CN113364375A - 变结构电流调节器的pmsm驱动系统无传感器控制方法 - Google Patents

变结构电流调节器的pmsm驱动系统无传感器控制方法 Download PDF

Info

Publication number
CN113364375A
CN113364375A CN202110679406.7A CN202110679406A CN113364375A CN 113364375 A CN113364375 A CN 113364375A CN 202110679406 A CN202110679406 A CN 202110679406A CN 113364375 A CN113364375 A CN 113364375A
Authority
CN
China
Prior art keywords
current regulator
permanent magnet
magnet synchronous
axis
sensorless control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110679406.7A
Other languages
English (en)
Other versions
CN113364375B (zh
Inventor
刘朝华
聂杰
陈磊
吴亮红
吕明阳
李小花
张铸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN202110679406.7A priority Critical patent/CN113364375B/zh
Publication of CN113364375A publication Critical patent/CN113364375A/zh
Application granted granted Critical
Publication of CN113364375B publication Critical patent/CN113364375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种变结构电流调节器的PMSM驱动系统无传感器控制方法,包括以下步骤:1)建立逆变器非线性因素下表贴式永磁同步电机的数学模型:2)建立d轴变结构电流调节器的数学模型:3)建立模型参考自适应观测器与滑模观测器的数学模型。本发明提出了基于d轴变结构电流调节器与逆变器非线性因素补偿的永磁同步电机无传感器控制方法,该方法能够利用滑模运动的优势,增强电流调节器对外部扰动的鲁棒性、减少控制器的参考电压与逆变器的实际输出电压之间存在的误差,从而获取更为精确的指令电压,能够提升PMSM无传感器控制的精度与动态性能,尤其适用于存在参数变化、低速、转速突变的系统。

Description

变结构电流调节器的PMSM驱动系统无传感器控制方法
技术领域
本发明涉及电机控制领域,特别涉及一种基于表贴式永磁同步电机的无传感器控制方法。
背景技术
永磁同步电动机由于其高效率和高转矩密度,已广泛应用于电动汽车、飞轮储能系统和风能转换系统等领域。磁场定向控制和直接转矩控制是永磁同步电机常用的两种速度控制技术。直接转矩控制通过对转矩和磁链的精确控制,实现了一种简单快速的速度控制,然而,它包含了转矩和磁通脉动。磁场定向控制通过将定子电流分为直轴和交轴分量,并分别作为磁场和电枢电流进行控制,提供了更好的速度响应,就像直流电机的情况一样,遗憾的是,在传统的磁场定向控制策略中,需要知道实时转子位置和转速的精确信息,因此在空间有限的齿轮箱中需要编码器、转速计或其他机械位置传感器。机械传感器的使用降低了系统的可靠性,增加了电机的体积,也使电机的设计变得复杂。基于这些考虑,无传感器技术在永磁同步电机中起着非常重要的作用,取代了机械传感器,与传统的矢量控制驱动相比具有明显的优势。
目前提出的各种无位置传感器方法大致可分为两类:高频信号注入法和基于反电动势模型的方法。高频信号注入法即使在低速范围和零速中也有很好的性能。然而,由于注入信号会产生不必要的噪声等缺点,且这种方法不能应用于表贴式永磁同步电机。与高频信号注入法不同,基于反电势模型的方法对永磁同步电机的结构没有限制,不需要额外的高频信号源。常用的基于反电势模型的方法包括滑模控制、模型参考自适应系统和扩展卡尔曼滤波。在这些方法中,观测器的设计是非常重要的,因为估计的质量将直接影响整个控制方案的性能。另外,永磁同步电动机通常由电压源逆变器供电,这是很难直接测量的。而用于MRAS观测器的电压通常来自电流调节器的输出电压,由于逆变器的非线性,控制器的参考电压与逆变器的实际输出电压之间存在误差。因此,忽略逆变器的非线性必将影响无传感器控制的性能。
发明内容
为了解决上述技术问题,本发明提供一种算法简单、控制性能高、对参数变化具有鲁棒性的基于变结构电流调节器的PMSM驱动系统无传感器控制方法。
本发明解决上述问题的技术方案是:一种变结构电流调节器的PMSM驱动系统无传感器控制方法,包括以下步骤:
1)建立逆变器非线性因素下表贴式永磁同步电机的数学模型:通过搭建一种无需任何附加电路和离线实验测量的干扰观测器,将绝缘栅双极型晶体管IGBT的死区和非理想开关特性引起的干扰电压前馈到d/q电流控制回路中,以补偿逆变器的非线性因素;
2)建立d轴变结构电流调节器的数学模型:采用切换控制律将被控对象的状态轨迹驱动到状态空间中的一个选定滑动面上,并通过sigmoid函数优化滑模运动中sign函数的不连续特性,从而实现磁通控制;
3)建立模型参考自适应观测器与滑模观测器的数学模型:在基于d轴变结构电流调节器的基础上,分别利用模型参考自适应观测器与滑模观测器作为永磁同步电机的两种无传感控制的实现方法。
上述变结构电流调节器的PMSM驱动系统无传感器控制方法,所述步骤1)具体过程为:
建立逆变器非线性因素下表贴式永磁同步电机基于旋转坐标系的电机模型如下:
Figure BDA0003122278440000031
其中,Rs为定子电阻;ud、uq分别为d、q轴定子电压;id、iq分别为d、q轴定子电流;Ld、Lq分别为d、q轴定子电感;ωe为电磁转速;
Figure BDA0003122278440000032
为永磁体磁链,[ud,com,uq,com]T为d、q轴的补偿电压;[ud,dead,uq,dead]T为逆变器的非线性所造成的扰动电压,从以下公式中得出:
Figure BDA0003122278440000033
Figure BDA0003122278440000034
其中,uq,dead、ud,dead分别为d、q轴扰动电压;udead为畸变电压;Ton和Toff是逆变器开关动作的延迟时间;Tdead是开关管控制的死区时间;Ts为脉宽调制的周期;udc为直流母线电压;usat为有源开关的饱和电压降;uf为续流二极管的正向电压降;θr为永磁同步电机的转子位置角,Krr)是旋转系数,从以下公式得出:
Figure BDA0003122278440000041
上述变结构电流调节器的PMSM驱动系统无传感器控制方法,所述步骤2)中,采用切换控制律将被控对象的状态轨迹驱动到状态空间中的一个选定滑动面上,为了减小抖振效应并增加控制器调谐的自由度,采用sigmoid函数来代替符号函数;
d轴电流调节器的数学模型设计为:
Figure BDA0003122278440000042
Figure BDA0003122278440000043
其中,Sid为设计的滑模面;
Figure BDA0003122278440000044
为d轴的电流误差;
Figure BDA0003122278440000045
为εid的一阶导数;Cid为滑模面的系数;Ki1和Ki2是d轴电流调节器的增益参数;符号*表示参考值;
sigmoid函数表示为:
Figure BDA0003122278440000046
其中,δ为边界层厚度,取值在(0,1)范围内;τ是[0,1]范围内的正系数,用于调整函数的斜率;
控制律以滑动模式将系统状态限制在曲面Sid上,在控制律中,由Ki1控制的开关激励信号叠加了由Ki2控制的开关激励信号的积分。
上述变结构电流调节器的PMSM驱动系统无传感器控制方法,所述步骤3)中,采用了模型参考自适应观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的PMSM无传感器控制性能,辨识转速
Figure BDA0003122278440000047
表示为:
Figure BDA0003122278440000051
其中,S为微分算子,
Figure BDA0003122278440000052
为速度初始值,
Figure BDA0003122278440000053
为q轴定子电流iq的估算值,
Figure BDA0003122278440000054
为d轴定子电流id的估算值,L为电感;
定子电阻估算值
Figure BDA0003122278440000055
的公式表示成:
Figure BDA0003122278440000056
其中,KP为控制器的比例参数,KI为控制器的积分参数;
转子位置角θ的辨识方程为转速辨识方程的积分形式:
Figure BDA0003122278440000057
其中,
Figure BDA0003122278440000058
为辨识转子位置角。
上述变结构电流调节器的PMSM驱动系统无传感器控制方法,所述步骤3)中,采用了滑模观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的永磁同步电机无传感器控制性能;
电机在两相静止坐标系下的电流状态方程如下:
Figure BDA0003122278440000059
其中,iα、iβ分别为αβ坐标系下的定子电流;uα、uβ分别为αβ坐标系下的定子电压;eα、eβ分别为αβ坐标系下的反电动势;Ls为定子电感;
Figure BDA00031222784400000510
其中,iA、iB、iC分别为A、B、C三相定子电流;
反电动势方程为:
Figure BDA0003122278440000061
其中,ω为电动机转速;
从反电势中提取转子位置信息:
Figure BDA0003122278440000062
其中,
Figure BDA0003122278440000063
分别为反电动势eα、eβ的观测值;
Figure BDA0003122278440000064
为电机位置角的估计值。
开关函数s(x)定义为:
Figure BDA0003122278440000065
其中,
Figure BDA0003122278440000066
分别为定子电流iα、iβ的观测值;
由于符号函数的不连续性,用sigmoid函数代替符号函数作为开关函数,使开关函数具有开关特性,滑模电流观测器构造如下:
Figure BDA0003122278440000067
反电势估计值为:
Figure BDA0003122278440000068
其中KS是开关增益,其值必须满足滑模观测器的可达性和存在性,因此需要满足以下关系:
ks>max(|eα|,|eβ|)。
上述变结构电流调节器的PMSM驱动系统无传感器控制方法,所述步骤3)中,由于具有高频开关功能,输出的反电势也是高频不连续信号,存在失真,因此,引入一个具有截止频率的低通滤波器来消除高次谐波,低通滤波器模型为:
Figure BDA0003122278440000071
其中,ωc是低通滤波器的截止频率;
由于采用了一阶低通滤波器进行滤波,因此需要对估计的反电势、转子位置进行补偿;延迟相位Δθ由低通滤波器的截止频率和输入信号的角频率补偿,如下所示:
Figure BDA0003122278440000072
其中ωi是输入信号的频率,因此,转子位置信息
Figure BDA0003122278440000073
用下式表示:
Figure BDA0003122278440000074
通过微分转子位置方程得到转子转速;然而,微分函数会降低系统的动态性能,由于反电动势包含了速度信息,所以采用反电动势来提取速度信息,转子速度
Figure BDA0003122278440000075
表示为:
Figure BDA0003122278440000076
本发明的有益效果在于:
1、本发明根据滑模运动中响应速度快、对扰动不灵敏特性,改进了永磁同步电机矢量控制中传统双闭环的PI控制器,提出了基于d轴变结构电流调节器与逆变器非线性因素补偿的永磁同步电机无传感器控制方法,该方法能够利用滑模运动的优势,增强电流调节器对外部扰动的鲁棒性,从而获取更为精确的指令电压,并提升无传感器控制的精度与动态性能,尤其适用于存在参数变化、低速、转速突变的系统。
2、本发明能够将逆变器的非线性因素进行补偿,进一步提高PMSM在低速下的无传感器控制性能,从而提高了技术的应用范围及其实用性。
3、本发明具有高对外部扰动具有鲁棒性的优点,能够在电阻发生大范围变化下依然能够实现高精度无传感器控制。
附图说明
图1为永磁同步电机无传感器控制的系统图。
图2为桥臂理论/实际触发脉冲。
图3为d轴变结构电流调节器的示意框图。
图4为MRAS观测器的结构图。
图5为SMO观测器的结构图。
图6为在MRAS/SMO观测器下基于d轴变结构电流调节器的实验结果。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1所示,一种变结构电流调节器的PMSM驱动系统无传感器控制方法,包括以下步骤:
(1)建立逆变器非线性因素下表贴式永磁同步电机的数学模型:通过搭建一种无需任何附加电路和离线实验测量的干扰观测器,将绝缘栅双极型晶体管IGBT的死区和非理想开关特性引起的干扰电压前馈到d/q电流控制回路中,以补偿逆变器的非线性因素。具体过程为:
建立逆变器非线性因素下表贴式永磁同步电机基于旋转坐标系(d-q坐标系)的电机模型:
Figure BDA0003122278440000091
其中,Rs为定子电阻;ud、uq分别为d、q轴定子电压;id、iq分别为d、q轴定子电流;Ld、Lq分别为d、q轴定子电感;ωe为电磁转速;
Figure BDA0003122278440000092
为永磁体磁链,[ud,com,uq,com]T为d、q轴的补偿电压;[ud,dead,uq,dead]T为逆变器的非线性所造成的扰动电压,从以下公式中得出:
Figure BDA0003122278440000093
Figure BDA0003122278440000094
其中,uq,dead、ud,dead分别为d、q轴扰动电压;udead为畸变电压;Ton和Toff是逆变器开关动作的延迟时间;Tdead是开关管控制的死区时间;Ts为脉宽调制的周期;udc为直流母线电压;usat为有源开关的饱和电压降;uf为续流二极管的正向电压降;θr为永磁同步电机的转子位置角,Krr)是旋转系数,从以下公式得出:
Figure BDA0003122278440000095
(2)采用切换控制律将被控对象的状态轨迹驱动到状态空间中的一个选定滑动面上,并通过sigmoid函数优化滑模运动中sign函数的不连续特性,从而实现磁通控制。为了减小抖振效应并增加控制器调谐的自由度,采用sigmoid函数来代替符号函数。
如图3所示,d轴电流调节器的数学模型可设计为:
Figure BDA0003122278440000101
Figure BDA0003122278440000102
其中,Sid为设计的滑模面;
Figure BDA0003122278440000103
为d轴的电流误差;
Figure BDA0003122278440000104
为εid的一阶导数;Cid为滑模面的系数;Ki1和Ki2是d轴电流调节器的增益参数;符号*表示参考值。
sigmoid函数表示为:
Figure BDA0003122278440000105
其中,δ为边界层厚度,取值在(0,1)范围内;τ是[0,1]范围内的正系数,用于调整函数的斜率。
控制律以滑动模式将系统状态限制在曲面Sid上。在控制律中,由Ki1控制的开关激励信号叠加了由Ki2控制的开关激励信号的积分。这种混合控制律为电流调节器提供了更多的自由度,以获得更佳的控制性能和更高的鲁棒性。通常,此策略要求控制律的增益Ki1足够大,以抑制宽带干扰。
(3)建立模型参考自适应观测器与滑模观测器的数学模型:在基于d轴变结构电流调节器的基础上,分别利用模型参考自适应观测器与滑模观测器作为永磁同步电机的两种无传感控制的实现方法。
采用模型参考自适应观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的PMSM无传感器控制性能。
如图4所示,辨识转速
Figure BDA0003122278440000111
表示为:
Figure BDA0003122278440000112
其中,S为微分算子,
Figure BDA0003122278440000113
为速度初始值,
Figure BDA0003122278440000114
为q轴定子电流iq的估算值,
Figure BDA0003122278440000115
为d轴定子电流id的估算值,L为电感;
定子电阻估算值
Figure BDA0003122278440000116
的公式表示成:
Figure BDA0003122278440000117
其中,KP为控制器的比例参数,KI为控制器的积分参数;
转子位置角θ的辨识方程为转速辨识方程的积分形式:
Figure BDA0003122278440000118
其中,
Figure BDA0003122278440000119
为辨识转子位置角。
采用滑模观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的永磁同步电机无传感器控制性能。电机在两相静止坐标系下的电流状态方程如下:
Figure BDA00031222784400001110
其中,iα、iβ分别为αβ坐标系下的定子电流;uα、uβ分别为αβ坐标系下的定子电压;eα、eβ分别为αβ坐标系下的反电动势;Ls为定子电感。
Figure BDA00031222784400001111
其中,iA、iB、iC分别为A、B、C三相定子电流;
反电动势方程为:
Figure BDA0003122278440000121
其中,ω为电动机转速。
如图5所示,可以从反电势中提取转子位置信息:
Figure BDA0003122278440000122
其中,
Figure BDA0003122278440000123
分别为反电动势eα、eβ的观测值;
Figure BDA0003122278440000124
为电机位置角的估计值。
开关函数s(x)定义为:
Figure BDA0003122278440000125
其中,
Figure BDA0003122278440000126
分别为定子电流iα、iβ的观测值。
由于符号函数的不连续性,用sigmoid函数代替符号函数作为开关函数,使开关函数具有开关特性,并能有效地减小不连续性和抖振效应。滑模电流观测器构造如下:
Figure BDA0003122278440000127
反电势估计值为:
Figure BDA0003122278440000128
其中KS是开关增益,其值必须足够大以满足滑模观测器的可达性和存在性。但较大的增益会增加抖振噪声,造成不必要的估计误差,因此需要满足以下关系:
ks>max(|eα|,|eβ|)
由于具有高频开关功能,输出的反电势也是高频不连续信号,存在一定的失真,不能直接用于计算转子位置和转速。因此,有必要引入一个具有足够截止频率的低通滤波器来消除高次谐波。低通滤波器模型为:
Figure BDA0003122278440000131
其中,ωc是低通滤波器的截止频率。
由于采用了一阶低通滤波器进行滤波,因此需要对估计的反电势、转子位置进行补偿。延迟相位由低通滤波器的截止频率和输入信号的角频率补偿,如下所示:
Figure BDA0003122278440000132
其中ωi是输入信号的频率,因此,转子位置信息
Figure BDA0003122278440000133
用下式表示:
Figure BDA0003122278440000134
通过微分转子位置方程可以得到转子转速。然而,微分函数可能会降低系统的动态性能。由于反电动势包含了速度信息,所以一般采用反电动势来提取速度信息。转子速度可以表示为:
Figure BDA0003122278440000135
直流母线电压为311V,采样频率设置为11.5kHz。参数辨识算法采用具有实时控制能力的高性能32位微控制器TMS320F28035 DSP实现。所有实验均在同一台计算机上进行,计算机配置如下:intel(R)core(TM)i5-7500、四核处理器、RAM 16GB和NVIDIA GeForceGTX 1050Ti的GPU。在所有试验中,估计的速度反馈给速度控制回路实现无传感器控制功能。为了验证系统的鲁棒性,在MATLAB/Simulink中进行了电阻变化的仿真。电阻变化实验设立了两组,分别为1.204Ω(100%)-1.806Ω(150%)-1.204Ω(100%)-0.903Ω(75%)-1.204Ω(100%)以及1.204Ω(100%)-2.408Ω(200%)-1.806Ω(150%)-1.204Ω(100%)-0.8428Ω(70%)。为了评估所提出的d轴变结构电流调节器的控制性能,给出了永磁同步电机无传感器控制的实验结果。实验结果如图6所示,本发明所述方法能实现在定子电阻发生大范围变化、低速运行下依然能够实现永磁同步电机无传感器控制功能,且精度高于其他对比方法。
综上所述,本发明于变结构电流调节器的PMSM驱动系统无传感器控制方法,能够减少控制器的参考电压与逆变器的实际输出电压之间存在误差,并在低速下能够获取良好的无传感器控制效果,从而改善基于反电动势方法在低速下无传感器控制性能不佳的问题;且将滑模思想引入了d轴电流调节器,极大地提升了系统的鲁棒性,能够运用于参数变化、低速、转速突变的系统中,拓展了模型的应用范围;再者为了验证d轴变结构电流调节器对无传感器控制的有效性,本发明中采取了MRAS观测器与SMO观测器分别作为无传感器控制算法,使得PMSM能够实现高精度的无传感器控制;与现有技术相比,本发明提供的PMSM无传感器控制方法,为解决变参数下PMSM的无传感器控制提供了一种十分有效的途径,并能广泛地应用到电动汽车、飞轮储能系统和风能转换系统等一系类复杂的系统中。

Claims (6)

1.一种变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于,包括以下步骤:
1)建立逆变器非线性因素下表贴式永磁同步电机的数学模型:通过搭建一种无需任何附加电路和离线实验测量的干扰观测器,将绝缘栅双极型晶体管IGBT的死区和非理想开关特性引起的干扰电压前馈到d/q电流控制回路中,以补偿逆变器的非线性因素;
2)建立d轴变结构电流调节器的数学模型:采用切换控制律将被控对象的状态轨迹驱动到状态空间中的一个选定滑动面上,并通过sigmoid函数优化滑模运动中sign函数的不连续特性,从而实现磁通控制;
3)建立模型参考自适应观测器与滑模观测器的数学模型:在基于d轴变结构电流调节器的基础上,分别利用模型参考自适应观测器与滑模观测器作为永磁同步电机的两种无传感控制的实现方法。
2.根据权利要求1所述的变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于,所述步骤1)具体过程为:
建立逆变器非线性因素下表贴式永磁同步电机基于旋转坐标系的电机模型如下:
Figure FDA0003122278430000011
其中,Rs为定子电阻;ud、uq分别为d、q轴定子电压;id、iq分别为d、q轴定子电流;Ld、Lq分别为d、q轴定子电感;ωe为电磁转速;
Figure FDA0003122278430000012
为永磁体磁链,[ud,com,uq,com]T为d、q轴的补偿电压;[ud,dead,uq,dead]T为逆变器的非线性所造成的扰动电压,从以下公式中得出:
Figure FDA0003122278430000021
Figure FDA0003122278430000022
其中,uq,dead、ud,dead分别为d、q轴扰动电压;udead为畸变电压;Ton和Toff是逆变器开关动作的延迟时间;Tdead是开关管控制的死区时间;Ts为脉宽调制的周期;udc为直流母线电压;usat为有源开关的饱和电压降;uf为续流二极管的正向电压降;θr为永磁同步电机的转子位置角,Krr)是旋转系数,从以下公式得出:
Figure FDA0003122278430000023
3.根据权利要求2所述的变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于:所述步骤2)中,采用切换控制律将被控对象的状态轨迹驱动到状态空间中的一个选定滑动面上,为了减小抖振效应并增加控制器调谐的自由度,采用sigmoid函数来代替符号函数;
d轴电流调节器的数学模型设计为:
Figure FDA0003122278430000024
Figure FDA0003122278430000025
其中,Sid为设计的滑模面;
Figure FDA0003122278430000026
为d轴的电流误差;
Figure FDA0003122278430000027
为εid的一阶导数;Cid为滑模面的系数;Ki1和Ki2是d轴电流调节器的增益参数;符号*表示参考值;
sigmoid函数表示为:
Figure FDA0003122278430000031
其中,δ为边界层厚度,取值在(0,1)范围内;τ是[0,1]范围内的正系数,用于调整函数的斜率;
控制律以滑动模式将系统状态限制在曲面Sid上,在控制律中,由Ki1控制的开关激励信号叠加了由Ki2控制的开关激励信号的积分。
4.根据权利要求3所述的变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于:所述步骤3)中,采用了模型参考自适应观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的PMSM无传感器控制性能,辨识转速
Figure FDA0003122278430000032
表示为:
Figure FDA0003122278430000033
其中,S为微分算子,
Figure FDA0003122278430000034
为速度初始值,
Figure FDA0003122278430000035
为q轴定子电流iq的估算值,
Figure FDA0003122278430000036
为d轴定子电流id的估算值,L为电感;
定子电阻估算值
Figure FDA0003122278430000037
的公式表示成:
Figure FDA0003122278430000038
其中,KP为控制器的比例参数,KI为控制器的积分参数;
转子位置角θ的辨识方程为转速辨识方程的积分形式:
Figure FDA0003122278430000039
其中,
Figure FDA00031222784300000310
为辨识转子位置角。
5.根据权利要求4所述的变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于:所述步骤3)中,采用了滑模观测器作为无传感器控制方法,验证了基于d轴变结构电流调节器下的永磁同步电机无传感器控制性能;
电机在两相静止坐标系下的电流状态方程如下:
Figure FDA0003122278430000041
其中,iα、iβ分别为αβ坐标系下的定子电流;uα、uβ分别为αβ坐标系下的定子电压;eα、eβ分别为αβ坐标系下的反电动势;Ls为定子电感;
Figure FDA0003122278430000042
其中,iA、iB、iC分别为A、B、C三相定子电流;
反电动势方程为:
Figure FDA0003122278430000043
其中,ω为电动机转速;
从反电势中提取转子位置信息:
Figure FDA0003122278430000044
其中,
Figure FDA0003122278430000045
分别为反电动势eα、eβ的观测值;
Figure FDA0003122278430000046
为电机位置角的估计值。
开关函数s(x)定义为:
Figure FDA0003122278430000047
其中,
Figure FDA0003122278430000051
分别为定子电流iα、iβ的观测值;
由于符号函数的不连续性,用sigmoid函数代替符号函数作为开关函数,使开关函数具有开关特性,滑模电流观测器构造如下:
Figure FDA0003122278430000052
反电势估计值为:
Figure FDA0003122278430000053
其中KS是开关增益,其值必须满足滑模观测器的可达性和存在性,因此需要满足以下关系:
ks>max(|eα|,|eβ|)。
6.根据权利要求5所述的变结构电流调节器的PMSM驱动系统无传感器控制方法,其特征在于:所述步骤3)中,由于具有高频开关功能,输出的反电势也是高频不连续信号,存在失真,因此,引入一个具有截止频率的低通滤波器来消除高次谐波,低通滤波器模型为:
Figure FDA0003122278430000054
其中,ωc是低通滤波器的截止频率;
由于采用了一阶低通滤波器进行滤波,因此需要对估计的反电势、转子位置进行补偿;延迟相位Δθ由低通滤波器的截止频率和输入信号的角频率补偿,如下所示:
Figure FDA0003122278430000061
其中ωi是输入信号的频率,因此,转子位置信息
Figure FDA0003122278430000062
用下式表示:
Figure FDA0003122278430000063
通过微分转子位置方程得到转子转速;然而,微分函数会降低系统的动态性能,由于反电动势包含了速度信息,所以采用反电动势来提取速度信息,转子速度
Figure FDA0003122278430000064
表示为:
Figure FDA0003122278430000065
CN202110679406.7A 2021-06-18 2021-06-18 变结构电流调节器的pmsm驱动系统无传感器控制方法 Active CN113364375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110679406.7A CN113364375B (zh) 2021-06-18 2021-06-18 变结构电流调节器的pmsm驱动系统无传感器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110679406.7A CN113364375B (zh) 2021-06-18 2021-06-18 变结构电流调节器的pmsm驱动系统无传感器控制方法

Publications (2)

Publication Number Publication Date
CN113364375A true CN113364375A (zh) 2021-09-07
CN113364375B CN113364375B (zh) 2022-11-15

Family

ID=77535088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110679406.7A Active CN113364375B (zh) 2021-06-18 2021-06-18 变结构电流调节器的pmsm驱动系统无传感器控制方法

Country Status (1)

Country Link
CN (1) CN113364375B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172433A (zh) * 2021-12-07 2022-03-11 湘潭大学 一种将下位机、上位机及驱动器控制电路结合的ipmsm转速曲线监控方法
US11677343B1 (en) * 2022-03-31 2023-06-13 Amazon Technologies, Inc. Sensorless motor control at low speeds and speed reversals for aerial vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100068866A (ko) * 2008-12-15 2010-06-24 한국전기연구원 영구자석형 동기 전동기의 센서리스 제어방법
CN106411209A (zh) * 2016-10-11 2017-02-15 东南大学 永磁同步电机无位置传感器控制方法
CN108258946A (zh) * 2018-03-08 2018-07-06 青岛大学 一种永磁同步直线电机的无速度传感器控制方法
CN109167547A (zh) * 2018-08-16 2019-01-08 西安理工大学 基于改进滑模观测器的pmsm无位置传感器控制方法
CN110429881A (zh) * 2019-07-26 2019-11-08 江苏大学 一种永磁同步电机的自抗扰控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100068866A (ko) * 2008-12-15 2010-06-24 한국전기연구원 영구자석형 동기 전동기의 센서리스 제어방법
CN106411209A (zh) * 2016-10-11 2017-02-15 东南大学 永磁同步电机无位置传感器控制方法
CN108258946A (zh) * 2018-03-08 2018-07-06 青岛大学 一种永磁同步直线电机的无速度传感器控制方法
CN109167547A (zh) * 2018-08-16 2019-01-08 西安理工大学 基于改进滑模观测器的pmsm无位置传感器控制方法
CN110429881A (zh) * 2019-07-26 2019-11-08 江苏大学 一种永磁同步电机的自抗扰控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭超伟等: "基于滑模观测器的交流伺服电机无传感器控制", 《电机与控制应用》 *
陈玄 等: "基于新型滑模扰动观测器的永磁同步电机控制", 《电机与控制应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172433A (zh) * 2021-12-07 2022-03-11 湘潭大学 一种将下位机、上位机及驱动器控制电路结合的ipmsm转速曲线监控方法
US11677343B1 (en) * 2022-03-31 2023-06-13 Amazon Technologies, Inc. Sensorless motor control at low speeds and speed reversals for aerial vehicles

Also Published As

Publication number Publication date
CN113364375B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
An et al. Quasi-proportional-resonant controller based adaptive position observer for sensorless control of PMSM drives under low carrier ratio
CN109428525B (zh) 基于参数自修正的永磁同步电机最大转矩电流比控制方法
Foo et al. Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection
Xu et al. An adaptive sliding stator flux observer for a direct-torque-controlled IPM synchronous motor drive
CN110071674B (zh) 一种无位置传感器永磁同步电机最大转矩电流比控制方法
CN113364375B (zh) 变结构电流调节器的pmsm驱动系统无传感器控制方法
CN108288936B (zh) 一种永磁直线电机低速无位置传感器控制方法
CN107508521B (zh) 一种永磁同步电机的无速度传感器控制方法和系统
CN108347207B (zh) 基于复数pi控制器的永磁同步电机位置和速度估算方法
CN110995102A (zh) 一种永磁同步电机直接转矩控制方法及系统
Bui et al. A hybrid sensorless controller of an interior permanent magnet synchronous machine using current derivative measurements and a sliding mode observer
CN115173774A (zh) 一种永磁同步电机无位置传感器控制方法及系统
Lee et al. Improved signal-injection sensorless control robust to inverter nonlinearity effects by prediction of voltage disturbance
Kumar et al. Fractional order PLL based sensorless control of PMSM with sliding mode observer
CN110971167B (zh) 基于检波滤波器的变漏磁电机无位置传感器控制方法
CN113992087B (zh) 一种电机全速域无传感位置估计与控制方法及系统
Wang et al. An improved sensorless control scheme for PMSM with online parameter estimation
Hong et al. Sensorless scheme for interior permanent magnet synchronous motors with a wide speed control range
CN114584030A (zh) 永磁同步电机控制方法及装置
CN114826042B (zh) 一种高速永磁同步电机无位置传感器控制方法
Wei et al. PI Observer for Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor
CN113904606B (zh) 相位自适应补偿式永磁同步电机转子位置和速度估计方法
CN112636657B (zh) 一种表贴式永磁同步电机初始位置检测方法
Xu et al. Encoder-less operation of a direct torque controlled IPM motor drive with a novel sliding mode observer
CN116208042A (zh) 一种三相ipmsm改进型smo无位置传感器控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant