CN113372899A - 一种无机复合凝胶体系 - Google Patents

一种无机复合凝胶体系 Download PDF

Info

Publication number
CN113372899A
CN113372899A CN202110630334.7A CN202110630334A CN113372899A CN 113372899 A CN113372899 A CN 113372899A CN 202110630334 A CN202110630334 A CN 202110630334A CN 113372899 A CN113372899 A CN 113372899A
Authority
CN
China
Prior art keywords
inorganic
inorganic composite
gel system
composite gel
gel particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110630334.7A
Other languages
English (en)
Inventor
李东元
罗平亚
谢刚
张建国
彭小俊
张兆迪
李子文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110630334.7A priority Critical patent/CN113372899A/zh
Publication of CN113372899A publication Critical patent/CN113372899A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • C09K8/575Compositions based on water or polar solvents containing organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供了一种无机复合凝胶体系,其由无机凝胶颗粒、骨架活性材料、减水剂、降失水剂、激活剂、缓凝剂和水组成,同时,无机凝胶颗粒的粒径不同,无机复合凝胶体系可用作支撑剂或者防砂剂。当用作支撑剂时,相对于常规的陶瓷、石英砂支撑剂,其具有较好的渗透率和较高的抗压强度,且无机凝胶颗粒可水化固结形成渗透石,固结松散地层和防止支撑剂返吐,能够最大限度的减少在生产过程中压裂裂缝的渗透率降低;同时,其能够应用于疏松砂岩地层天然气和原油开发过程中的防砂作业。

Description

一种无机复合凝胶体系
技术领域
本发明属于油气开采技术领域,具体涉及一种无机复合凝胶体系。
背景技术
无机凝胶材料是油气开采过程中的常用材料,其具有耐温、高强度、污染小的特性,无机凝胶材料通常被用作封堵剂、调剖剂,如中国专利CN 106701049 A,其公开了一种细微颗粒型水平井堵水剂组合物,该组合物由细微颗粒型无机胶凝剂、激活剂、缓凝剂以及分散剂组成,其中细微颗粒无机胶凝剂由多种无机物经过高温烧制而成。
水力压裂是目前油气藏常用的储层改造增产方式,其通常是通过压裂液对储层进行压裂产生人工裂缝后,泵入支撑剂,形成多条具有导流能力的渗流通道。目前常规的压裂方式是压裂液携砂(石英砂或陶粒)进入地层来支撑裂缝,但是,首先石英砂或陶粒需要高粘度的压裂液进行携砂,导致压裂基液需要更高比例的稠化剂来配制,增加了压裂液在地层破胶的难度以及对地层渗透率的伤害;其次圆球度更高的陶粒或石英砂会导致在松软地层中嵌入更加严重,导致裂缝闭合,大大降低了渗透率;最后在生产过程中部分支撑剂会随着油气水产出而产出,无支撑剂支撑的裂缝会闭合,渗导致透率急剧降低。
在油气田开发过程中,针对一些疏松砂岩地层,其地层胶结强度低,伴随着原油和天然气的产出过程中,经常会伴随有地层砂的产出,尤其是细粉砂、泥质或粘土类物质的产出,严重影响了正常的油气生产效率。对于这类型的地层,机械防砂方法无法有效防治粒径较小的细粉砂、泥质和粘土类物质,常用的化学防砂方法,如酚醛树脂或者油井水泥能够起到一定的效果,但是在保证防砂层强度的基础上,难以提高防砂层的渗透率,导致在防砂的同时,极大的降低了地层的渗透性,导致气井产量骤减或者无产量,难以达到理想的防砂效果。压裂防砂或者充填防砂也具有一定效果,但是其隔层遮挡能力要求较高,且工序复杂、作业费用高,经济效益较差。
同时,由于水力压裂以及防砂这些作业对所采用的材料要求不一,因此目前并不存在同一体系的材料既能够实现水力压裂,又能实现防砂。
发明内容
为解决前述问题,本发明提出了一种无机复合凝胶体系,其通过改变体系中无机凝胶颗粒的粒径,即可将其应用于压裂支撑以及防砂中,具有较为广泛的应用效果。
本发明的技术方案如下:一种无机复合凝胶体系,以质量百分比计,包括,
Figure BDA0003103198260000011
Figure BDA0003103198260000021
所述无机凝胶颗粒为高炉冶铁矿渣。
本发明的一种实施方式在于,所述骨架活性材料为生石膏。
本发明的一种实施方式在于,所述减水剂为木质素磺酸盐、萘磺酸盐甲醛聚合物、脂肪族羟基磺酸盐聚合物或芳香族氨基磺酸盐聚合物中的一种。
本发明的一种实施方式在于,所述降失水剂为苯乙烯磺酸盐、丙烯磺酸盐、N,N-二甲基丙烯酰胺、甲基丙烯酸或乙烯甲酰胺中的一种。
本发明的一种实施方式在于,所述激活剂为氧化铝、氧化钙、氧化镁或氧化亚锰中的一种。
本发明的一种实施方式在于,所述缓凝剂为葡萄糖、酒石酸钾、六偏磷酸钠、羧甲基纤维素钠或乙二胺四乙酸二钠中的一种。
本发明的一种实施方式在于,所述无机凝胶颗粒中包括以下组分,32~41%的二氧化硅、7~18%的三氧化二铝、32~48%的氧化钙、3~12%的氧化镁、0.2~4%氧化铁。
本发明的一种实施方式在于,所述无机凝胶颗粒的粒径为0.2-0.5mm,此时本发明的无机复合凝胶体系能够作为压裂过程中的支撑剂或者作为天然气、煤层气开采过程中的防砂剂。
本发明的一种实施方式在于,所述无机凝胶颗粒的粒径为0.5-1.2mm,此时本发明的无机复合凝胶体系能够作为油气开采过程中的防砂剂。
本发明的有益效果:
本发明的无机复合凝胶体系,通过改变其中的无机凝胶颗粒的粒径,使得最终固化成型无机复合凝胶体系能够应用于支撑剂以及防砂剂。
本发明在作为支撑剂时,其随携带液进入压裂裂缝,在水环境中水解、水化并固结成一个整体,形成具有一定强度和渗透性的人造多孔岩层,因此,相对于传统的陶瓷、石英砂,其具有较高的渗透率,使得压裂支撑作业后的裂缝具有更高的渗透率;同时,由于本发明在地层中会产生水化胶结,因此,并不会像传统支撑剂一样随着油气的生产而返排,使得在生产过程中渗透率几乎不会产生损失;
本发明在作为防砂剂时,其在地层中水化固结成人造多孔岩层,同时该岩层具有迂回曲折的渗流通道,同时可以通过调整无机凝胶颗粒的粒径来调整防砂剂的渗透率,因此能够应用于油气井防砂。
具体实施方式
为使本发明的技术方案和技术优点更加清楚,下面将结合实施例对本发明的实施过程中的技术方案进行清楚、完整的描述。
本发明中对于颗粒粒径的规定如下:粒径为0.2-0.5mm,表示颗粒能够通过孔径为0.5mm的筛网而不能通过孔径为0.2mm的筛网;粒径为0.5-1.2mm,表示颗粒能够通过孔径为1.2mm的筛网而不能通过孔径为0.5mm的筛网,以此类推。
本发明中的药剂,如无特殊说明,其纯度均为工业纯。
在本发明中,如无特殊说明,所述的各物质的百分比均为质量百分比。
一种无机复合凝胶体系,包括,
30-50%的无机凝胶颗粒,该无机凝胶颗粒采用高炉冶铁后的矿渣,使用时需将矿渣粉碎成不同的粒径,同时,根据无机复合凝胶体系的不同用处(防砂以及压裂支撑),其粒径也不同:通常情况下,如将无机复合凝胶体系用作支撑剂,则无机凝胶颗粒的粒径为0.2-0.5mm,如将无机复合凝胶体系用作防砂剂,则无机凝胶颗粒的粒径为0.2-1.2mm;同时,无机凝胶颗粒中包含以下组分:二氧化硅(32~41%)、三氧化二铝(7~18%)、氧化钙(32~48%)、氧化铁(0.2~4%),同时还包含有其余的杂质颗粒。
5-10%的骨架活性材料,骨架活性材料为生石膏,骨架活性材料一方面为整个体系提供充足的硫酸根离子;同时,其还能在无机凝胶颗粒水化时形成人造岩层骨架;
0.5-1.5%的减水剂,减水剂通常选用木质素磺酸盐、萘磺酸盐甲醛聚合物、脂肪族羟基磺酸盐聚合物或芳香族氨基磺酸盐聚合物中的一种,其对无机凝胶颗粒有分散作用,同时能够改善混合物的流动性,减少单位用水量;
0.5-1.5%的降失水剂,降失水剂通常选用苯乙烯磺酸盐、丙烯磺酸盐、N,N-二甲基丙烯酰胺、甲基丙烯酸或乙烯甲酰胺中的一种,其作用是在无机凝胶颗粒表面包裹较厚的可塑性大的水化膜,使颗粒在压差作用下堆积时形成致密的渗透性小的薄泥皮,从而使失水量降低;
0.5-2.0%的激活剂,激活剂通常选用氧化铝、氧化钙、氧化镁或氧化亚锰中的一种,激活剂主要作用是与水缓慢反应生成络合物,对无机凝胶颗粒进行浸润,形成弱碱性包裹层,在水化作用下逐渐形成网络结构并硬化,使凝胶形成固结体;
0.5-5.0%的缓凝剂,缓凝剂为葡萄糖、酒石酸钾、六偏磷酸钠、羧甲基纤维素钠或乙二胺四乙酸二钠中的一种,其作用是调节胶凝反应时间,防止闪凝现象发生。
本发明主要借助无机凝胶颗粒的高强度及其在一定条件下能够形成多孔胶结材料,同时本发明中的无机凝胶颗粒为水硬性凝胶材料,当遇水是发生较为复杂的化学反应,在行使其作用时,过程包括水解过程和凝固硬化过程。水化过程主要生成包括钙矾石、硅酸钙凝胶、氢氧化铝凝胶在内的多种胶体粒子。
当水化作用由颗粒表面向深部发展后,从无机凝胶颗粒进入水中的胶体粒子数量迅速增加,结晶体之间开始互相连接,絮凝成凝胶结构;无机凝胶颗粒中不进行水化的杂质和未进入水中的胶体粒子形与添加的骨架活性材料共同形成人造岩层骨架,凝胶充填于骨架接触处将其初步固结。水化过程进一步发展,这时大量晶体析出,并相互连接,使胶体紧密,固结强度明显增加,逐渐硬化成微结晶结构并含有大量孔隙空间的水泥石固体胶结体,形成具有较高强度的多孔材料人造岩层。
下面采用具体的实施例对本发明进行说明,其中,本实施例的高炉冶铁矿渣采用四川某地的高炉冶铁矿渣,该矿渣包含以下组分:38.3%的二氧化硅、13.5%的三氧化二铝、35.0%的氧化钙、7.4%的氧化镁、1.6%的氧化铁,以及其余杂质。但本领域技术人员应当知晓的是,冶铁矿渣中各组分的量并不仅限于此,只要高炉冶铁矿渣中包含有“32~41%的二氧化硅、7~18%的三氧化二铝、32~48%的氧化钙、3~12%的氧化镁、0.2~4%氧化铁”,其均可应用于本发明。
实施例1
本实施例中,无机复合凝胶体系T1由1.3g萘磺酸盐甲醛聚合物、1.3g N,N-二甲基丙烯酰胺、2g氧化钙、4g葡萄糖、35.2g无机凝胶颗粒、8.3g生石膏以及50ml水组成,本实施例中加入的无机凝胶颗粒为高炉冶铁矿渣,且高炉冶铁矿渣的粒径为0.2-0.5mm。
使用时,将减水剂、降失水剂加入50ml水中,搅拌使其溶解,后加入缓凝剂,搅拌使其溶解,后加入激活剂,搅拌使其溶解,继续加入无机凝胶颗粒和生石膏,搅拌均匀即得无机复合凝胶体系T1。
实施例2
本实施例中,无机复合凝胶体系T1由1.3g萘磺酸盐甲醛聚合物、1.4g N,N-二甲基丙烯酰胺、2g氧化钙、3.7g葡萄糖、35.4g无机凝胶颗粒、8g生石膏以及50ml水组成,其中,本实施例中加入的无机凝胶颗粒为高炉冶铁矿渣,且高炉冶铁矿渣的粒径为0.5-1.2mm。
使用时,取减水剂、降失水剂加入50ml水中,搅拌使其溶解,后加入缓凝剂,搅拌使其溶解,后加入激活剂,搅拌使其溶解,继续加入无机凝胶颗粒和生石膏,搅拌均匀即得无机凝胶体系T2,其中,本实施例中加入的无机凝胶颗粒为高炉冶铁矿渣,且高炉冶铁矿渣的粒径为0.5-1.2mm。
通过以下实验及数据进一步说明实施例1-2中所制备无机复合凝胶体系的性能。
1、凝胶体系综合测定
取制备好的T1-T2,在60℃条件下养护三天,同时观察养护过程中T1-T2中的初凝时间和终凝时间,养护三天后,取出,分别测量其气测渗透率和抗压强度,最终测量结果如表1所示。
表1凝固时间、渗透率以及抗压强度测试表
样品 初凝时间 终凝时间 三天时渗透率 三天时抗压强度
T1 63min 122min 304mD 14MPa
T2 66min 125min 6.37D 9MPa
从上表可以看出,在相同温度下,实施例1-实施例2中制得的凝胶体系的初凝时间和终凝时间较为接近。同时,无机凝胶颗粒的粒径越小,其最终成型后的渗透率越小,抗压强度越大;反之亦然。因此,可以根据实际的地层需要选择不同粒径的无机凝胶颗粒:对于压裂后的裂缝支撑剂,可根据所需要的抗压强度以及渗透率进一步选择合适尺寸的无机凝胶颗粒;对于疏松储层的防砂,可根据所需要的抗压强度以及渗透率进一步选择合适尺寸的无机凝胶颗粒。
2、缓凝剂加量对无机复合凝胶体系的影响
凝胶体系的凝固速度是较为重要的一个指标,凝固速度过快,则会导致整个凝胶体系还未充分进入目标地层即开始凝固,影响最终效果;若凝固速度过慢,则浪费时间。通常情况下,可以通过调节缓凝剂的加量来改变整个体系的凝固速度。但是为了探究缓凝剂加量对整个无机复合凝胶体系的影响,取两份无机复合凝胶体系T1,同时将其中一份无机复合凝胶体系中的缓凝剂加量由4g调整至4.5g和5g以形成无机复合凝胶T4和T5,后将三者在60℃条件下养护三天,然后测量其凝固时间、渗透率以及抗压强度,最终测量结果如表2所示。
表2调整缓凝剂加量对无机复合凝胶体系的影响
样品 初凝时间 终凝时间 三天后渗透率 三天后抗压强度
T1 63min 122min 304mD 14MPa
T4 75min 153min 323mD 13.6MPa
T5 84min 169min 317mD 13.8MPa
从表2中可以看出,通过改变T1中缓凝剂的加量,能够有效的改变无机复合凝胶体系的初凝和终凝时间,同时,其渗透率变化较小,抗压强度几乎没有改变。因此,在实际使用时,可根据现场工况对缓凝剂的加量进行调整,灵活度较高。
3、凝胶体系T1固化后挡砂实验
将固化后的T1放入到气测渗透率仪岩心夹持器中,首先按照流程测样品气相渗透率,然后取出T1后在注入端倒入称量好的地层砂样2.764g(粒径范围:45μm~250μm),再装入T1做驱替挡砂实验,驱替剂为天然气。取挡砂驱替过程中的渗透率平均值为挡砂情况下的渗透率数据值,取出岩心并倒出剩余砂样称量剩余重量,并计算砂样损失,该损失及认为是进入T1内和通过T1产出的地层砂量。将经过挡砂驱替后的样品T1重新装入夹持器再次测量污染后的渗透率,计算堵塞率。
表3无机复合凝胶体系挡砂率测试
Figure BDA0003103198260000061
表4无机复合凝胶体系挡砂前后渗透率测试
Figure BDA0003103198260000062
从表3的数据可知,实施例1制得的无机复合凝胶体系在模拟采气挡砂时具有较高的挡砂率,可达99%以上。同时,在具有较高挡砂率的同时,实施例1中制得的无机复合凝胶体系渗透率损失较小,在停止生产后(停止挡砂),渗透率还会得到部分回升,最终的渗透率总损失率约为20%,具有较好的挡砂性能。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种无机复合凝胶体系,其特征在于,以质量百分比计,包括,
Figure FDA0003103198250000011
余量为水
所述无机凝胶颗粒为高炉冶铁矿渣。
2.根据权利要求1所述的无机复合凝胶体系,其特征在于,所述骨架活性材料为生石膏。
3.根据权利要求1所述的无机复合凝胶体系,其特征在于,所述减水剂为木质素磺酸盐、萘磺酸盐甲醛聚合物、脂肪族羟基磺酸盐聚合物或芳香族氨基磺酸盐聚合物中的一种。
4.根据权利要求1所述的无机复合凝胶体系,其特征在于,所述降失水剂为苯乙烯磺酸盐、丙烯磺酸盐、N,N-二甲基丙烯酰胺、甲基丙烯酸或乙烯甲酰胺中的一种。
5.根据权利要求1所述的无机复合凝胶体系,其特征在于,所述激活剂为氧化铝、氧化钙、氧化镁或氧化亚锰中的一种。
6.根据权利要求1所述的无机复合凝胶体系,其特征在于,所述缓凝剂为葡萄糖、酒石酸钾、六偏磷酸钠、羧甲基纤维素钠或乙二胺四乙酸二钠中的一种。
7.根据权利要求1所述的无机复合凝胶体系,其特征在于,以质量百分比计,所述无机凝胶颗粒中包括以下组分,32~41%的二氧化硅、7~18%的三氧化二铝、32~48%的氧化钙、0.2~4%氧化铁。
8.根据权利要求1-7任一项所述的无机复合凝胶体系,其特征在于,所述无机凝胶颗粒的粒径为0.2-0.5mm。
9.根据权利要求1-7任一项所述的无机复合凝胶体系,其特征在于,所述无机凝胶颗粒的粒径为0.5-1.2mm。
CN202110630334.7A 2021-06-07 2021-06-07 一种无机复合凝胶体系 Pending CN113372899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110630334.7A CN113372899A (zh) 2021-06-07 2021-06-07 一种无机复合凝胶体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110630334.7A CN113372899A (zh) 2021-06-07 2021-06-07 一种无机复合凝胶体系

Publications (1)

Publication Number Publication Date
CN113372899A true CN113372899A (zh) 2021-09-10

Family

ID=77575997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110630334.7A Pending CN113372899A (zh) 2021-06-07 2021-06-07 一种无机复合凝胶体系

Country Status (1)

Country Link
CN (1) CN113372899A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960585A (zh) * 2022-11-08 2023-04-14 中石大蓝天(青岛)石油技术有限公司 一种纳米无机复合胶凝材料防砂封窜堵漏剂及方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037592A (zh) * 2006-03-17 2007-09-19 新疆石油管理局钻井工艺研究院 一种高密度泥浆转水泥浆固井液
CN101353570A (zh) * 2008-09-03 2009-01-28 中国石油新疆油田分公司采油工艺研究院 稠油热采注蒸汽井矿渣封堵剂
CN102061151A (zh) * 2009-11-13 2011-05-18 中国石油化工股份有限公司 一种石油钻井用堵漏承压剂及其制备方法和应用
CN103242813A (zh) * 2013-04-24 2013-08-14 中国石油集团渤海钻探工程有限公司 一种凝胶固化液及其制备方法
CN104130765A (zh) * 2014-07-04 2014-11-05 方立新 胶结支撑剂
CN104650836A (zh) * 2014-12-22 2015-05-27 中国石油集团川庆钻探工程有限公司长庆固井公司 一种水平井水泥浆
CN105084800A (zh) * 2015-09-02 2015-11-25 南京云越新材料科技有限公司 一种适于高温环境的水泥膨胀剂及其制备方法
CN106701049A (zh) * 2016-12-14 2017-05-24 中国石油天然气股份有限公司 微细颗粒型水平井堵水剂组合物及其应用
CN106747229A (zh) * 2017-03-03 2017-05-31 辽宁工程技术大学 一种直接堵漏纤维注浆材料及其制备方法
CN106957638A (zh) * 2017-01-20 2017-07-18 长江大学 一种固井用水泥浆体系
CN106967403A (zh) * 2017-04-24 2017-07-21 东北石油大学 一种油田储层大孔道或特高渗透条带封堵剂及其制备方法
CN106967393A (zh) * 2017-04-19 2017-07-21 中国石油集团川庆钻探工程有限公司工程技术研究院 一种可固化低密度堵漏工作液及其制备方法
CN107129798A (zh) * 2017-04-12 2017-09-05 中国石油化工股份有限公司 一种耐高温、可渗透人工井壁防砂剂
CN110734752A (zh) * 2018-07-18 2020-01-31 中石化石油工程技术服务有限公司 一种堵漏剂及其制备方法
CN111560240A (zh) * 2020-07-16 2020-08-21 海塔石油科技有限公司 一种超微级封窜堵漏剂及其制备方法和应用
CN112174618A (zh) * 2020-10-20 2021-01-05 陕西煤业化工技术研究院有限责任公司 一种矿用高强度抗收缩堵水材料及制备方法
CN112760084A (zh) * 2019-10-21 2021-05-07 中石化石油工程技术服务有限公司 一种油基钻井液用堵漏剂及其制备方法和应用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037592A (zh) * 2006-03-17 2007-09-19 新疆石油管理局钻井工艺研究院 一种高密度泥浆转水泥浆固井液
CN101353570A (zh) * 2008-09-03 2009-01-28 中国石油新疆油田分公司采油工艺研究院 稠油热采注蒸汽井矿渣封堵剂
CN102061151A (zh) * 2009-11-13 2011-05-18 中国石油化工股份有限公司 一种石油钻井用堵漏承压剂及其制备方法和应用
CN103242813A (zh) * 2013-04-24 2013-08-14 中国石油集团渤海钻探工程有限公司 一种凝胶固化液及其制备方法
CN104130765A (zh) * 2014-07-04 2014-11-05 方立新 胶结支撑剂
CN104650836A (zh) * 2014-12-22 2015-05-27 中国石油集团川庆钻探工程有限公司长庆固井公司 一种水平井水泥浆
CN105084800A (zh) * 2015-09-02 2015-11-25 南京云越新材料科技有限公司 一种适于高温环境的水泥膨胀剂及其制备方法
CN106701049A (zh) * 2016-12-14 2017-05-24 中国石油天然气股份有限公司 微细颗粒型水平井堵水剂组合物及其应用
CN106957638A (zh) * 2017-01-20 2017-07-18 长江大学 一种固井用水泥浆体系
CN106747229A (zh) * 2017-03-03 2017-05-31 辽宁工程技术大学 一种直接堵漏纤维注浆材料及其制备方法
CN107129798A (zh) * 2017-04-12 2017-09-05 中国石油化工股份有限公司 一种耐高温、可渗透人工井壁防砂剂
CN106967393A (zh) * 2017-04-19 2017-07-21 中国石油集团川庆钻探工程有限公司工程技术研究院 一种可固化低密度堵漏工作液及其制备方法
CN106967403A (zh) * 2017-04-24 2017-07-21 东北石油大学 一种油田储层大孔道或特高渗透条带封堵剂及其制备方法
CN110734752A (zh) * 2018-07-18 2020-01-31 中石化石油工程技术服务有限公司 一种堵漏剂及其制备方法
CN112760084A (zh) * 2019-10-21 2021-05-07 中石化石油工程技术服务有限公司 一种油基钻井液用堵漏剂及其制备方法和应用
CN111560240A (zh) * 2020-07-16 2020-08-21 海塔石油科技有限公司 一种超微级封窜堵漏剂及其制备方法和应用
CN112174618A (zh) * 2020-10-20 2021-01-05 陕西煤业化工技术研究院有限责任公司 一种矿用高强度抗收缩堵水材料及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王菲: "堵水防砂一体化胶凝材料的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *
纪朝凤 等: "高水速凝材料用于石油工程的室内研究", 《石油钻采工艺》 *
谢刚: "轻质高强透水性混凝土的配制及性能研究", 《混凝土与水泥制品》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960585A (zh) * 2022-11-08 2023-04-14 中石大蓝天(青岛)石油技术有限公司 一种纳米无机复合胶凝材料防砂封窜堵漏剂及方法

Similar Documents

Publication Publication Date Title
CN109293301B (zh) 一种防冻混凝土
CN107987224B (zh) 一种短支链交联保水溶剂层控释型聚羧酸保坍剂及制备方法
CN110550913B (zh) 一种抗渗混凝土及其制备工艺
CN103449762B (zh) 一种利用盾构尾砂制备的早强微膨胀同步注浆材料及其制备方法
CN105272069A (zh) 一种超细硅酸盐水泥基注浆材料及其制备方法
AU2013323976B2 (en) Cement compositions for cementing in confined locales and methods for use thereof
CN110734752A (zh) 一种堵漏剂及其制备方法
CN112592143B (zh) 一种粘土-矿渣基港口抗震加固矿物注浆材料及制备方法
CN114426818B (zh) 一种基于温敏记忆聚合物的固井防漏堵漏水泥浆体系及其制法和应用
CN109761547A (zh) 一种适合页岩气水平井大型分段压裂用的固井水泥浆体系
CN112047708B (zh) 一种喷射混凝土及其施工方法
CN111303846B (zh) 一种油气井固井盐水高密度水泥浆
CN114716984B (zh) 一种水基钻井液用胶结封堵型固壁剂及其制备方法与应用
CN113372899A (zh) 一种无机复合凝胶体系
WO2020015509A1 (zh) 一种注浆料制备方法
CN111848067B (zh) 一种用于大型桥梁支座的灌浆料及其制备方法
CN108892453A (zh) 一种应用于停机坪的干硬性混凝土
CN115505070A (zh) 耐高温膨胀纤维树脂堵漏材料及其制备方法与在固井水泥浆防漏堵漏中的应用
CN109370558A (zh) 一种适用于油气储层暂堵压裂工艺的暂堵剂及地层水封堵方法
CN115432979A (zh) 一种用于富水环境下大断面隧道二衬自密实混凝土
CN115159924A (zh) 一种水下不分散混凝土及其制备方法
CN1621384A (zh) 纳米基混凝土改性剂
CN101696095B (zh) 沿空留巷支护专用水泥砼外加剂
CN114163202B (zh) 一种用于天然气水合物储层的可控固化堵漏剂及其制备方法
CN115716730B (zh) 一种弹韧性微膨胀水泥浆及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination