CN113366349A - 包括被动温度补偿的光学设备 - Google Patents

包括被动温度补偿的光学设备 Download PDF

Info

Publication number
CN113366349A
CN113366349A CN202080008431.6A CN202080008431A CN113366349A CN 113366349 A CN113366349 A CN 113366349A CN 202080008431 A CN202080008431 A CN 202080008431A CN 113366349 A CN113366349 A CN 113366349A
Authority
CN
China
Prior art keywords
optical device
refractive index
temperature
refractive
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080008431.6A
Other languages
English (en)
Other versions
CN113366349B (zh
Inventor
曼纽尔·阿施万登
罗马·帕特谢德
斯蒂芬·斯莫尔卡
克里斯多夫·兰宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optotune AG
Original Assignee
Optotune AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optotune AG filed Critical Optotune AG
Publication of CN113366349A publication Critical patent/CN113366349A/zh
Application granted granted Critical
Publication of CN113366349B publication Critical patent/CN113366349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lenses (AREA)

Abstract

一种光学设备(1),包括:第一折射元件(10),其被配置为折射入射光(L),其中所述第一折射元件(10)包括第一折射率(n1(T))和用于接收所述入射光的波前(W)的第一表面S1(T);第二折射元件(11),其被配置为折射来自所述第一折射元件(10)的光,其中所述第二折射元件(11)被布置为与所述第一折射元件(10)相邻,使得在所述第一折射元件(10)和所述第二折射元件(11)之间形成第二表面(S2(T)),光能够经由所述第二表面(S2(T))从所述第一折射元件(10)传递到所述第二折射元件(11),并且其中所述第二折射元件(11)包括第二折射率(n2(T))和第三表面(S3(T)),所述第三表面(S3(T))用于透射来自所述第一折射元件(10)并穿过所述第二折射元件(11)的光,以及其中,所述折射率(n1(T)、n2(T))和所述表面(S1(T)、S2(T)、S3(T))的形状被调整为使得当所述光学设备的温度(T)位于预定义温度范围内时,经透射的光的波前(W')的形状与所述光学设备的所述温度无关。

Description

包括被动温度补偿的光学设备
技术领域
本发明涉及一种光学设备,特别是透镜,特别是液体透镜,特别是具有可调光焦度(光焦度是透镜焦距的倒数)和/或可调表面形状的液体透镜。
背景技术
通常,包括被配置成折射穿过折射元件(例如,透镜)10的光的折射元件(例如,参见图1)的光学设备具有这样的缺点,由于折射元件(即,其材料)10的折射率n1以及折射元件10的两个相对表面S1(T)、S2(T)的形状(光/入射波前W通过该表面穿过折射元件10)随温度T变化,透射的波前W'随折射元件10的温度T而变化。因此,这种折射元件10经历其折射特性的不利的热致变化。
发明内容
因此,本发明的目的是提供一种光学元件,其能够产生与温度无关的经透射波前,因此不会经历热致变化。
该问题通过具有权利要求1的特征的光学设备来解决。
该光学设备的优选实施例在从属权利要求中陈述并在下面描述。
根据权利要求1,公开了一种光学设备,包括:
-第一折射元件,其被配置成折射入射光,其中第一折射元件包括第一折射率和用于接收所述入射光的波前的第一表面,
-第二折射元件,其被配置成折射来自第一折射元件的光,其中第二折射元件被布置成与第一折射元件相邻,使得在第一折射元件和第二折射元件之间形成第二表面,光能够经由第二表面从第一折射元件穿过到第二折射元件,并且其中第二折射元件包括第二折射率和第三表面,所述第三表面用于透射来自第一折射元件并穿过第二折射元件的光,以及
-其中,折射率和表面的形状被选择为使得经透射的光的波前的形状与光学设备的温度(例如,对于光学设备的预定义波前或光焦度)无关,特别是当所述温度位于预定义温度范围内时。
为了设计光学设备,可以假设所述温度在整个透镜中都是恒定的(例如,由于热平衡)。然而,当操作光学设备时,后者也可以表现出温度梯度,即温度分布。
根据一个实施例,所述温度范围对应于-40℃至85℃的温度,特别是0℃至65℃的温度。
根据本发明的实施例,为了调整第一折射率,第一折射元件由对应的透明第一材料形成,并且其中为了调整第二折射率,第二折射元件由对应的透明第二材料形成。
此外,根据本发明的实施例,由于光学设备的热膨胀(例如,由升高的温度引起),第一折射率和第一表面的形状取决于温度。在此,特别地,可以选择第一和第二材料,使得第二折射率的温度相关性以及第二和第三表面的形状与第一折射率和第一表面形状相比是可忽略的,并且因此可以忽略不计。
此外,根据本发明的实施例,第二折射率以及第二表面和第三表面的形状各自取决于温度(例如,达到与第一折射率和第一表面类似的程度)。
此外,根据本发明的实施例,第一和第二折射率还可以取决于入射光的波长,即,第一材料和第二材料使得所述折射率也取决于入射光的波长。
此外,根据本发明的实施例,选择表面的折射率和形状,使得当温度处于预定义温度范围内时,经透射的光的波前形状与温度无关,并且减小或防止两个折射元件的色差(例如,相对于仅具有一种材料的折射系统)。
根据本发明的另一实施例,第二表面包括弯曲形状。
此外,根据本发明的实施例,两个折射元件形成具有可调焦距的透镜,其中第一折射元件包括被布置在第一表面和第二表面之间的透明液体,其中第一表面是可弹性变形的并且包括具有取决于温度的可调第一半径的形状(因为液体的体积随温度而改变),并且其中第二折射元件是刚性的并且形成包括具有第二半径的形状的第二表面,并且其中第三表面包括平面形状、凹入形状、凸出形状中的一个。
根据一个实施例,第一表面的形状包括球形和/或圆柱形分量。此外,第一表面的形状可以是以下形状之一:球形、圆柱形。
此外,根据一个实施例,第二表面的形状可以包括球形和/或圆柱形分量。
此外,特别地,第二表面的形状可以是以下之一:球形、圆柱形,或者可以包括更复杂的几何形状(例如,可以包括除了球形或圆柱形分量之外的分量)。例如,第二表面可以包括锥形部分或锥形部件。
此外,根据本发明的实施例,对于给定第一折射率、给定温度相关第一半径和入射光的平面波前,选择第二折射率、第二半径和第三表面形状(例如第三半径),使得当温度在预定义范围内时,经透射的光的波前与该温度无关。
此外,根据本发明的实施例,第一折射率表现出比第二折射率更显著的温度相关性,即,第一折射率随温度的变化幅度大于第二折射率随温度的变化幅度。
特别地,第一材料包括比第二材料的总体积热膨胀系数大的总体积热膨胀系数。
此外,根据本发明的实施例,第一折射率低于第二折射率。
此外,根据本发明的实施例,液体包括比第二折射元件低的色散。
此外,根据本发明的实施例,透镜形成消色差透镜。
此外,根据本发明的实施例,第二表面包括具有外径的平坦环形边界部分,其中边界部分围绕具有小于所述外径的直径的中心凹入部分。
特别地,外径对应于以下中的至少一个的直径:第一表面、第二表面、第三表面。
根据另一实施例,光学设备包括接触光学设备的透明且可弹性变形的膜的透镜整形器,其中第一表面由膜的表面的中心部分形成,其中膜的表面的所述中心部分由透镜整形器限定。为此,透镜整形器包括圆周边缘,所述中心部分从该圆周边缘突出。以这种方式,透镜整形器限定了膜的所述中心部分。该中心部分的曲率以及由此的透镜的光焦度可以通过用透镜整形器推压膜或通过在膜上拉动来调节。由于液体,中心部分因此可以例如通过用透镜整形器推压膜而被赋予凸出形状,或者例如通过用透镜整形器在膜上拉动而被赋予凹入形状。
此外,根据实施例,致动器被配置为作用于膜以调整第一半径(或膜的所述中心部分的曲率)。
根据另一实施例,致动器被配置为沿着光学设备的光轴移动致动器的移动件,其中移动件经由连接结构连接到透镜整形器,以沿着光轴移动透镜整形器,从而调整第一表面的第一半径以及光学设备的光焦度。
特别地,在一个实施例中,致动器包括固定磁体和移动件,其中移动件包括电线圈,用于产生磁场以与磁体的磁场相互作用,使得移动件沿光轴移动。
附图说明
在以下实施例中,参考附图描述本发明的特征和优点,其中
图1示出了具有第一表面和相对的第二表面的折射元件的示意性横截面图;
图2示出了根据本发明的光学设备的实施例的示意性横截面图;
图3示出了根据本发明的光学设备的另一实施例的示意性横截面图;
图4示出了根据本发明的光学设备的另一实施例的示意性横截面图;
图5示出了根据本发明的光学设备的另一实施例的示意性横截面图;
图6示出了根据本发明的光学设备的实施例,其形式为透镜(B)与未补偿透镜(A)相比,其中(C)示出了透镜的预期温度敏感性;
图7示出了根据本发明的光学设备的实施例,其形式为形成消色差透镜的透镜(B)与具有色差的未补偿透镜(A)相比;
图8示出了根据本发明的光学设备(例如透镜)的实施例,其中,这里与第一半径R1的主导温度相关性相比,忽略了折射率n1、n2和半径R2、R3的温度相关性;
图9示出了根据本发明的光学设备(例如透镜)的实施例,其包括刚性的平-凸的第二折射元件;
图10示出了根据本发明的光学设备(例如透镜)的实施例,其中第二表面包括围绕第二表面的中心凹入部分的平坦环形边界部分;
图11示出了包括根据图10的配置的实施例,其中光学设备包括平坦的第三表面和凸出的第一表面;
图12示出了包括根据图10的配置的实施例,其中光学设备包括凸出的第三表面和平坦的第一表面;以及
图13示出了根据本发明的光学设备的实施例,其形式为具有可调光焦度(或焦距)的透镜1,其中优选地,该透镜包括如图10所示的配置。
具体实施方式
图1示出了现有技术中已知的折射元件10的示意性横截面图,其具有第一表面S1和相对的第二表面S2。表面S1、S2均包括取决于温度(例如,由于下层材料的体积的温度相关性)的形状。因此,入射光L的入射波前W产生离开第二表面S2的经透射波前,该经透射波前包括取决于折射元件10的温度T的形状。
图2示出了说明本发明原理的示意性横截面图。根据该实施例,该光学设备包括被配置成折射入射光L的第一折射元件10,其中第一折射元件10包括第一折射率n1(T)和第一表面S1(T),以用于接收所述入射光的(例如,恒定的,特别是平面的)波前W。设备1还包括第二折射元件11,其被配置用于折射来自第一折射元件10的光,其中第二折射元件11被设置成与第一折射元件10相邻,从而在第一折射元件10和第二折射元件11之间形成第二表面S2(T),光可以通过该第二表面S2(T)从第一折射元件10传递到第二折射元件11。此外,第二折射元件11包括第二折射率n2(T)和第三表面S3(T),以用于透射来自第一折射元件10并穿过第二折射元件11的光。现在,根据本发明,折射率n1(T)、n2(T)和表面S1(T)、S2(T)、S3(T)的形状特别取决于折射元件10、11的温度T,并且被调整为使得当所述温度T处于预定温度范围内时,经透射的光的波前W'的形状与温度T无关。
换句话说,根据本发明,可以找到使经透射波前W'与温度无关的n1(T)、n2(T)、S1(T)、S2(T)和S3(T)的组合。
图3示出了包括结合图2描述的部件的光学设备1的另一实施例,其中在此折射率n1(T,λ)、n2(T,λ)也取决于撞击在设备1上的光L的波长。
在此,选择n1(T,λ)、n2(T,λ)、S1(T)、S2(T)和S3(T),使得经透射波前W'呈现为温度无关,其中此外,经透射波前W'对波长的相关性减小或消失(例如,设备1形成消色差透镜)。
图4示出了图2所示实施例的进一步修改,其中在此可忽略第二折射率n2(T)的温度相关性以及第二和第三表面S2、S3的形状的温度相关性。
在给定第一折射率n1(T)和第一表面S1(T)的情况下,可以选择第二折射率n2以及第二和第三表面S2和S3以使经透射波前W'与温度无关。
此外,图5示出了本发明的应用示例,其中,(例如,恒定的,特别是平面的)波前W也入射在设备10的第一折射元件10的第一表面S1上,其中第一表面S1(T)是包括可调半径R1的柔性球面。第一表面S1(T)界定第一折射元件10的透明液体12,其中由于液体12的热膨胀,第一半径R1(T)是液体12/第一折射元件10的温度T的函数。
液体12还由相对的第二表面S2界定,该第二表面是刚性的第二折射元件11的表面,其中该第二表面S2包括固定半径R2,使得液体12形成图5中的双凸容积。第二折射元件11的第三表面S3是平坦表面S3
在给定第一折射率n1(T)和第一半径R1(T)作为温度T的函数的情况下,根据本发明选择第二折射率n2和第二半径R2,使得经透射波前W'仍然是平面的,如同入射波前W并且与温度无关。
在此,在该实施例中,第一折射率n1(T)优选包括强的温度相关性,特别是低色散(例如透明光学液体12,诸如液体聚合物,特别是硅油)。此外,第二折射率n2(与第一折射率相比)优选地包括弱温度相关性并且特别地包括高色散(例如玻璃)。
特别地,本发明的概念对材料的折射率的绝对大小不敏感,并且仅对折射率随温度的相对变化敏感。因此,根据优选实施例,第一和第二材料两者可以具有相同的折射率(例如,在标称设计温度下)。此外,根据优选实施例,为液体选择高折射率,使得第一表面S1(T)的曲率可减小。
图6(B)示出了图5中所示的设备1的实施例,其中在此光学设备1形成透镜,该透镜包括透明和刚性(例如玻璃)窗口11(第二折射元件)、液体填充容器10(第一折射元件)和形成可变形表面的膜S1,其中透镜1允许调节第一半径R1(例如借助于致动器)。在此,第二表面和第三表面S2、S3由窗口11形成。
特别地,液体12的热膨胀导致第一半径R1的变化,其中例如dR1/dT<0。
此外,液体12的第一折射率n1也是温度相关的,其中在此例如dn1/dT<0。
现在可以选择R2和R1,使得与图6(A)中所示的传统透镜相比,对于所选的光焦度(dFP/dT|FP=0=0),透镜1被完全温度补偿(参见图6(C))。特比地,可以对透镜1的任何选定的光焦度实现dFP/dT|FP=0。光焦度(focal power)(也表示为光焦度(optical power))对应于焦距的倒数值。
此外,如图7(B)所示,折射材料12(例如光学液体12)可以被赋予低折射率和低色散,而折射材料11(例如窗口,特别是玻璃)可以被赋予高折射率和高色散,使得该组合与左手侧所示的标准透镜(例如图7(A))相比形成消色差双合透镜。
为了说明本发明的具体示例,图8示出了根据本发明的光学设备1(例如透镜)的配置,其中,在此与第一半径R1的主导温度相关性相比,忽略了折射率n1、n2和半径R2、R3的温度相关性。当第一折射元件10由液体12形成时,这种方法特别地合理。特别地,如将在下面结合图13更详细地描述的,液体12由容器2包围,其中所述容器2的透明且可弹性变形的膜25的表面的至少一部分形成第一表面S1
利用空气中的厚透镜(n=1)的公式,可以根据下式计算各个折射元件10、11的光焦度
Figure BDA0003153638870000071
Figure BDA0003153638870000072
其中d1和d2是元件10、11在透镜1的光轴A的方向上在光轴A的位置(即,各个元件10、11的中心)处的厚度。
总的光焦度因此等于
FPTotal=FPlens1+FPlens2
以及由于从T0到T1的温度漂移导致的总光焦度漂移总计等于
ΔFP=FPTotal(T1)-FPTotal(T0)
使用该公式,半径R1、R2、R3和折射率n1、n2可以被选择(在温度T0下)使得在给定的总光焦度下,由于温度变化(例如从T0到T1)而引起的总光焦度的漂移为零,这在图9(A)中描绘的具体示例中针对刚性的平-凹第二折射元件11(即R3为无穷大)和由填充有透明液体12(例如液体聚合物,诸如硅油)的容器2形成的第一折射元件10示出,该容器被布置在膜22与由刚性第二折射元件11形成的第二表面S2之间。特别地,典型的对中点可以是T0=30℃。
根据图9(B)和图9(C),在等于零的总光焦度下,第一折射率选择为n1=1.38,第二折射率选择为n2=1.65,而半径选择为R1=6.05mm,R2=3.92mm,R3=Inf。参数的这种选择实现了所选光焦度的温度无关性,如图9(C)的下部曲线图所示。上部曲线图表示在未补偿透镜的情况下温度的相关性。
此外,根据图10所示的实施例,第二表面S2包括具有外径D1的平坦环形边界部分13a,其中边界部分13a连接到并围绕第二表面S2的中心凹入部分13b,其中所述中心部分13b包括小于所述外径D1的直径D2。其中在此外径D1对应于所述表面S1、S2和S3的直径。
图11和12示出了使用图10所示的透镜几何形状的特定温度补偿配置。
特别地,在图11(A)所示的示例中,透镜1包括平坦的第三表面S3(即,R3=Inf)和凸出的第一表面S1,其中根据图11(B)图11和(C),在等于零的总光焦度处,第一折射率选择为n1=1.38,并且第二折射率选择为n2=1.458(在此第二材料是熔融石英),而半径选择为R1=27mm,R2=5.37mm,并且R3=Inf。参数的这种选择实现了所选光焦度的温度无关性,如图11(C)的下部曲线图所示。上部曲线图表示在未补偿透镜的情况下温度的相关性。
此外,根据图12,对于第一表面S1是平坦的且第三表面S3包括凸出形状的配置实现了温度补偿。
根据图12(B)和图12(C),在等于零的总光焦度下,第一折射率选择为n1=1.38,第二折射率选择为n2=1.458(在此第二材料是熔融石英),而半径选择为R1=Inf,R2=4.95mm和R3=25.26mm。参数的这种选择实现了所选光焦度的温度无关性,如图12(C)的下部曲线图所示。上部曲线图表示在未补偿透镜的情况下温度的相关性。
此外,图13示出了根据本发明的光学设备的实施例,其形式为具有可调光焦度(或焦距)的透镜1,其中特别地,透镜1包括如图10所示的配置。
在此,第一折射元件10由填充有透明液体12(第一材料)的容器2形成,其中容器2包括圆周侧壁2a以及由第二刚性折射元件11形成的底部2b,第二刚性折射元件11形成凸出的第三表面S3和相对的第二表面S2,第二表面S2形成容器2的所述底部2c。特别地,所述第二表面S2包括由环形平坦部分13a围绕的中心凹入部分13b,其中所述凹入部分13b的直径D2小于第三表面S3的直径D1。容器2由透明的且可弹性变形的膜25封闭,该膜与容器2的底部2c相对。
第二折射元件11由透明的第二固体材料形成,例如玻璃或塑料材料(例如聚合物)。
特别地,透镜1包括根据本发明的被动温度补偿,例如,在给定可调的第一半径R1(T)的情况下,折射率n1、n2和剩余的第二和第三表面的形状被选择,使得对于给定的光焦度,光焦度变得与温度无关,如图11(C)和图12(C)所示。
为了调节透镜1的光焦度,后者包括致动器20,该致动器被配置为移动接触所述膜25的透镜整形器24,其中,具有第一半径R1的透镜的第一表面S1由膜25的表面25a的中心部分形成,其中,膜25的表面25a的所述部分由透镜整形器24限定,即,延伸到透镜整形器24的圆周内边缘24a。
特别地,根据实施例,致动器20可以被配置为沿着光学设备1的光轴A移动致动器20的移动件22,其中,移动件22经由连接结构23连接到透镜整形器24,以沿着光轴A(即,在方向B或相反的方向B'上)移动透镜整形器24,从而调节第一表面S1的第一半径R1,并由此调节光学设备1的光焦度。这是由于以下事实,即,液体12填充容器2,当透镜整形器24沿着方向B移动时,这导致第一表面S1向外凸出,这进而增加光焦度(因为R1减小)。在透镜整形器24沿相反方向B'移动的情况下,光焦度相应地减小。
特别地,移动件22可包括电线圈21,其中致动器20可进一步包括磁体23。线圈21被配置为当电流通过线圈21时产生磁场以与磁体23的磁场相互作用,从而沿光轴A(即,根据流过线圈21的电流的方向沿方向B或B')移动移动件22。

Claims (23)

1.一种光学设备(1),包括:
-第一折射元件(10),其被配置为折射入射光(L),其中所述第一折射元件(10)包括第一折射率(n1(T))和用于接收所述入射光的波前(W)的第一表面S1(T),
-第二折射元件(11),其被配置为折射来自所述第一折射元件(10)的光,其中所述第二折射元件(11)被布置为与所述第一折射元件(10)相邻,使得在所述第一折射元件(10)和所述第二折射元件(11)之间形成第二表面(S2(T)),光能够经由所述第二表面(S2(T))从所述第一折射元件(10)传递到所述第二折射元件(11),并且其中所述第二折射元件(11)包括第二折射率(n2(T))和第三表面(S3(T)),所述第三表面(S3(T))用于透射来自所述第一折射元件(10)并穿过所述第二折射元件(11)的光,以及
-其中,所述折射率(n1(T)、n2(T))和所述表面(S1(T)、S2(T)、S3(T))的形状被调整为使得当所述光学设备的温度(T)位于预定义温度范围内时,经透射的光的波前(W')的形状与所述光学设备的所述温度无关。
2.根据权利要求1所述的光学设备,其中,为了调整所述第一折射率(n1(T)),所述第一折射元件(10)由对应的第一材料形成,并且其中,为了调整所述第二折射率(n2(T)),所述第二折射元件(11)由对应的第二材料形成。
3.根据权利要求1或2所述的光学设备,其中,所述第一折射率(n1(T))和所述第一表面的形状(S1(T))取决于所述温度(T)。
4.根据权利要求3所述的光学设备,其中,所述第二折射率(n2(T))比所述第一折射率(n1(T))随温度(T)的变化更小,并且其中,所述第二表面的形状(S2(T))和所述第三表面的形状(S3(T))均比所述第一表面的形状(S1(T))随温度(T)的变化更小。
5.根据权利要求1至3中任一项所述的光学设备,其中,所述第二折射率(n2(T))以及所述第二表面(S2(T))和所述第三表面(S3(T))的形状均取决于所述温度(T)。
6.根据前述权利要求中任一项所述的光学设备,其中,所述第一折射率(n1(T,λ))和所述第二折射率(n2(T,λ))还取决于所述入射光(L)的波长(λ)。
7.根据权利要求6所述的光学设备,其中,所述折射率(n1(T,λ)、n2(T,λ))和所述表面(S1(T)、S2(T)、S3(T))的形状被调整为使得当所述温度(T)位于预定义温度范围内并且所述光学设备的色差被减小或防止时,经透射的光的波前(W')的形状与所述温度(T)无关。
8.根据前述权利要求中任一项所述的光学设备,其中,所述第二表面(S2(T))包括弯曲形状。
9.根据前述权利要求中任一项所述的光学设备,其中,所述两个折射元件(10、11)形成具有可调焦距的透镜,其中,所述第一折射元件(10)包括被布置在所述第一表面(S1(T))与所述第二表面(S2)之间的透明液体(12),其中,所述第一表面(S1(T))可弹性变形并且包括具有取决于温度的可调第一半径(R1(T))的形状,并且其中,所述第二折射元件(11)是刚性的并且形成包括具有第二半径(R2)的形状的所述第二表面(S2),并且其中,特别地,所述第三表面(S3)包括以下中的一者:平面形状、凸出形状、凹入形状。
10.根据权利要求9所述的光学设备,其中,所述第一表面(S1)的形状或所述第二表面(S2)的形状包括球形和/或圆柱形分量。
11.根据权利要求9或10所述的光学设备,其中,所述光学设备(1)包括致动器(20),所述致动器被配置为调整所述第一半径(R1(T))。
12.根据前述权利要求中任一项所述的光学设备,其中,对于给定的第一折射率(n1(T))、给定的温度相关的第一半径R1(T)和所述入射光的平面波前(W),所述第二折射率(n2)、所述第二半径(R2)和所述第三表面(S3)被调整为使得当所述温度(T)在所述预定义范围内时,对于所述光学设备的预定义光焦度,所述经透射的光的所述波前(W')与所述温度(T)无关。
13.根据前述权利要求中任一项所述的光学设备,其中,所述第一折射率(n1(T))表现出比所述第二折射率(n2(T))更强的温度相关性。
14.根据前述权利要求中任一项所述的光学设备,其中,所述第一材料包括比所述第二材料的总体积热膨胀系数大的总体积热膨胀系数。
15.根据前述权利要求中任一项所述的光学设备,其中,所述第一折射率(n1(T))小于或等于所述第二折射率(n2(T))。
16.根据权利要求9或根据权利要求10至15在其引用权利要求9时中任一项所述的光学设备,其中,所述液体(12)包括比所述第二折射元件(11)更低的色散。
17.根据权利要求9或根据权利要求10至16在其引用权利要求9时中任一项所述的光学设备,其中,所述透镜(10、11)形成消色差透镜。
18.根据前述权利要求中任一项所述的光学设备,其中,所述第二表面(S2)包括具有外径(D1)的平坦环形边界部分(13a),其中,所述边界部分(13a)围绕具有小于所述外径(D1)的直径(D2)的中心凹入部分(13b)。
19.根据权利要求18所述的光学设备,其中,所述外径(D1)对应于以下中的至少一个的直径:第一表面(S1)、第二表面(S2)、第三表面(S3)。
20.根据权利要求9或根据权利要求10至19中任一项所述的光学设备,其中,所述光学设备(1)包括接触所述光学设备(1)的透明且可弹性变形的膜(25)的透镜整形器(24),其中所述第一表面(S1)由所述膜(25)的表面(25a)的中心部分形成,其中所述膜(25)的所述表面(25a)的所述部分由所述透镜整形器(24)限定。
21.根据权利要求11和20所述的光学设备,其中,所述致动器被配置为作用于所述膜(25)以调整所述第一半径(R1)。
22.根据权利要求11并且根据权利要求20或21所述的光学设备,其中,所述致动器(20)被配置为沿着所述光学设备(1)的光轴(A)移动所述致动器(20)的移动件(22),其中,所述移动件(22)经由连接结构(23)连接到所述透镜整形器(24),以沿着所述光轴(A)移动所述透镜整形器(24),从而调节所述第一表面(S1)的第一半径(R1),并由此调节所述光学设备(1)的光焦度。
23.根据权利要求22所述的光学设备,其中,所述致动器(20)包括磁体(23)和移动件(22),其中,所述移动件(22)包括电线圈(21),所述电线圈(21)用于产生磁场以与所述磁体(23)的磁场相互作用,使得所述移动件(22)沿着所述光轴(A)移动。
CN202080008431.6A 2019-01-08 2020-01-08 包括被动温度补偿的光学设备 Active CN113366349B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19150839.9 2019-01-08
EP19150839 2019-01-08
PCT/EP2020/050338 WO2020144242A1 (en) 2019-01-08 2020-01-08 Optical device comprising passive temperature compensation

Publications (2)

Publication Number Publication Date
CN113366349A true CN113366349A (zh) 2021-09-07
CN113366349B CN113366349B (zh) 2023-05-26

Family

ID=65019308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008431.6A Active CN113366349B (zh) 2019-01-08 2020-01-08 包括被动温度补偿的光学设备

Country Status (4)

Country Link
US (1) US20220099914A1 (zh)
EP (1) EP3908864A1 (zh)
CN (1) CN113366349B (zh)
WO (1) WO2020144242A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236802A1 (en) * 2006-02-01 2007-10-11 Fujinon Corporation Optical device, optical unit and imager
US20080247052A1 (en) * 2004-03-30 2008-10-09 Koninklijke Philips Electronics, N.V. Optical Element For Correcting Refractive Index Related Abberations
US20100208357A1 (en) * 2005-05-14 2010-08-19 Holochip Corporation Fluidic lens with reduced optical aberration
US20120229877A1 (en) * 2009-09-14 2012-09-13 Thomas Spatscheck Optical power switch (ops)
US20150049391A1 (en) * 2013-08-13 2015-02-19 Telesto GmbH Liquid lens for controlled setting of a specific focal length
US20160357010A1 (en) * 2015-06-03 2016-12-08 Webster Capital Llc Optical device with variable aperture
WO2017118656A1 (en) * 2016-01-04 2017-07-13 Optotune Ag Optical system comprising a curved image sensor
US20180136372A1 (en) * 2015-06-17 2018-05-17 Optotune Consumer Ag Temperature drift compensation for liquid lenses
WO2018151524A1 (ko) * 2017-02-14 2018-08-23 엘지이노텍(주) 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247052A1 (en) * 2004-03-30 2008-10-09 Koninklijke Philips Electronics, N.V. Optical Element For Correcting Refractive Index Related Abberations
US20100208357A1 (en) * 2005-05-14 2010-08-19 Holochip Corporation Fluidic lens with reduced optical aberration
US20070236802A1 (en) * 2006-02-01 2007-10-11 Fujinon Corporation Optical device, optical unit and imager
US20120229877A1 (en) * 2009-09-14 2012-09-13 Thomas Spatscheck Optical power switch (ops)
US20150049391A1 (en) * 2013-08-13 2015-02-19 Telesto GmbH Liquid lens for controlled setting of a specific focal length
US20160357010A1 (en) * 2015-06-03 2016-12-08 Webster Capital Llc Optical device with variable aperture
US20180136372A1 (en) * 2015-06-17 2018-05-17 Optotune Consumer Ag Temperature drift compensation for liquid lenses
WO2017118656A1 (en) * 2016-01-04 2017-07-13 Optotune Ag Optical system comprising a curved image sensor
WO2018151524A1 (ko) * 2017-02-14 2018-08-23 엘지이노텍(주) 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기

Also Published As

Publication number Publication date
EP3908864A1 (en) 2021-11-17
CN113366349B (zh) 2023-05-26
US20220099914A1 (en) 2022-03-31
WO2020144242A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
CN108603951B (zh) 包括弯曲的图像传感器的光学系统
US11500132B2 (en) Tunable lens device
CN111033321B (zh) 用于光学图像稳定和聚焦调节的透镜配件
CN107850696B (zh) 用于液体透镜的温度漂移补偿
EP2034338A1 (en) Liquid Lens System
WO2015052233A1 (en) Tunable lens
EA001165B1 (ru) Объектив с переменным фокусным расстоянием с малыми изменениями его экваториального диаметра
US20200003934A1 (en) Liquid lenses
US8587874B2 (en) Fluid Pressure Liquid Lens
Liang et al. Zoom optical system using tunable polymer lens
US9335448B2 (en) Liquid lens maximizing the elastic strain energy
Wapler et al. Aspherical high-speed varifocal mirror for miniature catadioptric objectives
CN113366349B (zh) 包括被动温度补偿的光学设备
US20190377172A1 (en) Adjustable fluid lens with reduced aberration
US20220035079A1 (en) Variable volume liquid lenses
Wippermann et al. Mechanically assisted liquid lens zoom system for mobile phone cameras
Du et al. Bionic optical imaging system with aspheric solid–liquid mixed variable-focus lens
Huang et al. Improved optical resolution for elastomer-liquid lens at high diopter using varied thickness membrane
JP2023531381A (ja) 屈曲ジョイントを介して作動する制御可能レンズ
KR101532146B1 (ko) 렌즈 모듈
WO2023105075A1 (en) Imaging system
CZ25953U1 (cs) Kapalinová čočka

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Dietikon in Switzerland

Applicant after: Uptotuni Switzerland AG

Address before: Dietikon in Switzerland

Applicant before: OPTOTUNE AG

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant