CN113346813A - Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium - Google Patents
Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium Download PDFInfo
- Publication number
- CN113346813A CN113346813A CN202110654558.1A CN202110654558A CN113346813A CN 113346813 A CN113346813 A CN 113346813A CN 202110654558 A CN202110654558 A CN 202110654558A CN 113346813 A CN113346813 A CN 113346813A
- Authority
- CN
- China
- Prior art keywords
- component
- current
- target
- maximum torque
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000001360 synchronised effect Effects 0.000 claims abstract description 105
- 230000006870 function Effects 0.000 claims description 47
- 238000012546 transfer Methods 0.000 claims description 40
- 238000002347 injection Methods 0.000 claims description 27
- 239000007924 injection Substances 0.000 claims description 27
- 238000004590 computer program Methods 0.000 claims description 23
- 238000013016 damping Methods 0.000 claims description 4
- 101000841267 Homo sapiens Long chain 3-hydroxyacyl-CoA dehydrogenase Proteins 0.000 abstract description 61
- 102100029107 Long chain 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 abstract description 61
- JJYKJUXBWFATTE-UHFFFAOYSA-N mosher's acid Chemical compound COC(C(O)=O)(C(F)(F)F)C1=CC=CC=C1 JJYKJUXBWFATTE-UHFFFAOYSA-N 0.000 abstract description 61
- 230000004044 response Effects 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 239000000243 solution Substances 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/20—Estimation of torque
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本申请适用于电机控制技术领域,提供了一种最大转矩电流比控制方法、装置、终端设备及存储介质,所述最大转矩电流比控制方法包括:获取目标信号;将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;根据所述第二电流相位超前角,确定第一交流分量和第二交流分量;根据所述第一交流分量和所述第二交流分量,调节电流相位超前角,使得永磁同步电机满足最大转矩电流比。通过本申请可提高MTPA控制的动态响应速度,快速地确定MTPA工作点。
The present application is applicable to the technical field of motor control, and provides a maximum torque-to-current ratio control method, device, terminal device and storage medium. The maximum torque-to-current ratio control method includes: acquiring a target signal; injecting the target signal into The first current phase advance angle of the permanent magnet synchronous motor is obtained, and the second current phase advance angle is obtained; according to the second current phase advance angle, the first AC component and the second AC component are determined; The second AC component is used to adjust the current phase advance angle, so that the permanent magnet synchronous motor satisfies the maximum torque to current ratio. The application can improve the dynamic response speed of MTPA control, and quickly determine the MTPA working point.
Description
技术领域technical field
本申请属于电机控制技术领域,尤其涉及一种最大转矩电流比控制方法、装置、终端设备及存储介质。The present application belongs to the technical field of motor control, and in particular, relates to a maximum torque-current ratio control method, device, terminal device and storage medium.
背景技术Background technique
随着新材料、机电一体化、电力电子、计算机、控制理论等各种相关新技术的快速发展,永磁同步电机已经开拓了很广泛的应用领域,能够实现高速、高精度、高稳定度、快速响应、高效节能的运动控制。With the rapid development of various related new technologies such as new materials, mechatronics, power electronics, computers, and control theory, permanent magnet synchronous motors have opened up a wide range of application fields, which can achieve high-speed, high-precision, high-stability, Fast-response, energy-efficient motion control.
为了实现对永磁同步电机的高效控制,常采用最大转矩电流比(Maximum TorquePer Ampere,MTPA)控制方法。实现对永磁同步电机的高精度、高稳定性、强鲁棒性的MTPA控制,有利于提高永磁同步电机的工作效率,实现节能减排。In order to realize the high-efficiency control of the permanent magnet synchronous motor, the maximum torque-current ratio (Maximum TorquePer Ampere, MTPA) control method is often used. Realizing the MTPA control of high precision, high stability and strong robustness for the permanent magnet synchronous motor is beneficial to improve the working efficiency of the permanent magnet synchronous motor and realize energy saving and emission reduction.
现有的MTPA控制方法,通常需要使用较多的带通滤波器和低通滤波器,计算量较大,导致MTPA控制的动态响应速度较慢,无法快速地确定MTPA工作点。The existing MTPA control methods usually need to use more band-pass filters and low-pass filters, and the calculation amount is large, resulting in a slow dynamic response speed of the MTPA control, and it is impossible to quickly determine the MTPA operating point.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种最大转矩电流比控制方法、装置、终端设备及存储介质,以提高MTPA控制的动态响应速度,快速确定MTPA工作点。Embodiments of the present application provide a maximum torque-to-current ratio control method, device, terminal device, and storage medium, so as to improve the dynamic response speed of MTPA control and quickly determine the MTPA operating point.
第一方面,本申请实施例提供了一种最大转矩电流比控制方法,所述最大转矩电流比控制方法包括:In a first aspect, an embodiment of the present application provides a method for controlling a maximum torque-to-current ratio, and the method for controlling the maximum torque-to-current ratio includes:
获取目标信号;Get the target signal;
将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;injecting the target signal into the first current phase advance angle of the permanent magnet synchronous motor to obtain the second current phase advance angle;
根据所述第二电流相位超前角,确定第一交流分量和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;Determine a first AC component and a second AC component according to the second current phase advance angle, where the first AC component refers to the frequency of the first electromagnetic power of the permanent magnet synchronous motor that is the same as the frequency of the target signal AC component, the second AC component refers to the same-frequency AC component whose phase lags behind the target angle of the first AC component, and the first electromagnetic power refers to the electromagnetic power after the target signal is injected;
根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。According to the first AC component and the second AC component, the first current phase advance angle is adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio.
第二方面,本申请实施例提供了一种最大转矩电流比控制装置,所述最大转矩电流比控制装置包括:In a second aspect, an embodiment of the present application provides a maximum torque-to-current ratio control device, and the maximum torque-to-current ratio control device includes:
信号获取模块,用于获取目标信号;The signal acquisition module is used to acquire the target signal;
信号注入模块,用于将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;a signal injection module for injecting the target signal into the first current phase advance angle of the permanent magnet synchronous motor to obtain the second current phase advance angle;
分量确定模块,用于根据所述第二电流相位超前角,确定第一交流分量和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;A component determination module, configured to determine a first AC component and a second AC component according to the second current phase advance angle, where the first AC component refers to the difference between the first electromagnetic power of the permanent magnet synchronous motor and the The AC component with the same frequency of the target signal, the second AC component refers to the same-frequency AC component whose phase lags the target angle of the first AC component, and the first electromagnetic power refers to the electromagnetic power injected into the target signal. power;
超前角调节模块,用于根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。A lead angle adjustment module, configured to adjust the first current phase lead angle according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque to current ratio.
第三方面,本申请实施例提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述最大转矩电流比控制方法的步骤。In a third aspect, an embodiment of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program The steps of implementing the method for controlling the maximum torque-to-current ratio described in the first aspect above.
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述最大转矩电流比控制方法的步骤。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the maximum torque described in the first aspect above is realized The steps of the current ratio control method.
第五方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得所述终端设备上执行如上述第一方面所述最大转矩电流比控制方法的步骤。In a fifth aspect, an embodiment of the present application provides a computer program product that, when the computer program product runs on a terminal device, enables the terminal device to execute the method for controlling the maximum torque-to-current ratio according to the first aspect above A step of.
由上可见,本申请通过获取目标信号,并将目标信号注入永磁同步电机的第一电流相位超前角,可以得到第二电流相位超前角,根据第二电流相位超前角,可以确定注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速确定MTPA工作点。It can be seen from the above that the present application obtains the target signal and injects the target signal into the first current phase advance angle of the permanent magnet synchronous motor to obtain the second current phase advance angle. According to the second current phase advance angle, the injection target signal can be determined. The first AC component of the first electromagnetic power that has the same frequency as the target signal, and the same-frequency AC component (that is, the second AC component) whose phase lags behind the target angle (ie, the second AC component), according to the first AC component and the second AC component. The AC component can adjust the phase advance angle of the first current, so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio, thereby determining the MTPA operating point. In this process, since there is no need to use a band-pass filter and a low-pass filter, the calculation amount in the MTPA control process is reduced, the dynamic response speed of the MTPA control is improved, and the MTPA operating point can be quickly determined.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本申请实施例一提供的最大转矩电流比控制方法的实现流程示意图;Fig. 1 is the realization flow schematic diagram of the maximum torque-current ratio control method provided by the first embodiment of the present application;
图2是本申请实施例二提供的最大转矩电流比控制方法的实现流程示意图;FIG. 2 is a schematic flowchart of the implementation of the maximum torque-to-current ratio control method provided in
图3是目标观测器的结构示例图;Fig. 3 is the structure example diagram of the target observer;
图4a是基于真实信号注入法的MTPA控制示例图;图4b是基于虚拟信号注入法的MTPA控制示例图;Fig. 4a is an example diagram of MTPA control based on real signal injection method; Fig. 4b is an example diagram of MTPA control based on virtual signal injection method;
图5是基于虚拟信号注入法的电流相位超前角优化控制系统的示例图;5 is an example diagram of a current phase advance angle optimization control system based on a virtual signal injection method;
图6a是电流幅值的一示例图,图6b是最优电流相位超前角的响应曲线的一示例图;FIG. 6a is an example diagram of the current amplitude, and FIG. 6b is an example diagram of the response curve of the optimal current phase lead angle;
图7a是电流幅值的另一示例图,图7b是最优电流相位超前角的响应曲线的另一示例图;FIG. 7a is another example diagram of the current amplitude, and FIG. 7b is another example diagram of the response curve of the optimal current phase lead angle;
图8是本申请实施例三提供的最大转矩电流比控制装置的结构示意图;8 is a schematic structural diagram of a maximum torque-current ratio control device provided in Embodiment 3 of the present application;
图9是本申请实施例四提供的终端设备的结构示意图。FIG. 9 is a schematic structural diagram of a terminal device provided in Embodiment 4 of the present application.
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as a specific system structure and technology are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It is to be understood that, when used in this specification and the appended claims, the term "comprising" indicates the presence of the described feature, integer, step, operation, element and/or component, but does not exclude one or more other features , whole, step, operation, element, component and/or the presence or addition of a collection thereof.
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。It should also be understood that the terminology used in the specification of the application herein is for the purpose of describing particular embodiments only and is not intended to limit the application. As used in this specification and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural unless the context clearly dictates otherwise.
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the specification of the present application and the appended claims, the terms "first", "second", "third", etc. are only used to distinguish the description, and should not be construed as indicating or implying relative importance.
在说明本申请方案之前,为了便于读者理解,先对本方案中所涉及的名词进行解释说明。Before explaining the solution of the present application, in order to facilitate the reader's understanding, the terms involved in the solution are explained first.
永磁同步电机是指励磁系统中含有永磁体的同步电动机。其运行方式与传统电励磁同步电动机相同,只是励磁方式不同。在励磁系统部分,永磁同步电机通过永磁体产生磁通替代了电励磁同步电动机的励磁绕组励磁,简化了电机结构。Permanent magnet synchronous motor refers to a synchronous motor that contains permanent magnets in the excitation system. Its operation mode is the same as that of traditional electric excitation synchronous motor, but the excitation mode is different. In the excitation system part, the permanent magnet synchronous motor generates magnetic flux through the permanent magnet instead of the excitation winding excitation of the electric excitation synchronous motor, which simplifies the motor structure.
本申请中的永磁同步电机具体可以是指内置式永磁同步电机。内置式永磁同步电机又称内嵌式永磁同步电机。内置式永磁同步电机的永磁体位于转子铁心内部,具有体积小、效率高、功率因数高等优良特性。The permanent magnet synchronous motor in this application may specifically refer to a built-in permanent magnet synchronous motor. The built-in permanent magnet synchronous motor is also called the built-in permanent magnet synchronous motor. The permanent magnet of the built-in permanent magnet synchronous motor is located inside the rotor core, which has the advantages of small size, high efficiency and high power factor.
MTPA控制方法,是按照转矩/电流比最大的原则控制定子电流,使电磁转矩在满足要求的条件下定子电流幅值最小。MTPA控制方法不仅减小了永磁同步电机的功耗,提高了系统的效率,而且减轻了逆变器的工作负担。The MTPA control method is to control the stator current according to the principle of the maximum torque/current ratio, so that the stator current amplitude is the smallest when the electromagnetic torque meets the requirements. The MTPA control method not only reduces the power consumption of the permanent magnet synchronous motor and improves the efficiency of the system, but also reduces the workload of the inverter.
MTPA工作点是指电磁转矩不变,在所有不同的电流矢量中有一个电流相位超前角对应的定子电流幅值最小的工作点。MTPA工作点也是在定子电流幅值一定时对应的最大电磁转矩的工作点。在MTPA工作点处电磁转矩对电流相位超前角的变化率为零。The MTPA operating point refers to the operating point where the electromagnetic torque is constant, and there is a minimum stator current amplitude corresponding to the current phase advance angle in all different current vectors. The MTPA operating point is also the operating point corresponding to the maximum electromagnetic torque when the stator current amplitude is constant. The rate of change of the electromagnetic torque to the current phase advance angle is zero at the MTPA operating point.
电流相位超前角又称电流相位角或者电流角,是电流矢量与d-q坐标系中q轴之间的角度。The current phase lead angle, also known as the current phase angle or the current angle, is the angle between the current vector and the q axis in the d-q coordinate system.
在本申请实施例中,为了解决现有的MTPA控制方法,通常需要使用较多的带通滤波器和低通滤波器,计算量较大,导致MTPA控制的动态响应速度较慢,无法快速地确定MTPA工作点的这一问题,提出了提取注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),并根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。该过程无需使用带通滤波器和低通滤波器,减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点。In the embodiment of the present application, in order to solve the existing MTPA control method, it is usually necessary to use more band-pass filters and low-pass filters, and the amount of calculation is large, resulting in a slow dynamic response speed of MTPA control, and it is impossible to quickly The problem of determining the MTPA operating point is proposed to extract the first AC component of the first electromagnetic power injected into the target signal, which has the same frequency as the target signal, and the same frequency AC component whose phase lags the target angle ( That is, the second AC component), and the first current phase advance angle can be adjusted according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio, thereby determining the MTPA operating point. This process does not need to use a band-pass filter and a low-pass filter, reduces the amount of calculation in the MTPA control process, improves the dynamic response speed of the MTPA control, and can quickly determine the MTPA operating point.
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in this embodiment does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present application.
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solutions described in the present application, the following specific embodiments are used for description.
参见图1,是本申请实施例一提供的最大转矩电流比控制方法的实现流程示意图,如图1所示,该最大转矩电流比控制方法可以包括以下步骤:Referring to FIG. 1 , it is a schematic flowchart of the implementation of the maximum torque-to-current ratio control method provided in
步骤101,获取目标信号。
上述目标信号可以是高频信号,也可以是低频信号,在此不做限定。在上述目标信号为高频信号时,将高频信号注入永磁同步电机的第一电流相位超前角,能够提高MTPA工作点的追踪速度,进一步提高MTPA控制的动态响应速度。其中,上述第一电流相位超前角是指未注入目标信号的电流相位超前角。The above-mentioned target signal may be a high frequency signal or a low frequency signal, which is not limited herein. When the target signal is a high frequency signal, injecting the high frequency signal into the first current phase advance angle of the permanent magnet synchronous motor can improve the tracking speed of the MTPA operating point and further improve the dynamic response speed of the MTPA control. Wherein, the above-mentioned first current phase advance angle refers to the current phase advance angle at which the target signal is not injected.
终端设备可以从自身的存储器中获取上述目标信号,也可以从其他设备中获取上述目标信号,在此不做限定。The terminal device may acquire the above target signal from its own memory, or may acquire the above target signal from other devices, which is not limited herein.
例如,将上述目标信号预先存储在终端设备的存储器中,终端设备可以从自身的存储器中获取上述目标信号。For example, the above-mentioned target signal is pre-stored in the memory of the terminal device, and the terminal device can acquire the above-mentioned target signal from its own memory.
终端设备还可以向其他设备发送目标信号获取指令,其他设备在接收到目标信号获取指令后获取上述目标信号,并将上述目标信号发送给上述终端设备。上述目标信号获取指令用于指示其他设备获取上述目标信号。上述其他设备可以是指除上述终端设备之外的任一设备。The terminal device may also send a target signal acquisition instruction to other devices, and the other device acquires the target signal after receiving the target signal acquisition instruction, and sends the target signal to the terminal device. The above target signal acquisition instruction is used to instruct other devices to acquire the above target signal. The above-mentioned other equipment may refer to any equipment except the above-mentioned terminal equipment.
步骤102,将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角。
其中,第二电流相位超前角是指注入目标信号后的电流相位超前角。The second current phase advance angle refers to the current phase advance angle after the target signal is injected.
将目标信号注入第一电流相位超前角可以是指将目标信号叠加在第一电流相位超前角上。例如,目标信号为高频正弦信号,可以表示为Δβ=Asin(ωht),ωh表示目标信号Δβ的频率,A表示目标信号Δβ的幅值,第一电流相位超前角表示为β,那么注入目标信号后的第一电流相位超前角(即第二电流相位超前角)可以表示为β+Δβ=β+Asin(ωht)。Injecting the target signal into the first current phase advance angle may refer to superimposing the target signal on the first current phase advance angle. For example, the target signal is a high-frequency sinusoidal signal, which can be expressed as Δβ=Asin(ω h t), ω h is the frequency of the target signal Δβ, A is the amplitude of the target signal Δβ, and the first current phase lead angle is expressed as β, Then, the first current phase advance angle (ie, the second current phase advance angle) after injecting the target signal can be expressed as β+Δβ=β+Asin(ω h t).
终端设备在将目标信号注入第一电流相位超前角之后,根据是否通过第一电流相位超前角将目标信号真实注入永磁同步电机,可以将目标信号的注入方法分为真实信号注入法和虚拟信号注入法。其中,若终端设备将第一电流相位超前角传输给永磁同步电机,则确定终端设备通过第一电流相位超前角将目标信号真实注入永磁同步电机;若终端设备将第一电流相位超前角传输给基于永磁同步电机构建的虚拟被控系统,则确定终端设备未通过第一电流相位超前角将目标信号真实注入永磁同步电机,而是通过第一电流相位超前角将目标信号注入虚拟被控系统。上述虚拟被控系统可以理解为永磁同步电机的虚拟影像,它具有与永磁同步电机相同的功能。After the terminal device injects the target signal into the first current phase advance angle, according to whether the target signal is actually injected into the permanent magnet synchronous motor through the first current phase advance angle, the injection method of the target signal can be divided into the real signal injection method and the virtual signal. injection method. Wherein, if the terminal device transmits the first current phase advance angle to the permanent magnet synchronous motor, it is determined that the terminal device actually injects the target signal into the permanent magnet synchronous motor through the first current phase advance angle; if the terminal device transmits the first current phase advance angle to the permanent magnet synchronous motor If it is transmitted to the virtual controlled system based on the permanent magnet synchronous motor, it is determined that the terminal device does not actually inject the target signal into the permanent magnet synchronous motor through the first current phase advance angle, but injects the target signal into the virtual system through the first current phase advance angle. controlled system. The above virtual controlled system can be understood as the virtual image of the permanent magnet synchronous motor, which has the same function as the permanent magnet synchronous motor.
真实信号注入法是指通过第一电流相位超前角将目标信号注入永磁同步电机,具体可以是向永磁同步电机的定子绕组中注入目标信号。The real signal injection method refers to injecting the target signal into the permanent magnet synchronous motor through the first current phase advance angle, specifically, injecting the target signal into the stator winding of the permanent magnet synchronous motor.
真实信号注入法通过向永磁同步电机的定子绕组中注入目标信号,可以计算目标信号注入永磁同步电机时所产生的电磁功率,并从中提取实现MTPA控制所需的MTPA判据。The real signal injection method can calculate the electromagnetic power generated when the target signal is injected into the permanent magnet synchronous motor by injecting the target signal into the stator winding of the permanent magnet synchronous motor, and extract the MTPA criterion required for MTPA control.
虚拟信号注入法是指未通过第一电流相位超前角将目标信号注入永磁同步电机(即未向永磁同步电机的定子绕组中注入目标信号),而是将目标信号注入基于永磁同步电机构建的虚拟被控系统。The virtual signal injection method means that the target signal is not injected into the permanent magnet synchronous motor through the first current phase advance angle (that is, the target signal is not injected into the stator winding of the permanent magnet synchronous motor), but the target signal is injected into the permanent magnet synchronous motor. The constructed virtual controlled system.
虚拟注入法通过向虚拟被控系统注入目标信号,可以计算假如有目标信号注入永磁同步电机所产生的电磁功率,并从中提取实现MTPA控制所需的MTPA判据。The virtual injection method can calculate the electromagnetic power generated by injecting the target signal into the permanent magnet synchronous motor by injecting the target signal into the virtual controlled system, and extract the MTPA criterion required to realize the MTPA control.
由于虚拟信号注入法不需将目标信号注入永磁同步电机,虚拟信号注入法不会影响永磁同步电机的运转速度和电流控制,也不存在额外的功率损耗,对于由电流和温度变化引起的转子磁通和电感变化也是鲁棒的。也不需进行电机参数估计或预制查询表等在线估计,有效地减小了计算量,提高了MTPA工作点的追踪速度。Since the virtual signal injection method does not need to inject the target signal into the permanent magnet synchronous motor, the virtual signal injection method will not affect the operation speed and current control of the permanent magnet synchronous motor, and there is no additional power loss. Rotor flux and inductance changes are also robust. There is also no need to perform on-line estimation such as motor parameter estimation or prefabricated look-up table, which effectively reduces the amount of calculation and improves the tracking speed of the MTPA operating point.
步骤103,根据第二电流相位超前角,确定第一交流分量和和第二交流分量。Step 103: Determine the first AC component and the second AC component according to the second current phase advance angle.
其中,第一交流分量是指永磁同步电机的第一电磁功率中与目标信号的频率相同的交流分量。第二交流分量是指第一交流分量的相位滞后目标角度的同频交流分量,即第二交流分量的频率与第一交流分量的频率相同,且第二交流分量的相位相比于第一交流分量的相位滞后目标角度。第一电磁功率是指注入目标信号后的电磁功率。上述目标角度可以是指 The first AC component refers to the AC component of the first electromagnetic power of the permanent magnet synchronous motor that has the same frequency as the target signal. The second AC component refers to the same-frequency AC component whose phase lags behind the target angle of the first AC component, that is, the frequency of the second AC component is the same as the frequency of the first AC component, and the phase of the second AC component is compared with that of the first AC component. The phase of the component lags the target angle. The first electromagnetic power refers to the electromagnetic power after the target signal is injected. The above target angle may refer to
在本实施例中,在将目标信号注入永磁同步电机的电流相位超前角之后,永磁同步电机的第一电磁功率中也会随着产生目标信号,故第一电磁功率中存在与目标信号的频率相同的交流分量,即从第一电磁功率中可以确定第一交流分量。将第一交流分量的相位滞后目标角度即可得到第二交流分量。In this embodiment, after the target signal is injected into the current phase advance angle of the permanent magnet synchronous motor, the first electromagnetic power of the permanent magnet synchronous motor will also generate the target signal, so the first electromagnetic power has the same target signal as the target signal. The AC component of the same frequency, that is, the first AC component can be determined from the first electromagnetic power. The second AC component can be obtained by delaying the phase of the first AC component by a target angle.
需要说明的是,在真实信号注入法中,本申请通过将第二电流相位超前角注入永磁同步电机,实现将目标信号注入永磁同步电机。在虚拟信号注入法中,本申请通过将第二电流相位超前角注入虚拟被控系统,实现将目标信号注入虚拟被控系统。It should be noted that, in the real signal injection method, the present application realizes injecting the target signal into the permanent magnet synchronous motor by injecting the second current phase advance angle into the permanent magnet synchronous motor. In the virtual signal injection method, the present application realizes injecting the target signal into the virtual controlled system by injecting the second current phase advance angle into the virtual controlled system.
若本申请采用真实信号注入法,则步骤103中的第一电磁功率是将第二电流相位超前角注入永磁同步电机后,永磁同步电机的电磁功率。If the present application adopts the real signal injection method, the first electromagnetic power in
若本申请采用虚拟信号注入法,则步骤103中的第一电磁功率是将第二电流相位超前角注入虚拟被控系统后,虚拟被控系统的电磁功率。由于虚拟被控系统是永磁同步电机的虚拟影像,故虚拟被控系统的电磁功率也可以称之为永磁同步电机的电磁功率。If the present application adopts the virtual signal injection method, the first electromagnetic power in
步骤104,根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。Step 104: Adjust the phase lead angle of the first current according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
其中,可以将永磁同步电机满足最大转矩电流比时对应的第一电流相位超前角称之为最优电流相位超前角。Wherein, the first current phase advance angle corresponding to when the permanent magnet synchronous motor satisfies the maximum torque to current ratio can be referred to as the optimal current phase advance angle.
在本实施例中,可以将第一电磁功率进行泰勒展开,根据第一电磁功率泰勒展开后的表达式可以得到第三交流分量,第三交流分量是第一电磁功率的交流分量,且包含第二电磁功率对第一电流相位超前角的偏微分。由于步骤103确定的第一交流分量和泰勒展开后得到的第三交流分量均表示第一电磁功率的交流分量,故第一交流分量和第三交流分量可以理解为第一电磁功率的交流分量的不同表示方式,那么可以确定第一交流分量与第三交流分量成正比例。In this embodiment, Taylor expansion of the first electromagnetic power can be performed, and a third AC component can be obtained according to the expression after the Taylor expansion of the first electromagnetic power. The third AC component is the AC component of the first electromagnetic power, and includes the third AC component. 2. The partial differential of the electromagnetic power to the phase advance angle of the first current. Since the first AC component determined in
可以将第三交流分量的相位滞后目标角度,得到第四交流分量。由于第一交流分量与第三交流分量成正比例,第二交流分量的相位滞后第一交流分量的相位目标角度,故可以确定第二交流分量与第四交流分量也成正比例,第四交流分量中也包含第二电磁功率对第一电流相位超前角的偏微分。The phase of the third AC component can be delayed by the target angle to obtain the fourth AC component. Since the first AC component is proportional to the third AC component, and the phase of the second AC component lags the phase target angle of the first AC component, it can be determined that the second AC component is also proportional to the fourth AC component. Also included is the partial derivative of the second electromagnetic power with respect to the phase advance angle of the first current.
由于第一交流分量与第三交流分量成正比例,第二交流分量与第四交流分量成正比,且第三交流分量和第四交流分量均包含第二电磁功率对电流相位超前角的偏微分,故通过调节第一交流分量和第二交流分量,可以使得第二电磁功率对第一电流相位超前角的偏微分为零,该偏微分为零时的第一电流相位超前角即为最优电流相位超前角。Since the first AC component is proportional to the third AC component, the second AC component is proportional to the fourth AC component, and both the third AC component and the fourth AC component contain the partial differential of the second electromagnetic power to the current phase advance angle, Therefore, by adjusting the first AC component and the second AC component, the partial differential of the second electromagnetic power to the first current phase lead angle can be zero, and the first current phase lead angle when the partial differential is zero is the optimal current. Phase lead angle.
本实施例通过计算电磁功率代替计算或测量转矩,不需要使用高精度的速度传感器,降低了MTPA控制实现的成本和难度,可最大限度地减小由于注入目标信号引起的转矩振荡,使得MTPA控制系统在负载转矩变化和转速变化的情况下兼顾良好的动态和稳态性能,有效地提高了MTPA的控制精度。In this embodiment, by calculating electromagnetic power instead of calculating or measuring torque, it is not necessary to use a high-precision speed sensor, which reduces the cost and difficulty of MTPA control implementation, and can minimize the torque oscillation caused by the injected target signal, so that the The MTPA control system takes into account good dynamic and steady-state performance in the case of load torque changes and rotational speed changes, which effectively improves the control accuracy of MTPA.
由于通过控制电流相位超前角,可以控制永磁同步电机的定子电流,当定子电流一定时,存在一个电流相位超前角使输出转矩最大,故通过调节电流相位超前角,能够使得永磁同步电机满足最大转矩电流比。Since the stator current of the permanent magnet synchronous motor can be controlled by controlling the current phase advance angle, when the stator current is constant, there is a current phase advance angle to maximize the output torque, so by adjusting the current phase advance angle, the permanent magnet synchronous motor can be made Satisfy the maximum torque to current ratio.
本申请实施例通过获取目标信号,并将目标信号注入永磁同步电机的第一电流相位超前角,可以得到第二电流相位超前角,根据第二电流相位超前角,可以确定注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点。In the embodiment of the present application, by acquiring the target signal and injecting the target signal into the first current phase advance angle of the permanent magnet synchronous motor, the second current phase advance angle can be obtained. The first AC component of the first electromagnetic power that has the same frequency as the target signal, and the same-frequency AC component (ie, the second AC component) whose phase lags behind the target angle of the first AC component, according to the first AC component and the second AC component The first current phase lead angle can be adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio, thereby determining the MTPA operating point. In this process, since there is no need to use a band-pass filter and a low-pass filter, the calculation amount in the MTPA control process is reduced, the dynamic response speed of the MTPA control is improved, and the MTPA operating point can be quickly determined.
参见图2,是本申请实施例二提供的最大转矩电流比控制方法的实现流程示意图,如图2所示,该最大转矩电流比控制方法可以包括以下步骤:Referring to FIG. 2, it is a schematic flowchart of the implementation of the maximum torque-to-current ratio control method provided in the second embodiment of the present application. As shown in FIG. 2, the maximum torque-to-current ratio control method may include the following steps:
步骤201,获取目标信号。
该步骤与步骤101相同,具体可参见步骤101的相关描述,在此不再赘述。This step is the same as
步骤202,将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角。
该步骤与步骤102相同,具体可参见步骤102的相关描述,在此不再赘述。This step is the same as
步骤203,根据第二电流相位超前角,确定永磁同步电机的第一电磁功率。Step 203: Determine the first electromagnetic power of the permanent magnet synchronous motor according to the second current phase advance angle.
由于通过控制电流相位超前角,可以控制永磁同步电机的定子电流,故终端设备根据第二电流相位超前角,可以确定注入目标信号后的定子电流,根据注入目标信号后的定子电流,即可确定注入目标信号后的电磁功率(即第一电磁功率)。Since the stator current of the permanent magnet synchronous motor can be controlled by controlling the current phase advance angle, the terminal device can determine the stator current after injecting the target signal according to the second current phase advance angle, and according to the stator current after injecting the target signal, Determine the electromagnetic power (ie, the first electromagnetic power) after injecting the target signal.
具体地,终端设备可以根据第二电流相位超前角,确定永磁同步电机在d-q坐标系下的目标d轴定子电流和目标q轴定子电流,目标d轴定子电流是指注入目标信号后的d轴定子电流,目标q轴定子电流是指注入目标信号后的q轴定子电流;根据目标d轴定子电流和目标q轴定子电流,确定第一电磁功率。Specifically, the terminal device can determine the target d-axis stator current and the target q-axis stator current of the permanent magnet synchronous motor in the d-q coordinate system according to the second current phase advance angle, and the target d-axis stator current refers to the d after the target signal is injected. The shaft stator current, the target q-axis stator current refers to the q-axis stator current after the target signal is injected; the first electromagnetic power is determined according to the target d-axis stator current and the target q-axis stator current.
在一实施例中,终端设备可以先获取永磁同步电机的磁体极对数和转子的机械角速度,并根据目标d轴定子电流和目标q轴定子电流确定注入信号后的转矩,再计算注入信号后的转矩、永磁体极对数和转子的机械角速度的乘积,确定乘积后所得值为第一电磁功率。In one embodiment, the terminal device can first obtain the number of magnet pole pairs of the permanent magnet synchronous motor and the mechanical angular velocity of the rotor, and determine the torque after the injection signal according to the target d-axis stator current and the target q-axis stator current, and then calculate the injection signal. The product of the torque after the signal, the number of pole pairs of the permanent magnet and the mechanical angular velocity of the rotor, and the obtained value after determining the product is the first electromagnetic power.
其中,可以利用旋变解码芯片采集永磁同步电机相邻两个周期的转子位置信号,旋变解码芯片将所采集的转子位置信号传输给终端设备,终端设备根据转子位置信号可以确定转子的机械角速度。例如,ωm表示转子的机械角速度,θ1表示第一周期的转子位置信号,θ2表示第二周期的转子位置信号,Δt表示采样周期,可以通过公式计算转子的机械角速度。Among them, the resolver decoding chip can be used to collect the rotor position signals of the permanent magnet synchronous motor in two adjacent cycles, and the resolver decoding chip transmits the collected rotor position signals to the terminal equipment, and the terminal equipment can determine the mechanical properties of the rotor according to the rotor position signals. angular velocity. For example, ω m represents the mechanical angular velocity of the rotor, θ 1 represents the rotor position signal of the first cycle, θ 2 represents the rotor position signal of the second cycle, and Δt represents the sampling period, which can be determined by the formula Calculate the mechanical angular velocity of the rotor.
终端设备可以包括显示屏,在该显示屏上显示磁体极对数输入项,在检测到用户在磁体极对数输入项输入的数值时,确定该数值为永磁同步电机的磁体极对数。The terminal device may include a display screen on which an input item for the number of magnet pole pairs is displayed, and when a value input by the user in the input item for the number of magnet pole pairs is detected, the value is determined to be the number of magnet pole pairs of the permanent magnet synchronous motor.
步骤204,将第一电磁功率输入至目标观测器,得到第一交流分量和第二交流分量。Step 204: Input the first electromagnetic power to the target observer to obtain the first AC component and the second AC component.
目标观测器包括第一传递函数和第二传递函数,第一传递函数是指第一交流分量与第一电磁功率之间的传递函数,第二传递函数是指第二交流分量与第一电磁功率之间的传递函数;The target observer includes a first transfer function and a second transfer function, the first transfer function refers to the transfer function between the first AC component and the first electromagnetic power, and the second transfer function refers to the second AC component and the first electromagnetic power. The transfer function between;
其中,d(s)表示第一传递函数,q(s)表示第二传递函数,ω表示目标观测器的观测频率,ξ表示阻尼系数,s表示微分算子。in, d(s) represents the first transfer function, q(s) represents the second transfer function, ω represents the observation frequency of the target observer, ξ represents the damping coefficient, and s represents the differential operator.
由上述d(s)的表达式可知,上述第一传递函数可以认为是一个中心频率为ω,阻尼系数为ξ的二阶带通滤波器,即上述第一传递函数能够实现二阶带通滤波器的功能,能够提取第一电磁功率中频率为ω的交流分量(即第一交流分量)。From the above expression of d(s), it can be seen that the above-mentioned first transfer function can be regarded as a second-order band-pass filter with a center frequency of ω and a damping coefficient of ξ, that is, the above-mentioned first transfer function can realize a second-order band-pass filter. The function of the device is capable of extracting the AC component (ie, the first AC component) with a frequency of ω in the first electromagnetic power.
由上述q(s)的表达式可知,上述第二传递函数可以认为是二阶带通滤波器与一个带相移的全通滤波器级联,故可以第二交流分量是第一交流分量相位滞后的同频交流分量。From the above expression of q(s), it can be seen that the above second transfer function can be considered as a second-order bandpass filter and a bandpass filter. Phase-shifted all-pass filters are cascaded, so the second AC component can be phase-lag of the first AC component of the same frequency AC component.
在一实施例中,上述目标观测器还可以包括第三传递函数,第三传递函数是第一电磁功率中的直流分量与第一电磁功率之间的传递函数。第三传递函数可以表示为由上述n(s)的表达式可知,上述第三传递函数可以认为是一个低通滤波器与陷波滤波器的级联,能够降低第一电磁功率中的谐波分量。In an embodiment, the above-mentioned target observer may further include a third transfer function, where the third transfer function is a transfer function between the DC component of the first electromagnetic power and the first electromagnetic power. The third transfer function can be expressed as It can be known from the above expression of n(s) that the above third transfer function can be considered as a cascade connection of a low-pass filter and a notch filter, which can reduce the harmonic components in the first electromagnetic power.
如图3所示是目标观测器的结构示例图,表示积分器,表示第一电磁功率中的直流分量,表示第一交流分量,表示第二交流分量。Figure 3 is an example of the structure of the target observer, represents the integrator, represents the DC component in the first electromagnetic power, represents the first AC component, represents the second AC component.
需要说明的是,为了从第一电磁功率中快速提取出第一交流分量和第二交流分量,目标观测器的观测频率可以与目标信号的频率相同。It should be noted that, in order to quickly extract the first AC component and the second AC component from the first electromagnetic power, the observation frequency of the target observer may be the same as the frequency of the target signal.
以目标信号为高频正弦信号为例,将第一电磁功率进行泰勒展开后,可以表示如下:Taking the target signal as a high-frequency sinusoidal signal as an example, after Taylor expansion of the first electromagnetic power, it can be expressed as follows:
其中,和Pe(β+Δβ)表示第一电磁功率,Pe(β)表示第二电磁功率。in, and Pe (β+Δβ) represents the first electromagnetic power, and Pe (β) represents the second electromagnetic power.
将第一电磁功率进行泰勒展开后,可以从上述公式(1)中得到第三交流分量为将第三交流分量的相位滞后可以得到第四交流分量为 After the Taylor expansion of the first electromagnetic power, the third AC component can be obtained from the above formula (1) as Lag the phase of the third AC component The fourth AC component can be obtained as
由于第一交流分量与第三交流分量均表示第一电磁功率的交流分量,故第一交流分量与第三交流分量之间的关系可以表示如下:Since both the first AC component and the third AC component represent the AC component of the first electromagnetic power, the relationship between the first AC component and the third AC component can be expressed as follows:
第二交流分量与第四交流分量之间的关系可以表示如下:The relationship between the second AC component and the fourth AC component can be expressed as follows:
其中,表示第一交流分量,表示第二交流分量,K表示目标观测器在ωh处的增益。in, represents the first AC component, represents the second AC component, and K represents the gain of the target observer at ωh .
步骤205,根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。Step 205: Adjust the phase lead angle of the first current according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
该步骤与步骤104相同,具体可参见步骤104的相关描述,在此不再赘述。This step is the same as
由上述公式(2)和(3)中可知,第一交流分量和第二交流分量均与第二电磁功率对第一电流相位超前角的偏微分正比例,那么终端设备通过调节第一交流分量和第二交流分量,可以使得第二电磁功率对第一电流相位超前角的偏微分为零,从而使得永磁同步电机满足最大转矩电流比。It can be seen from the above formulas (2) and (3) that both the first AC component and the second AC component are proportional to the partial differential of the second electromagnetic power to the first current phase lead angle, then the terminal device adjusts the first AC component and The second AC component can make the partial differential of the second electromagnetic power to the first current phase advance angle to be zero, so that the permanent magnet synchronous motor can satisfy the maximum torque to current ratio.
在一实施例中,终端设备在执行步骤205之前,可以先从目标信号中提取第一系数,第一系数是指目标信号中随时间变化的系数;再根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。In an embodiment, before performing
示例性的,目标信号为Asin(ωht),那么目标信号中的sin(ωht)即为第一系数。Exemplarily, the target signal is Asin(ω h t), then sin(ω h t) in the target signal is the first coefficient.
终端设备根据第一系数、第一交流分量和第二交流分量能够去除第三交流分量和第四交流分量中随时间变化的系数,减小第三交流分量和第四交流分量中随时间变化的系数对偏微分(即第二电磁功率对第一电流相位超前角的偏微分)的影响,提高第一电流相位超前角的调节速度,快速地确定MTPA工作点。The terminal device can remove the time-varying coefficients in the third AC component and the fourth AC component according to the first coefficient, the first AC component and the second AC component, and reduce the time-varying coefficients in the third AC component and the fourth AC component. The influence of the coefficient on the partial differential (ie the partial differential of the second electromagnetic power on the first current phase advance angle) improves the adjustment speed of the first current phase advance angle and quickly determines the MTPA operating point.
在一实施例中,根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比包括:In one embodiment, adjusting the first current phase advance angle according to the first coefficient, the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque to current ratio includes:
将第一系数的相位滞后目标角度,得到第二系数;lag the phase of the first coefficient by the target angle to obtain the second coefficient;
计算第一系数与第一交流分量的乘积,得到第一乘积;Calculate the product of the first coefficient and the first AC component to obtain the first product;
计算第二系数与第二交流分量的乘积,得到第二乘积;Calculate the product of the second coefficient and the second AC component to obtain the second product;
根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。According to the first product and the second product, the first current phase advance angle is adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio.
示例性的,第一系数为sin(ωht),第一交流分量为第二交流分量为那么将sin(ωht)的相位滞后之后,可以得到第二系数为第一乘积为yx×sin(ωht)。第二乘积为 Exemplarily, the first coefficient is sin(ω h t), and the first AC component is The second AC component is Then lag the phase of sin(ω h t) After that, the second coefficient can be obtained as The first product is y x × sin(ω h t). The second product is
终端设备根据第一乘积和第二乘积,能够去除第三交流分量和第四交流分量中随时间变化的系数,减小第三交流分量和第四交流分量中随时间变化的系数对偏微分(即第二电磁功率对电流相位超前角的偏微分)的影响,提高第一电流相位超前角的调节速度,快速地确定MTPA工作点。According to the first product and the second product, the terminal device can remove the time-varying coefficients in the third AC component and the fourth AC component, and reduce the time-varying coefficients in the third AC component and the fourth AC component to the partial differential ( That is, the influence of the second electromagnetic power on the partial differential of the current phase advance angle) increases the adjustment speed of the first current phase advance angle, and quickly determines the MTPA operating point.
在一实施例中,根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比包括:In one embodiment, according to the first product and the second product, adjusting the first current phase advance angle so that the permanent magnet synchronous motor satisfies the maximum torque to current ratio includes:
将第一乘积和第二乘积相加,确定相加后所得值为目标直流分量,目标直流分量与永磁同步电机的第二电磁功率对第一电流相位超前角的偏微分成正比例;The first product and the second product are added, and it is determined that the obtained value after the addition is the target DC component, and the target DC component and the second electromagnetic power of the permanent magnet synchronous motor are proportional to the partial differential of the first current phase lead angle;
调节第一电流相位超前角,使得目标直流分量等于零,并确定目标直流分量等于零时永磁同步电机满足最大转矩电流比Adjust the first current phase advance angle so that the target DC component is equal to zero, and determine that the permanent magnet synchronous motor meets the maximum torque-current ratio when the target DC component is equal to zero
终端设备将第一乘积和第二乘积相加,可以得到目标直流分量,该目标直流分量中不存在随时间变化的系数,即能够去除第三交流分量和第四交流分量中的随时间变化的系数,从而从第三交流分量和第四交流分量中提取出第二电磁功率对第一电流相位超前角的偏微分。The terminal device adds the first product and the second product to obtain the target DC component. There is no time-varying coefficient in the target DC component, that is, the time-varying coefficients in the third AC component and the fourth AC component can be removed. coefficient, so as to extract the partial differential of the second electromagnetic power to the first current phase advance angle from the third AC component and the fourth AC component.
在本实施例中,目标直流分量与第二电磁功率对第一电流相位超前角的偏微分成正比例,故在目标直流分量等于零时,第二电磁功率对电流相位超前角的偏微分也等于零,那么通过控制目标直流分量等于零,可以使得永磁同步电机满足最大转矩电流比,得到MTPA工作点。In this embodiment, the partial differential of the target DC component and the second electromagnetic power to the first current phase advance angle is proportional, so when the target DC component is equal to zero, the partial differential of the second electromagnetic power to the current phase advance angle is also equal to zero, Then, by controlling the target DC component to be equal to zero, the permanent magnet synchronous motor can be made to meet the maximum torque-current ratio, and the MTPA operating point can be obtained.
在一实施例中,可以将目标直流分量输入至目标控制器,通过目标控制器可以调节电流相位超前角,使得目标直流分量等于零。In one embodiment, the target DC component may be input to the target controller, and the current phase advance angle may be adjusted by the target controller so that the target DC component is equal to zero.
上述目标控制器包括但不限于积分器、比例积分控制器、神经网络模型、模糊控制器等。The above-mentioned target controllers include but are not limited to integrators, proportional-integral controllers, neural network models, fuzzy controllers, and the like.
终端设备将目标直流分量输入至目标控制器,可以通过目标控制器实现对电流相位超前角的调节,直至目标直流分量等于零,在目标直流分量等于零时永磁同步电机满足最大转矩电流比。The terminal equipment inputs the target DC component to the target controller, and the current phase advance angle can be adjusted through the target controller until the target DC component is equal to zero. When the target DC component is equal to zero, the permanent magnet synchronous motor satisfies the maximum torque-current ratio.
如图4a所示是基于真实信号注入法的MTPA控制示例图,如图4b所示是基于虚拟信号注入法的MTPA控制示例图。Fig. 4a is an example diagram of MTPA control based on the real signal injection method, and Fig. 4b is an example diagram of MTPA control based on the virtual signal injection method.
以虚拟信号注入法的MTPA控制为例,对本申请获取最优电流相位超前角的过程进行说明:Taking the MTPA control of the virtual signal injection method as an example, the process of obtaining the optimal current phase advance angle in the present application is described:
永磁同步电机在d-q坐标系下的电机模型可以定义如下:The motor model of the permanent magnet synchronous motor in the d-q coordinate system can be defined as follows:
Te=k[ψm+(Ld-Lq)id]iq (6)T e =k[ψ m +(L d -L q )i d ]i q (6)
id=-Iasinβiq=Iacosβ (7)i d =-I a sinβi q =I a cosβ (7)
其中,vd表示d轴定子电压,id表示未注入目标信号的d轴定子电流,vq表示q轴定子电压,iq表示未注入目标信号的q轴定子电流,Ld表示d轴电感,Lq表示q轴电感,R、p和ψm分别表示定子电阻、永磁体极对数和永磁体磁链,Ia和β分别表示电流幅值和第一电流相位超前角,ωm表示转子的机械角速度,k表示转矩系数。Where, v d represents the d-axis stator voltage, id represents the d-axis stator current with no target signal injected, v q represents the q-axis stator voltage, i q represents the q-axis stator current with no target signal injected, and L d represents the d -axis inductance , L q represents the q-axis inductance, R, p and ψ m represent the stator resistance, the number of permanent magnet pole pairs and the permanent magnet flux linkage, respectively, I a and β represent the current amplitude and the first current phase advance angle, respectively, ω m represents The mechanical angular velocity of the rotor, k is the torque coefficient.
当永磁同步电机在稳态运行时,公式(4)和(5)中的微分项为零,此时可以得到ψm和Lq,ψm和Lq分别表示如下:When the permanent magnet synchronous motor is running in a steady state, the differential terms in equations (4) and (5) are zero, and ψ m and L q can be obtained at this time, and ψ m and L q are respectively expressed as follows:
将上述公式(8)和(9)代入公式(6),可以将永磁同步电机的第二电磁表示如下:Substituting the above formulas (8) and (9) into formula (6), the second electromagnetic of the permanent magnet synchronous motor can be expressed as follows:
目标信号表示如下:The target signal is represented as follows:
Δβ=Asin(ωht) (11)Δβ=Asin(ω h t) (11)
将目标信号注入第一电流相位超前角之后,第二电流相位超前角可以表示为β+Δβ,那么目标d轴定子电流和目标q轴定子电流可以表示如下:After injecting the target signal into the first current phase advance angle, the second current phase advance angle can be expressed as β+Δβ, then the target d-axis stator current and the target q-axis stator current can be expressed as follows:
其中,表示目标d轴定子电流,表示目标q轴定子电流。in, represents the target d-axis stator current, Indicates the target q-axis stator current.
基于公式(12),第一电磁功率表示如下:Based on equation (12), the first electromagnetic power is expressed as follows:
由上述公式(11)至(13)可知,基于测量得到的未注入目标信号的d轴定子电流id、未注入目标信号的q轴定子电流iq、d轴定子电压vd、q轴定子电压vq、转子的机械角速度ωm、标称的定子电阻R以及通过查表或标称的d轴电感Ld,可以计算出注入目标信号的第一电磁功率。From the above equations (11) to (13), it can be known that based on the measured d-axis stator current id without target signal injection, q-axis stator current iq without target signal injection, d -axis stator voltage v d , q-axis stator current The first electromagnetic power injected into the target signal can be calculated from the voltage v q , the mechanical angular velocity ω m of the rotor, the nominal stator resistance R, and through a look-up table or the nominal d-axis inductance L d .
将公式(13)的左侧部分(即)进行泰勒展开,可以表示为上述公式(1)。Put the left-hand part of Equation (13) (i.e. ) is Taylor expansion, which can be expressed as the above formula (1).
从上述公式(1)中可以提取出第三交流分量,且第三交流分量为将第四交流分量的相位滞后可以得到第四交流分量,第四交流分量为 The third AC component can be extracted from the above formula (1), and the third AC component is Lag the phase of the fourth AC component The fourth AC component can be obtained, and the fourth AC component is
使用图4b中的目标观测器,可以从公式(13)的右侧部分(即中提取出第一交流分量和第二交流分量。Using the target observer in Figure 4b, it can be obtained from the right-hand part of Equation (13) (i.e. The first AC component and the second AC component are extracted.
第一交流分量与第三交流分量之间的关系如上述公式(2)。The relationship between the first AC component and the third AC component is as in the above formula (2).
第二交流分量与第四交流分量之间的关系如上述公式(3)。The relationship between the second AC component and the fourth AC component is as in the above formula (3).
从目标信号中提取的第一系数为sin(ωht),将第一系数的相位滞后,得到的第二系数为 The first coefficient extracted from the target signal is sin(ω h t), and the phase of the first coefficient is delayed, and the second coefficient obtained is
将第一系数与公式(2)的左侧部分(即)相乘,得到第一乘积;将第二系数与公式(3)的左侧部分(即)相乘,得到第二乘积;将第一乘积与第二乘积相加,相加后所得值(即目标直流分量)表示如下:Compare the first coefficient with the left-hand part of equation (2) (i.e. ) are multiplied to obtain the first product; the second coefficient is ) to obtain the second product; the first product and the second product are added together, and the value obtained after the addition (that is, the target DC component) is expressed as follows:
其中,Out表示目标直流分量。Among them, Out represents the target DC component.
将第一系数与公式(2)的右侧部分(即)相乘,得到第三乘积;将第二系数与公式(3)的右侧部分(即)相乘,得到第四乘积;将第三乘积与第四乘积相加,相加后所得值可以表示为 Compare the first coefficient with the right-hand part of equation (2) (ie ) to obtain the third product; the second coefficient is combined with the right-hand part of equation (3) (ie ) to obtain the fourth product; the third product and the fourth product are added together, and the value obtained after the addition can be expressed as
由公式(2)和(3)可知,目标直流分量Out与第二电磁功率对第一电流相位超相角的偏微分之间的关系可以表示如下:From formulas (2) and (3), it can be known that the partial differential of the target DC component Out and the second electromagnetic power to the superphase angle of the first current phase The relationship between can be expressed as follows:
由公式(15)可知,第二电磁功率对第一电流相位超前角的偏微分与目标直流分量成正比例,通过控制目标直流分量等于零(即控制等于零),可以使得第二电磁功率对第一电流相位超前角的偏微分等于零,从而可得到MTPA工作点。It can be seen from formula (15) that the partial differential of the second electromagnetic power to the first current phase lead angle is proportional to the target DC component, and by controlling the target DC component to be equal to zero (that is, controlling equal to zero), the partial differential of the second electromagnetic power to the first current phase advance angle can be made equal to zero, so that the MTPA operating point can be obtained.
如图5所示是基于虚拟信号注入法的电流相位超前角优化控制系统的示例图。如图5所示,基于本申请的目标控制器输出的参考电流相位超前角βref,可以计算得到参考d轴定子电流idref和参考q轴定子电流iqref,将参考d轴定子电流idref和参考q轴定子电流iqref输入至比例积分控制器,解耦后得到d轴定子电流id和q轴定子电流iq,经过坐标变换后,传输给逆变器。上述逆变器可以是空间矢量脉宽调制(Space Vector Pulse WidthModulation,SVPWM)逆变器。其中,图5中的ia和ib是abc坐标下的定子电流。As shown in FIG. 5 is an example diagram of the current phase advance angle optimization control system based on the virtual signal injection method. As shown in FIG. 5 , based on the reference current phase lead angle β ref output by the target controller of the present application, the reference d-axis stator current i dref and the reference q-axis stator current i qref can be calculated and obtained, and the reference d-axis stator current i dref And the reference q-axis stator current i qref is input to the proportional-integral controller. After decoupling, the d -axis stator current id and the q-axis stator current i q are obtained. After coordinate transformation, they are transmitted to the inverter. The above inverter may be a space vector pulse width modulation (Space Vector Pulse Width Modulation, SVPWM) inverter. Among them, i a and i b in Fig. 5 are the stator currents in abc coordinates.
以虚拟注入法和一台三相永磁同步电机的驱动系统为例,如图6a所示是电流幅值的一示例图,如图6b所示是最优电流相位超前角的响应曲线的一示例图。图6a设定的是恒定电流幅值信号。图6b中的响应曲线是基于图6a所示的电流幅值得到的。Taking the virtual injection method and the drive system of a three-phase permanent magnet synchronous motor as an example, Figure 6a is an example of the current amplitude, and Figure 6b is a response curve of the optimal current phase lead angle. sample graph. Figure 6a sets a constant current amplitude signal. The response curves in Figure 6b are based on the current magnitudes shown in Figure 6a.
由图6b可知,本申请的MTPA控制方法搜索到MTPA工作点的时间约为0.52秒,现有的MTPA控制方法搜索到MTPA工作点的时间约为10.2秒,本申请的MTPA控制方法能够显著提升确定最优电流相位超前角的速度。It can be seen from Fig. 6b that the time for the MTPA control method of the present application to search for the MTPA operating point is about 0.52 seconds, and the time for the existing MTPA control method to search for the MTPA operating point is about 10.2 seconds, and the MTPA control method of the present application can significantly improve. Determine the speed of the optimal current phase lead angle.
以虚拟注入法为例,如图7a所示是电流幅值的另一示例图,如图7b所示是最优电流相位超前角的响应曲线的另一示例图。图7a设定的是跳变电流幅值信号。图7b中的响应曲线是基于图7a所示的电流幅值得到的。Taking the virtual injection method as an example, Fig. 7a is another example diagram of the current amplitude, and Fig. 7b is another example diagram of the response curve of the optimal current phase advance angle. Figure 7a sets the jump current amplitude signal. The response curves in Figure 7b are based on the current magnitudes shown in Figure 7a.
由图7b可知,现有的MTPA控制方法的响应速度较慢,且存在明显的超调过冲,而本申请的MTPA控制方法的响应速度快,且超调明显较小。It can be seen from Fig. 7b that the response speed of the existing MTPA control method is relatively slow, and there is obvious overshoot and overshoot, while the MTPA control method of the present application has a fast response speed and significantly smaller overshoot.
需要说明的是,图6b和图7b中现有的MTPA控制方法是指使用带通滤波器和低通滤波器的MTPA控制方法。It should be noted that the existing MTPA control methods in FIG. 6b and FIG. 7b refer to the MTPA control methods using a band-pass filter and a low-pass filter.
本申请实施例在实施例一的基础上,通过目标观测器得到第一交流分量和第二交流分量,且将第一交流分量和第二交流分量经过三角函数变化即可确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点,且精度高,收敛稳定。因此本申请在复杂多变的工况下,能够使得电机驱动系统保持良好的工作状态,减小能量损耗。Based on the first embodiment, the embodiment of the present application obtains the first AC component and the second AC component through the target observer, and the MTPA operating point can be determined by changing the first AC component and the second AC component through a trigonometric function. In this process, since there is no need to use a band-pass filter and a low-pass filter, the calculation amount in the MTPA control process is reduced, the dynamic response speed of the MTPA control is improved, the MTPA operating point can be quickly determined, and the accuracy is high. Convergence and stability. Therefore, the present application can keep the motor drive system in good working condition and reduce energy loss under complex and changeable working conditions.
参见图8,是本申请实施例三提供的最大转矩电流比控制装置的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分。Referring to FIG. 8 , it is a schematic structural diagram of the maximum torque-to-current ratio control device provided in the third embodiment of the present application. For the convenience of description, only the part related to the embodiment of the present application is shown.
上述最大转矩电流比控制装置包括:The above-mentioned maximum torque-current ratio control device includes:
信号获取模块81,用于获取目标信号;The
信号注入模块82,用于将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;The
分量确定模块83,用于根据第二电流相位超前角,确定第一交流分量和和第二交流分量,第一交流分量是指永磁同步电机的第一电磁功率中与目标信号的频率相同的交流分量,第二交流分量是指第一交流分量的相位滞后目标角度的同频交流分量,第一电磁功率是指注入目标信号后的电磁功率;The
超前角调节模块84,用于根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。The lead
在一实施例中,上述分量确定模块83包括:In one embodiment, the above-mentioned
功率确定单元,用于根据第二电流相位超前角,确定第一电磁功率;a power determination unit, configured to determine the first electromagnetic power according to the second current phase advance angle;
功率输入单元,用于将第一电磁功率输入至目标观测器,得到第一交流分量和第二交流分量,目标观测器包括第一传递函数和第二传递函数,第一传递函数是指第一交流分量与第一电磁功率之间的传递函数,第二传递函数是指第二交流分量与第一电磁功率之间的传递函数;The power input unit is used to input the first electromagnetic power to the target observer to obtain the first AC component and the second AC component, the target observer includes a first transfer function and a second transfer function, and the first transfer function refers to the first the transfer function between the AC component and the first electromagnetic power, and the second transfer function refers to the transfer function between the second AC component and the first electromagnetic power;
其中,d(s)表示第一传递函数,q(s)表示第二传递函数,ω表示目标观测器的观测频率,ξ表示阻尼系数,s表示微分算子。in, d(s) represents the first transfer function, q(s) represents the second transfer function, ω represents the observation frequency of the target observer, ξ represents the damping coefficient, and s represents the differential operator.
在一实施例中,上述功率确定单元具体用于:In one embodiment, the above-mentioned power determination unit is specifically used for:
根据第二电流相位超前角,确定永磁同步电机在d-q坐标系下的目标d轴定子电流和目标q轴定子电流,目标d轴定子电流是指注入目标信号后的d轴定子电流,目标q轴定子电流是指注入目标信号后的q轴定子电流;According to the second current phase advance angle, the target d-axis stator current and target q-axis stator current of the permanent magnet synchronous motor in the d-q coordinate system are determined. The target d-axis stator current refers to the d-axis stator current after the target signal is injected, and the target q The shaft stator current refers to the q-axis stator current after injecting the target signal;
根据目标d轴定子电流和目标q轴定子电流,确定第一电磁功率。The first electromagnetic power is determined according to the target d-axis stator current and the target q-axis stator current.
在一实施例中,目标观测器还包括第三传递函数,第三传递函数是指第一电磁功率中的直流分量与第一电磁功率之间的传递函数;In one embodiment, the target observer further includes a third transfer function, where the third transfer function refers to a transfer function between the DC component of the first electromagnetic power and the first electromagnetic power;
其中,n(s)表示第三传递函数。in, n(s) represents the third transfer function.
在一实施例中,上述最大转矩电流比控制装置还包括:In one embodiment, the above-mentioned maximum torque-current ratio control device further includes:
系数确定模块,用于从目标信号中确定第一系数,第一系数是指目标信号中随时间变化的系数;a coefficient determination module, configured to determine a first coefficient from the target signal, where the first coefficient refers to a time-varying coefficient in the target signal;
上述超前角调节模块84具体用于:The above-mentioned lead
根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。According to the first coefficient, the first AC component and the second AC component, the first current phase lead angle is adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio.
在一实施例中,上述超前角调节模块84包括:In one embodiment, the above-mentioned lead
系数处理单元,用于将第一系数的相位滞后目标角度,得到第二系数;a coefficient processing unit, configured to delay the phase of the first coefficient by a target angle to obtain a second coefficient;
第一计算单元,用于计算第一系数与第一交流分量的乘积,得到第一乘积;a first calculation unit, configured to calculate the product of the first coefficient and the first AC component to obtain the first product;
第二计算单元,用于计算第二系数与第二交流分量的乘积,得到第二乘积;a second calculation unit, configured to calculate the product of the second coefficient and the second AC component to obtain the second product;
超前角调节单元,用于根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。The lead angle adjustment unit is configured to adjust the first current phase lead angle according to the first product and the second product, so that the permanent magnet synchronous motor satisfies the maximum torque to current ratio.
在一实施例中,超前角调节单元包括:In one embodiment, the lead angle adjustment unit includes:
确定子单元,用于将第一乘积和第二乘积相加,确定相加后所得值为目标直流分量,目标直流分量与永磁同步电机的第二电磁功率对电流相位超前角的偏微分成正比例,第二电磁功率是指未注入目标信号的电磁功率;The determination subunit is used to add the first product and the second product, and the value obtained after the addition is determined to be the target DC component, which is divided into the partial differential of the target DC component and the second electromagnetic power of the permanent magnet synchronous motor to the current phase advance angle. Proportional, the second electromagnetic power refers to the electromagnetic power that is not injected into the target signal;
调节子单元,用于调节第一电流相位超前角,使得目标直流分量等于零时的电流相位超前角,并确定目标直流分量等于零时永磁同步电机满足最大转矩电流比。The adjustment subunit is used to adjust the first current phase advance angle so that the target DC component is equal to the current phase advance angle when the target DC component is equal to zero, and determines that the permanent magnet synchronous motor satisfies the maximum torque to current ratio when the target DC component is equal to zero.
本申请实施例提供的最大转矩电流比控制装置可以应用在前述方法实施例一和实施例二中,详情参见上述方法实施例一和实施例二的描述,在此不再赘述。The maximum torque-to-current ratio control device provided in this embodiment of the present application can be applied to the first and second embodiments of the foregoing method. For details, refer to the descriptions of the first and second embodiments of the foregoing method, which will not be repeated here.
图9是本申请实施例四提供的终端设备的结构示意图。如图9所示,该实施例的终端设备9包括:一个或多个处理器90(图中仅示出一个)、存储器91以及存储在存储器91中并可在处理器90上运行的计算机程序92。处理器90执行计算机程序92时实现上述各个最大转矩电流比控制方法实施例中的步骤。FIG. 9 is a schematic structural diagram of a terminal device provided in Embodiment 4 of the present application. As shown in FIG. 9 , the terminal device 9 of this embodiment includes: one or more processors 90 (only one is shown in the figure), a
终端设备9可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备可包括,但不仅限于,处理器90、存储器91。本领域技术人员可以理解,图9仅仅是终端设备9的示例,并不构成对终端设备9的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备还可以包括输入输出设备、网络接入设备、总线等。The terminal device 9 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server. The terminal device may include, but is not limited to, the
所称处理器90可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called
存储器91可以是终端设备9的内部存储单元,例如终端设备9的硬盘或内存。存储器91也可以是终端设备9的外部存储设备,例如终端设备9上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器91还可以既包括终端设备9的内部存储单元也包括外部存储设备。存储器91用于存储计算机程序以及终端设备所需的其他程序和数据。存储器91还可以用于暂时地存储已经输出或者将要输出的数据。The
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus/terminal device and method may be implemented in other manners. For example, the apparatus/terminal device embodiments described above are only illustrative. For example, the division of modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or components. May be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。The integrated modules/units, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium. Based on this understanding, the present application realizes all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium, and the computer program is in When executed by the processor, the steps of the foregoing method embodiments can be implemented. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate forms, and the like. The computer-readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, Read-Only Memory (ROM), random access memory Memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal, software distribution medium, etc. It should be noted that the content contained in computer-readable media may be appropriately increased or decreased in accordance with the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer-readable media does not include Electrical carrier signals and telecommunication signals.
本申请实现上述实施例方法中的全部或部分流程,也可以通过一种计算机程序产品来完成,当计算机程序产品在终端设备上运行时,使得终端设备执行时实现可实现上述各个方法实施例中的步骤。The present application implements all or part of the processes in the methods of the above embodiments, and can also be completed by a computer program product. When the computer program product runs on a terminal device, the terminal device can implement the above methods when it is executed. A step of.
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The recorded technical solutions are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the application, and should be included in the application. within the scope of protection.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110654558.1A CN113346813B (en) | 2021-06-11 | 2021-06-11 | Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium |
PCT/CN2021/138144 WO2022257405A1 (en) | 2021-06-11 | 2021-12-15 | Maximum torque per ampere control method and apparatus, terminal device, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110654558.1A CN113346813B (en) | 2021-06-11 | 2021-06-11 | Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113346813A true CN113346813A (en) | 2021-09-03 |
CN113346813B CN113346813B (en) | 2022-05-27 |
Family
ID=77477072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110654558.1A Active CN113346813B (en) | 2021-06-11 | 2021-06-11 | Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113346813B (en) |
WO (1) | WO2022257405A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257405A1 (en) * | 2021-06-11 | 2022-12-15 | 中国科学院深圳先进技术研究院 | Maximum torque per ampere control method and apparatus, terminal device, and storage medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117387813B (en) * | 2023-12-06 | 2024-02-13 | 浙江大学 | High-power synchronous motor electromagnetic torque testing method and device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2698916A2 (en) * | 2012-08-17 | 2014-02-19 | Kabushiki Kaisha Yaskawa Denki | Motor control apparatus and motor control method |
CN107800344A (en) * | 2017-10-17 | 2018-03-13 | 浙江大学 | The maximum torque per ampere control method of synchronous motor based on virtual signal injection |
CN110071674A (en) * | 2019-05-14 | 2019-07-30 | 天津大学 | A kind of position-sensor-free permanent magnet synchronous motor maximum torque per ampere control method |
CN110890855A (en) * | 2019-11-11 | 2020-03-17 | 武汉理工大学 | Parameter identification method for permanent magnet synchronous motor of electric vehicle |
CN111327234A (en) * | 2020-02-28 | 2020-06-23 | 北京航空航天大学 | Low-speed-stage position-sensorless control method of permanent magnet fault-tolerant motor system based on envelope detection and non-orthogonal phase-locked loop |
CN111355411A (en) * | 2020-03-26 | 2020-06-30 | 同济大学 | Control method, device, storage medium and terminal for permanent magnet synchronous motor |
US20200366228A1 (en) * | 2017-09-19 | 2020-11-19 | Seoul National University R&Db Foundation | Motor control apparatus |
CN112054735A (en) * | 2020-08-25 | 2020-12-08 | 江苏大学 | A method for controlling the maximum torque-current ratio of a variable frequency signal injected into an embedded permanent magnet synchronous motor |
CN112865636A (en) * | 2021-01-15 | 2021-05-28 | 珠海格力电器股份有限公司 | Maximum torque current ratio control method and device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102199277B1 (en) * | 2019-01-24 | 2021-01-06 | 강원대학교산학협력단 | Efficiency improvement technique in the v/f operation for permanent magnet synchronous motor |
CN111371363B (en) * | 2020-04-01 | 2023-08-15 | 上海新时达电气股份有限公司 | Motor maximum torque current ratio control method and device based on signal injection |
CN113346813B (en) * | 2021-06-11 | 2022-05-27 | 中国科学院深圳先进技术研究院 | Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium |
-
2021
- 2021-06-11 CN CN202110654558.1A patent/CN113346813B/en active Active
- 2021-12-15 WO PCT/CN2021/138144 patent/WO2022257405A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2698916A2 (en) * | 2012-08-17 | 2014-02-19 | Kabushiki Kaisha Yaskawa Denki | Motor control apparatus and motor control method |
US20200366228A1 (en) * | 2017-09-19 | 2020-11-19 | Seoul National University R&Db Foundation | Motor control apparatus |
CN107800344A (en) * | 2017-10-17 | 2018-03-13 | 浙江大学 | The maximum torque per ampere control method of synchronous motor based on virtual signal injection |
CN110071674A (en) * | 2019-05-14 | 2019-07-30 | 天津大学 | A kind of position-sensor-free permanent magnet synchronous motor maximum torque per ampere control method |
CN110890855A (en) * | 2019-11-11 | 2020-03-17 | 武汉理工大学 | Parameter identification method for permanent magnet synchronous motor of electric vehicle |
CN111327234A (en) * | 2020-02-28 | 2020-06-23 | 北京航空航天大学 | Low-speed-stage position-sensorless control method of permanent magnet fault-tolerant motor system based on envelope detection and non-orthogonal phase-locked loop |
CN111355411A (en) * | 2020-03-26 | 2020-06-30 | 同济大学 | Control method, device, storage medium and terminal for permanent magnet synchronous motor |
CN112054735A (en) * | 2020-08-25 | 2020-12-08 | 江苏大学 | A method for controlling the maximum torque-current ratio of a variable frequency signal injected into an embedded permanent magnet synchronous motor |
CN112865636A (en) * | 2021-01-15 | 2021-05-28 | 珠海格力电器股份有限公司 | Maximum torque current ratio control method and device |
Non-Patent Citations (2)
Title |
---|
TIANFU SUN ET AL.: "Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection", 《 IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 30, 30 September 2015 (2015-09-30), pages 5036 - 5043 * |
颜学龙等: "基于模型预测控制的永磁同步电机电流控制技术综述", 《电机与控制应用》, no. 9, 30 September 2019 (2019-09-30), pages 1 - 10 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257405A1 (en) * | 2021-06-11 | 2022-12-15 | 中国科学院深圳先进技术研究院 | Maximum torque per ampere control method and apparatus, terminal device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN113346813B (en) | 2022-05-27 |
WO2022257405A1 (en) | 2022-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109768753B (en) | Novel sliding-mode observer position-sensorless permanent magnet synchronous motor model prediction control method | |
CN109495048A (en) | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer | |
CN114598206B (en) | Design method of rotor position observer for permanent magnet synchronous motor with wide speed range | |
CN105227010B (en) | A kind of permagnetic synchronous motor position-sensor-free position detection error harmonic pulse removing method | |
Chen et al. | A sliding mode speed and position observer for a surface-mounted PMSM | |
CN110198150A (en) | A kind of permanent magnet synchronous motor multi-parameter on-line identification method | |
CN113346813B (en) | Maximum torque current ratio control method, maximum torque current ratio control device, terminal device and storage medium | |
CN116232154B (en) | Motor parameter estimation and control method and system based on complex vector discrete filter | |
CN115173774B (en) | A permanent magnet synchronous motor position sensorless control method and system | |
CN109150029A (en) | Permanent magnet synchronous motor method for controlling position-less sensor based on smooth non-singular terminal sliding mode observer | |
WO2022206027A1 (en) | Motor control method and apparatus and terminal device | |
CN113422550B (en) | Low carrier ratio control method for high-speed motor based on complex vector decoupling and delay compensation | |
CN116054656A (en) | A method, system and medium for suppressing back electromotive force harmonic disturbance of permanent magnet synchronous motor | |
WO2022257402A1 (en) | Motor control method and device, and terminal and storage medium | |
WO2020215588A1 (en) | Function-switching-based position-sensorless control method and system for direct-current magnetism-regulating memory machine | |
CN109150044A (en) | A kind of control method of the permanent magnet synchronous motor based on high frequency electrocardiography and immune PID | |
Mu et al. | Direct decoupling current demodulation algorithm-based improved high-frequency rotating voltage injection method | |
CN113346814B (en) | Motor control method, device, terminal and storage medium | |
Zhang et al. | Torque ripple suppression for permanent-magnet synchronous motor based on enhanced LADRC strategy | |
CN113644854B (en) | A permanent magnet synchronous motor angle identification system and method | |
CN108667370A (en) | Field weakening curve tracking method and device for built-in permanent magnet synchronous motor based on self-learning | |
CN114301361A (en) | A control method of permanent magnet synchronous motor drive system without electrolytic capacitor based on bus current control | |
Yao et al. | An improved adaptive full-order sliding-mode observer for sensorless control of high-speed permanent-magnet synchronous motor | |
CN106788069B (en) | A kind of full speed range method for detecting position based on internal permanent magnet synchronous motor | |
CN111510043A (en) | Rotating high-frequency signal injection system based on angular coordinate system and position extraction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |