CN113359466A - 一种基于自适应滑模控制的车队协同控制方法 - Google Patents
一种基于自适应滑模控制的车队协同控制方法 Download PDFInfo
- Publication number
- CN113359466A CN113359466A CN202110738609.9A CN202110738609A CN113359466A CN 113359466 A CN113359466 A CN 113359466A CN 202110738609 A CN202110738609 A CN 202110738609A CN 113359466 A CN113359466 A CN 113359466A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- sliding mode
- control
- adaptive
- fleet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000003044 adaptive effect Effects 0.000 claims abstract description 23
- 238000013461 design Methods 0.000 claims abstract description 7
- 230000001133 acceleration Effects 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000011217 control strategy Methods 0.000 claims description 6
- 238000009795 derivation Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 9
- 238000004088 simulation Methods 0.000 abstract description 6
- 238000012795 verification Methods 0.000 abstract description 2
- 230000003313 weakening effect Effects 0.000 abstract 1
- 238000011160 research Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本发明公开了一种基于自适应滑模控制的车队协同控制方法。该方法在结合自适应控制和滑模控制方法的基础上,设计了一种基于车队协同的自适应滑模控制方法。该方法基于系统参数未知的情况,采用自适应控制对系统中的所有未知参数进行了估计,在保证系统的稳定性的同时,削弱了抖振。通过仿真验证,很明显采用该自适应滑模控制的控制效果优于普通滑模控制。
Description
技术领域
本发明涉及自动控制系统领域,尤其涉及一种基于自适应滑模控制的车队协同控制方法。
背景技术
现如今,智能车路系统体系结构愈发完善,该体系有效地减少了由人为因素所致的交通事故,增强交通安全性。而车队协同驾驶自然而然地成为当前智能车路系统研究的新热点。车队协同驾驶旨在保证道路交通安全与高效的条件下,充分利用道路条件,将若干单车组成车队,使其能够根据不同交通状况,通过协作的方式完成巡航、跟随等相关协作策略。
针对车队协同的控制方法,诸多学者做了非常多的研究。其中滑模控制方法作为一个非线性、高鲁棒的控制方法走进了人们的视野,但传统滑模控制一直存在的抖振问题,在车队协同控制中会产生不小的影响。故如何增强滑模控制的抗抖振问题成为了研究滑模控制的首要工作。
发明内容
为解决上述技术问题,本发明提供了一种基于自适应滑模控制的车队协同控制方法,包括以下步骤:
一种基于自适应滑模控制的车队协同控制方法,包括以下步骤:
1)建立纵向车辆动力学模型;
2)选取车间距控制策略以计算车队中相邻车辆之间的车间距误差,并建立滑模面;
3)使用自适应控制过程对系统参数进行估计,通过设计自适应算法,并在线更新系统参数的估计值从而完成控制律设计;
4)基于Lyapunov稳定性理论,设计Lyapunov函数,以确保系统稳定。
进一步的,步骤1)所述车辆的纵向动力学模型建立如下:
化简得:
其中a、b、c、d为设定的车辆系统参数,表示为:
其中m是车的质量,kd为空气阻力系数,km为机械阻力系数,d(t)代表车辆受到的未知外界扰动,τ为发动机的时间常数,u为车辆的控制输入。
进一步的,步骤2)所述车间距控制策略为:固定车头时距,即控制同一纵向车道上行驶的车队中连续两辆车的车头通过某一点的时间一致;这种控制策略中,车队中相邻车辆之间的期望车间距离是由车头时距和车速一起决定的;车队中相邻车辆之间的车间距误差如式所示:
所述滑模面根据如下公式建立:
进一步的,步骤3)所述使用自适应控制过程对系统参数进行估计所得到的参数矩阵为:
控制律的设计包括等效控制部分ueq和鲁棒项us;其中等效控制部分ueq用来保证被控系统状态在滑模面s上,鲁棒项us用以够补偿系统中未知参数和外界未知干扰的影响,从而保证系统状态趋于设定的滑模面s;
用自适应算法对参数的估计值代替真实值,设计车队协同控制的控制律为:
进一步的,步骤4)所述Lyapunov函数如下:
其中,表示期望速度V的二阶导数;为e的一阶导数,e为车间距误差;由上述证明过程可得,通过设置鲁棒项增益k稍大于干扰上界,所设计的控制力u可以保证根据Lyapunov稳定性理论,该控制器能够保证系统的稳定性。
有益效果
与现有技术相比,本发明公开了一种基于自适应滑模控制的车队协同控制方法,所述方法在获得车间距误差和设计的滑模面的基础上,基于所述跟踪误差和滑模面,采用自适应算法估计车辆动力学模型系统参数,并根据所述滑模面和自适应算法的估计值设计滑模控制律。可见,应用本发明方法,可以有效补偿系统参数误差,有效提高了控制效果和参数估计效果,进而可以提高后车跟随效果。
附图说明
图1展示了多车协同控制的系统框图;
图2展示了双车协同驾驶的速度曲线;
图3展示了双车协同驾驶的车间距曲线;
图4展示的是多车协同的车辆速度曲线;
图5展示的是多车协同的车间距误差曲线;
图6展示的是多车协同的车路程曲线。
具体实施方法
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
1)建立车辆动力学模型,根据所述模型输出车辆运动轨迹;
车辆的纵向动力学模型建立如下:
其中m是车的质量,kd为空气阻力系数,km为机械阻力系数,d(t)代表车辆受到的未知外界扰动,τ为发动机的时间常数,u为车辆的控制输入。
化简得:
其中a、b、c、d为设定的车辆系统参数,表示为:
2)相邻车辆之间的车间距误差如式所示:
所述滑模面根据如下公式建立:
3)使用自适应控制过程对系统参数进行估计,通过设计自适应算法,并在线更新系统参数的估计值从而完成控制力设计。
自适应估计得到的参数矩阵为:
参数自适应律设计为:
4)控制律的设计包括等效控制部分ueq和鲁棒项us。其中等效控制部分ueq用来保证被控系统状态在滑模面上,鲁棒项us用以够补偿系统中未知参数和外界未知干扰的影响,从而保证系统状态趋于设定的滑模面。
设计滑模控制律为:
us=k·sgn(S) (17)
用3)中参数的估计值代替真实值,设计车队协同控制的控制律为:
5)基于Lyapunov稳定性理论,设计Lyapunov函数,以确保系统稳定;定义Lyapunov函数如下:
对其进行求导,得:
其中,表示期望速度V的二阶导数;为e的一阶导数,e为车间距误差;由上述证明过程可得,通过设置鲁棒项增益k稍大于干扰上界,所设计的控制力u可以保证。根据Lyapunov稳定性理论,该控制器能够保证系统的稳定性。
6)计算机仿真实验
根据自适应滑模控制的算法,在MATLAB/Simulink中对车协同驾驶进行数值仿真。在忽略车长的前提下,一维车队的仿真实验中车辆的各项参数如下:
m=1500kg,kd=0.3Ns2/m2,km=140N/m,τ=0.3,
参数辨识部分自适应参数取为:
η1=1,η2=15,η3=50,η4=100
未知外界干扰取:d(t)=3cos(2.15·t)
鲁棒项:k=3.1
车速设定先加速到10m/s再加速至40m/s,然后减速至20m/s。
仿真结果如图:
图2-3展示的是分别是普通滑模控制以及自适应滑模控制得到的双车速度、车间距曲线。由图可知普通滑模控制的系统的稳态误差较大,控制效果不理想。而相比于普通滑模控制,在加入自适应控制对参数进行估计后,经过所设计的控制力车队进行控制,系统的稳态误差明显降低,对车队协同的控制效果明显优于普通滑模。
把车辆增加到5辆,各项仿真结果如下:
图4-6展示的是多辆车进行协同驾驶时,各车的速度曲线、车间距误差曲线以及各车路程曲线。由图可知,当前车速度达到设定速度时,后车通过保持车头时距固定,使速度和前车一致,并且相邻两辆车间距固定为h倍的当前速度,误差趋于0,控制效果良好。
本发明提出一种自适应滑模控制方法。基于传统滑模控制我稳态误差大且存在严重抖振的问题,采用自适应算法估计系统中个各项参数,降低了系统的稳态误差,削弱了抖振。通过仿真验证,采用该自适应滑模控制的控制效果明显优于普通滑模控制。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (5)
1.一种基于自适应滑模控制的车队协同控制方法,其特征在于,包括以下步骤:
1)建立纵向车辆动力学模型;
2)选取车间距控制策略以计算车队中相邻车辆之间的车间距误差,并建立滑模面;
3)使用自适应控制过程对系统参数进行估计,通过设计自适应算法,并在线更新系统参数的估计值从而完成控制律设计;
4)基于Lyapunov稳定性理论,设计Lyapunov函数,以确保系统稳定。
4.根据权利要求1所述一种基于自适应滑模控制的车队协同控制方法,其特征在于,步骤3)所述使用自适应控制过程对系统参数进行估计所得到的参数矩阵为:
控制律的设计包括等效控制部分ueq和鲁棒项us;其中等效控制部分ueq用来保证被控系统状态在滑模面s上,鲁棒项us用以够补偿系统中未知参数和外界未知干扰的影响,从而保证系统状态趋于设定的滑模面s;
用自适应算法对参数的估计值代替真实值,设计车队协同控制的控制律为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110738609.9A CN113359466B (zh) | 2021-06-30 | 2021-06-30 | 一种基于自适应滑模控制的车队协同控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110738609.9A CN113359466B (zh) | 2021-06-30 | 2021-06-30 | 一种基于自适应滑模控制的车队协同控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113359466A true CN113359466A (zh) | 2021-09-07 |
CN113359466B CN113359466B (zh) | 2023-01-24 |
Family
ID=77537449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110738609.9A Active CN113359466B (zh) | 2021-06-30 | 2021-06-30 | 一种基于自适应滑模控制的车队协同控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113359466B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115237147A (zh) * | 2022-09-21 | 2022-10-25 | 中智行(苏州)科技有限公司 | 一种车辆纵向间距控制方法 |
CN116594405A (zh) * | 2023-06-13 | 2023-08-15 | 南通大学 | 一种具有加速度约束的自动驾驶车队控制的鲁棒mpc方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009237903A (ja) * | 2008-03-27 | 2009-10-15 | Daihatsu Motor Co Ltd | サーボ制御方法、サーボ制御装置 |
CN106154831A (zh) * | 2016-07-25 | 2016-11-23 | 厦门大学 | 一种基于学习法的智能汽车纵向神经滑模控制方法 |
CN108749816A (zh) * | 2018-05-15 | 2018-11-06 | 天津职业技术师范大学 | 运用能量耗散理论进行智能车辆速度调控的方法 |
CN110244747A (zh) * | 2019-08-02 | 2019-09-17 | 大连海事大学 | 一种基于执行器故障和饱和的异构车队容错控制方法 |
CN111694366A (zh) * | 2020-07-08 | 2020-09-22 | 东北大学秦皇岛分校 | 基于滑模控制理论的车队协同制动控制方法 |
CN111736473A (zh) * | 2020-08-13 | 2020-10-02 | 东北大学秦皇岛分校 | 基于非线性终端滑模方法的车队有限时间制动控制方法 |
CN112083719A (zh) * | 2020-08-19 | 2020-12-15 | 东北大学秦皇岛分校 | 一种基于预设性能函数的有限时间车队控制方法 |
CN112660126A (zh) * | 2021-01-05 | 2021-04-16 | 北京汽车研究总院有限公司 | 用于自适应巡航的车辆协同控制方法、装置及车辆 |
CN112666833A (zh) * | 2020-12-25 | 2021-04-16 | 吉林大学 | 一种用于电动自动驾驶车辆的车速跟随自适应鲁棒控制方法 |
CN112904838A (zh) * | 2021-01-06 | 2021-06-04 | 北京科技大学 | 二维平面智能车辆队列控制方法 |
-
2021
- 2021-06-30 CN CN202110738609.9A patent/CN113359466B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009237903A (ja) * | 2008-03-27 | 2009-10-15 | Daihatsu Motor Co Ltd | サーボ制御方法、サーボ制御装置 |
CN106154831A (zh) * | 2016-07-25 | 2016-11-23 | 厦门大学 | 一种基于学习法的智能汽车纵向神经滑模控制方法 |
CN108749816A (zh) * | 2018-05-15 | 2018-11-06 | 天津职业技术师范大学 | 运用能量耗散理论进行智能车辆速度调控的方法 |
CN110244747A (zh) * | 2019-08-02 | 2019-09-17 | 大连海事大学 | 一种基于执行器故障和饱和的异构车队容错控制方法 |
CN111694366A (zh) * | 2020-07-08 | 2020-09-22 | 东北大学秦皇岛分校 | 基于滑模控制理论的车队协同制动控制方法 |
CN111736473A (zh) * | 2020-08-13 | 2020-10-02 | 东北大学秦皇岛分校 | 基于非线性终端滑模方法的车队有限时间制动控制方法 |
CN112083719A (zh) * | 2020-08-19 | 2020-12-15 | 东北大学秦皇岛分校 | 一种基于预设性能函数的有限时间车队控制方法 |
CN112666833A (zh) * | 2020-12-25 | 2021-04-16 | 吉林大学 | 一种用于电动自动驾驶车辆的车速跟随自适应鲁棒控制方法 |
CN112660126A (zh) * | 2021-01-05 | 2021-04-16 | 北京汽车研究总院有限公司 | 用于自适应巡航的车辆协同控制方法、装置及车辆 |
CN112904838A (zh) * | 2021-01-06 | 2021-06-04 | 北京科技大学 | 二维平面智能车辆队列控制方法 |
Non-Patent Citations (2)
Title |
---|
GE GUO ET AL.: "Adaptive Sliding Mode Control of Vehicular Platoons With Prescribed Tracking Performance", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》 * |
李孟杰: "基于滑模控制的移动机器人轨迹跟踪与链式编队控制", 《信息科技辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115237147A (zh) * | 2022-09-21 | 2022-10-25 | 中智行(苏州)科技有限公司 | 一种车辆纵向间距控制方法 |
CN115237147B (zh) * | 2022-09-21 | 2022-12-20 | 中智行(苏州)科技有限公司 | 一种车辆纵向间距控制方法 |
CN116594405A (zh) * | 2023-06-13 | 2023-08-15 | 南通大学 | 一种具有加速度约束的自动驾驶车队控制的鲁棒mpc方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113359466B (zh) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111746539B (zh) | 一种智能网联汽车严格安全换道入队控制方法 | |
CN113359466B (zh) | 一种基于自适应滑模控制的车队协同控制方法 | |
CN113359483B (zh) | 一种基于非奇异快速终端滑模控制的车辆协同控制方法 | |
CN111260956B (zh) | 一种基于模型预测控制的车辆自动换道规划与控制方法 | |
CN103324085A (zh) | 基于监督式强化学习的最优控制方法 | |
CN110782650B (zh) | 基于自适应事件触发的车流分布式协同编队控制方法 | |
CN113886764B (zh) | 一种基于Frenet坐标系的智能车辆多场景轨迹规划方法 | |
CN112201033B (zh) | 一种道路交通运行主动管控策略选择方法 | |
CN114394092B (zh) | 基于车车通信的混合车流汽车协同自适应巡航控制方法 | |
CN111459159A (zh) | 一种路径跟随控制系统及控制方法 | |
Cai et al. | Adaptive traffic signal control using vehicle-to-infrastructure communication: a technical note | |
CN114852105A (zh) | 一种自动驾驶车辆换道轨迹规划方法及系统 | |
CN110164124B (zh) | 一种高速公路重型卡车队列行驶中车辆纵向跟随控制方法 | |
Teichert et al. | Comparison of eco-driving strategies for different traffic-management measures | |
Kamal et al. | Eco-driving using real-time optimization | |
CN116758722B (zh) | 一种基于数据驱动的混合交通环境网联车辆控制系统及方法 | |
CN112965478A (zh) | 考虑不匹配速度扰动的车辆队列稳定性控制方法和系统 | |
Chou et al. | Backstepping-based time-gap regulation for platoons | |
CN115171380B (zh) | 一种抑制网络攻击造成车联网拥塞的控制模型和方法 | |
Pan et al. | Energy-optimized adaptive cruise control strategy design at intersection for electric vehicles based on speed planning | |
CN116434603A (zh) | 一种基于ssm的自动驾驶车队横纵向同步安全控制方法 | |
Ren et al. | Adaptive velocity and acceleration control of autonomous vehicle systems | |
CN111845745B (zh) | 一种考虑经济性的车辆队列控制方法及系统 | |
Wang et al. | Cooperative adaptive cruise control using delay-based spacing policy: a robust adaptive non-singular terminal sliding mode approach | |
Fan et al. | Deep Reinforcement Learning Based Integrated Eco-driving Strategy for Connected and Automated Electric Vehicles in Complex Urban Scenarios |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |