the interfacial tension and the interfacial energy are reduced, and the driving force for the growth of crystal grains is reduced, so that the growth of austenite crystal grains is inhibited, and the crystal grains are refined. Meanwhile, the rare earth can promote the precipitation of microalloy elements, enhance the precipitation strengthening effect, and enrich the grain boundary through a diffusion mechanism, thereby reducing the segregation of impurity elements in the grain boundary and strengthening the grain boundary. In addition, the rare earth has better magnetism, can effectively improve the magnetic property of the steel plate, and comprehensively considers that the RE content range of the invention is 0.30-0.40%.
The heating temperature is controlled to be 1180-1220 ℃, so that complete solid solution and full austenitization of alloy elements are ensured, the temperature uniformity of a plate blank is improved, the deformation resistance and the rolling load are reduced, and the thin-specification magnetic yoke steel is favorably rolled.
The invention controls the finishing temperature to be 850-900 ℃, the coiling temperature to be 550-600 ℃, and mainly refines austenite grains, thereby improving the strength of the steel after heat treatment.
The invention controls the quenching heating temperature to be 910-930 ℃, namely Ac3+ (70-90) DEG C, and mainly coarsens original austenite grains, reduces the barrier effect of austenite grain boundaries on magnetic domain walls, obtains good magnetic performance, and simultaneously avoids oversize structures, thereby obtaining refined quenched martensite structures and improving the strength of steel.
The tempering heating temperature is controlled to be 300-350 ℃ and the heat preservation time is 50-100 min. Supersaturated carbon atoms in the quenched martensite are desolventized to form fine carbide particles through a tempering process, the strength of the steel plate is further improved, the plasticity of the steel is improved, the carbide particles grow rapidly when the tempering temperature is too high or the heat preservation time is too long, and the yield strength of the steel plate can be obviously reduced. And comprehensively considering the strength and the plasticity, finally setting the tempering heating temperature to be 300-350 ℃, and keeping the temperature for 50-100 min.
Compared with the prior art, the invention has the yield strength of more than or equal to 1300MPa, the tensile strength of more than or equal to 1350MPa, the elongation of more than or equal to 9 percent and the magnetic induction property B50The yield strength of the rotor is not less than 1.46T, the elements are simple, and the yield strength can completely meet the requirement of 1300MPa for preparing a hydrogenerator rotor with the capacity of 130 ten thousand kilowatts per unit.
Detailed Description
The present invention is described in detail below:
table 1 is a list of values of the components of each example and comparative example of the present invention;
table 2 is a list of process parameter values and performance tests for each example and comparative example of the present invention.
The preparation method comprises the following steps:
1) continuously casting into a blank after smelting in a converter and refining by LF and RH;
2) heating a casting blank at 1180-1220 ℃;
3) carrying out hot rolling after descaling, and carrying out finish rolling at the finish rolling temperature of 850-900 ℃ by adopting the traditional two-stage rolling;
4) carrying out laminar cooling, and cooling to the coiling temperature at the cooling speed of 20-35 ℃/s;
5) coiling, wherein the coiling temperature is controlled to be 550-600 ℃;
6) quenching, wherein the quenching temperature is controlled to be 910-930 ℃;
7) tempering is carried out, the tempering temperature is controlled to be 300-350 ℃, and heat preservation is carried out for 50-100 min at the temperature;
8) naturally cooling to room temperature.
TABLE 1 list of chemical compositions (wt%) of inventive and comparative examples
Figure BDA0003084024850000051
Figure BDA0003084024850000061
TABLE 2 Main Process and test results for examples of the invention and comparative examples
Figure BDA0003084024850000062
As can be seen from the results in Table 2, the yield strength of the steel plate is more than or equal to 1300MPa, the tensile strength is more than or equal to 1350MPa, the elongation is more than or equal to 10%, the magnetic induction performance B50 is more than or equal to 1.46T, the steel plate has ultrahigh strength and good magnetic performance, and can meet the requirements of 1300 MPa-level magnetic yoke steel plates for manufacturing hydraulic generator rotors.
The above examples are merely preferred examples and are not intended to be exhaustive of the invention.

Claims (8)

1. A1300 MPa-grade magnetic yoke steel for manufacturing a hydraulic generator rotor comprises the following chemical components in percentage by weight: c: 0.15 to 0.25%, Si: 0.45-0.55%, Mn: 1.8-2.0%, Nb: 0.04-0.06%, Mo: 0.20-0.30%, P: less than or equal to 0.015 percent, S: less than or equal to 0.002%, B: 0.002-0.003%, Als: 0.02-0.10%, RE: 0.30 to 0.40% by weight, and the balance Fe and inevitable impurities.
2. A 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 1, wherein: the weight percentage content of the RE is 0.33-0.39%.
3. A 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 1, wherein: the weight percentage of Mn is 1.83-1.93%.
4. A 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 1, wherein: the weight percentage content of Nb is 0.045-0.055%.
5. A production method of 1300MPa grade yoke steel for manufacturing hydro-generator rotor according to claim 1, comprising the steps of:
1) continuously casting into a blank after smelting in a converter and refining by LF and RH;
2) heating a casting blank at 1180-1220 ℃;
3) carrying out hot rolling after descaling, and carrying out finish rolling at the finish rolling temperature of 850-900 ℃ by adopting the traditional two-stage rolling;
4) carrying out laminar cooling, and cooling to the coiling temperature at the cooling speed of 20-35 ℃/s;
5) coiling, wherein the coiling temperature is controlled to be 550-600 ℃;
6) quenching, wherein the quenching temperature is controlled to be 910-930 ℃;
7) tempering is carried out, the tempering temperature is controlled to be 300-350 ℃, and heat preservation is carried out for 50-100 min at the temperature;
8) naturally cooling to room temperature.
6. The production method of 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 5, wherein: the heating temperature of the casting blank is 1180-1200 ℃.
7. The production method of 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 5, wherein: the finishing temperature is 860-880 ℃.
8. The production method of 1300MPa grade yoke steel for manufacturing a hydro-generator rotor according to claim 5, wherein: the coiling temperature is 550-580 ℃.
CN202110575034.3A 2021-05-26 2021-05-26 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method Active CN113373372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110575034.3A CN113373372B (en) 2021-05-26 2021-05-26 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110575034.3A CN113373372B (en) 2021-05-26 2021-05-26 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method

Publications (2)

Publication Number Publication Date
CN113373372A true CN113373372A (en) 2021-09-10
CN113373372B CN113373372B (en) 2022-06-10

Family

ID=77571965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110575034.3A Active CN113373372B (en) 2021-05-26 2021-05-26 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method

Country Status (1)

Country Link
CN (1) CN113373372B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840723A (en) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 Superhigh strength steel plate with yield strength more than 1100Mpa and method for producing same
CN107794448A (en) * 2017-11-07 2018-03-13 武汉钢铁有限公司 A kind of high-strength steel sheet and its manufacture method with excellent magnetic energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840723A (en) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 Superhigh strength steel plate with yield strength more than 1100Mpa and method for producing same
CN107794448A (en) * 2017-11-07 2018-03-13 武汉钢铁有限公司 A kind of high-strength steel sheet and its manufacture method with excellent magnetic energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《热带钢连轧机》编写小组: "《热带钢连轧机》", 31 October 1976, 机械工业出版社 *

Also Published As

Publication number Publication date
CN113373372B (en) 2022-06-10

Similar Documents

Publication Publication Date Title
JP7238129B2 (en) 980 MPa class cold-rolled steel sheet with high hole expansion ratio and high elongation and method for producing the same
CN108220798B (en) 460 MPa-level anti-seismic fireproof building steel and preparation method thereof
CN110453146B (en) Cr alloyed steel without yield platform and preparation method thereof
CN111074148B (en) 800 MPa-level hot stamping axle housing steel and manufacturing method thereof
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
CN109554615B (en) Hot-rolled TRIP steel with tensile strength of 900MPa and preparation method thereof
CN110306127B (en) Ultrahigh-strength high-toughness alloy steel and preparation method thereof
CN106957994B (en) High-strength electromagnetic steel sheet and method for producing same
CN101649420A (en) Ultra-strength, high toughness and low yield ratio steel and steel plate and manufacturing method thereof
CN105506465B (en) Yield strength >=750MPa grade high-strength high-tenacities hot rolling yoke steel and production method
CN112195402B (en) Precipitation-strengthened high-strength and high-toughness medium manganese steel plate and preparation method thereof
CN102260823B (en) Economic high-strength steel plate with yield strength of 690MPa, and manufacture method thereof
CN105506466A (en) High-strength and high-toughness hot-rolled magnet yoke steel with yield strength greater than or equal to 650 MPa and production method
CN113430451B (en) 1000 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method
CN102732790B (en) Ultra low carbon bainite steel plate and its manufacturing method
CN109207847B (en) Low-carbon equivalent high-hole-expansion-rate 1180 MPa-grade cold-rolled steel plate and manufacturing method thereof
CN109576594B (en) Hot-rolled magnetic yoke steel and manufacturing method thereof
CN115261737B (en) Air-cooled high-strength and high-toughness light austenitic steel and preparation method thereof
CN113373372B (en) 1300 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method
CN113403532B (en) 1200 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method
CN105420606A (en) High-strength and high-toughness hot rolled magnetic yoke steel with yield strength to be 550MPa grade and production method
CN113373374B (en) 1100 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method
CN112226701B (en) High-aluminum-content fine-grain low-density full-high-temperature ferrite steel and preparation method thereof
CN109576593A (en) A kind of hot rolling magnetic yoke steel and its manufacturing method
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant