CN113341718A - 欠驱动水面机器人的水动力系数混合自适应估计方法 - Google Patents

欠驱动水面机器人的水动力系数混合自适应估计方法 Download PDF

Info

Publication number
CN113341718A
CN113341718A CN202110648289.8A CN202110648289A CN113341718A CN 113341718 A CN113341718 A CN 113341718A CN 202110648289 A CN202110648289 A CN 202110648289A CN 113341718 A CN113341718 A CN 113341718A
Authority
CN
China
Prior art keywords
water surface
hydrodynamic
surface robot
vector
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110648289.8A
Other languages
English (en)
Other versions
CN113341718B (zh
Inventor
周华
于瑞
马思宇
胡经文
罗贵福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110648289.8A priority Critical patent/CN113341718B/zh
Publication of CN113341718A publication Critical patent/CN113341718A/zh
Application granted granted Critical
Publication of CN113341718B publication Critical patent/CN113341718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种欠驱动水面机器人的水动力系数混合自适应估计方法。获取物理参数,建立性动力学模型;建立水域流场的网格划分模型,且划分为网格;仿真获得横荡力曲线和艏摇力矩曲线,利输入线性动力学模型拟合得水动力系数;以水动力系数向量作为迭代过程中的初始值并设置自适应范围,通过水池试验获得给定推力下的姿信息,处理获得速度向量的估计值向量,计算辅助误差向量,建立参数自适应率公式获得估计值向量;重复步骤迭代循环,直至水池试验获得位姿信息均迭代循环处理过。本发明结果更逼近真实值,充分考虑了测量噪声及外界干扰的影响,更加符合测量实际,避免了对速度求导所造成的加速度信息精度低的问题。

Description

欠驱动水面机器人的水动力系数混合自适应估计方法
技术领域
本发明涉及一种水面机器人测试估计方法,尤其涉及一种欠驱动水面机器人的水动力系数估计方法。
背景技术
随着世界经济的飞速发展和人口的不断增加,人类消耗的自然资源越来越多,陆地上的资源正逐渐减少。海洋不仅仅作为一种交通运输通道存在,更重要的是它能从一定程度上缓解人类的资源危机。海洋里蕴藏着丰富的矿产资源,海洋的探测也具有极强的吸引力、挑战性。随着海洋探测的日益增多,欠驱动水面机器人被越来越广泛应用于海洋的探索、监测及救援中。欠驱动水面机器人水动力参数的获取成为了其实现水下目标跟踪、轨迹跟随控制的基础与关键。
然而,欠驱动水面机器人的形状一般不规则,故传统的水动力系数经验公式大多难以适用。而在基于CFD的水动力系数获取方法中,程序的编写和网格的划分很大程度上依赖于经验与技巧,故该方法的精度有待提高。约束船模实验法需要小型水面救援机器人设置有相应的测试安装机构,且对测试仪器有更高的要求,因此需要的经费投入更高。支持向量机、神经网络等方法前期需要大量的实船实验以获取数据进行训练,需要较长的实验时间和计算时间。最小二乘法受参数初始给定值影响较大,需要得到准确的角加速度数值,且不能保证速度估计误差收敛。
传统的参数自适应法没有考虑存在外界干扰和测量噪声的情况,现有实验所得到的水动力导数难以达到真实值附近的精度,并不准确。
发明内容
本发明要解决的技术问题设计一种针对欠驱动水面机器人的水动力导数估计方式,该方法考虑实验过程中外界干扰和测量噪声,且不需要得到角加速度的具体信息,最终得到的水动力导数接近真实值且广义速度的预测误差可以收敛到0,达到准确的精度,避免了对速度求导所造成的加速度信息精度低的问题。
本发明采用的技术方案如下:
(1)获取水面机器人的物理参数,根据水面机器人的物理参数建立水面机器人的线性动力学模型;
(2)针对水面机器人,建立水域流场的网格划分模型,且划分为纯纵横荡结构网格和纯艏摇结构网格;
(3)将步骤(2)中划分的纯纵横荡结构网格和纯艏摇结构网格进行纯纵荡、纯横荡和纯艏摇的仿真,仿真时获得横荡力曲线和艏摇力矩曲线,利用横荡力曲线和艏摇力矩曲线输入到步骤(1)的线性动力学模型中拟合得到Xu、Yv、Yr、Nv、Nr
Figure BDA0003110748570000021
的10个水动力系数;
由10个水动力系数组建水动力系数向量θ中,水动力系数向量θ中有10个元素,10个元素依次为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9和θ10,其中,
Figure BDA0003110748570000022
Figure BDA0003110748570000023
θ6=Xu,θ7=Yv,θ8=Yr,θ9=Nv,θ10=Nr
以水动力系数向量θ作为步骤(5)迭代过程中的水动力系数估计向量
Figure BDA0003110748570000024
的初始值,同时设置水动力系数向量θ中的每个元素的自适应范围作为步骤(5)迭代过程中参数自适应率的迭代约束范围;
(4)通过水池试验获得水面机器人在给定推力下的各个时刻的位姿信息;
(5)根据步骤(4)中水池试验得到的位姿信息处理获得速度向量的估计值向量,进而建立辅助误差向量和辅助向量模型计算辅助误差向量κ,再建立参数自适应率公式获得水面机器人的水动力系数的估计值向量
Figure BDA0003110748570000025
(6)重复步骤(5),以上一次迭代获得的水面机器人的水动力系数的估计值向量
Figure BDA0003110748570000026
和水池试验获得下一个时刻的位姿信息代入到步骤(5)的速度向量的估计值向量的公式中进行迭代循环,直至步骤(4)获得水池试验获得各个时刻的位姿信息均迭代循环处理过,完成水动力系数混合自适应估计。
所述(1)中的线性动力学模型具体为:
Figure BDA0003110748570000027
式中,v表示水面机器人的速度向量;
Figure BDA0003110748570000028
表示水面机器人的速度向量v的导数;ΔU表示测量水动力系数过程中附体坐标系下水面机器人受到的外界干扰力;M是质量矩阵,H(v)是柯氏力矩阵,D是阻尼矩阵,Uprop是推进器提供的推力矩阵;
上述v、M、H(v)、D、和Uprop分别计算为:
v=[u v r]T
Figure BDA0003110748570000029
H(v)=[mvr-mur 0]T
Figure BDA0003110748570000031
Uprop=[Fpl+Fpr 0(Fpl-Fpr)l]T
ΔU=[ΔX ΔY ΔN]T
式中,u表示水面机器人的纵荡速度;v表示水面机器人的横荡速度;r表示水面机器人的艏摇角速度;m代表水面机器人的质量;Iz代表水面机器人关于Z轴的转动惯量;l代表水面机器人中两个推进器之间的距离的一半;Fpl表示左推进器的推进力;Fpr代表右推进器的推进力;Xu表示纵荡方向水动力关于纵荡速度的线性水动力导数;Yv表示横荡方向水动力关于横荡速度的线性水动力导数;Yr表示横荡方向水动力关于艏摇角速度的线性水动力导数;Nv表示水动力转艏力矩关于横荡速度的线性水动力导数;Nr表示水动力转艏力矩关于艏摇角速度的线性水动力导数;
Figure BDA0003110748570000032
表示纵荡方向水动力关于纵荡加速度的线性水动力导数;
Figure BDA0003110748570000033
表示横荡方向水动力关于横荡加速度的线性水动力导数;
Figure BDA0003110748570000034
表示横荡方向水动力关于艏摇角加速度的线性水动力导数;
Figure BDA0003110748570000035
表示水动力转艏力矩关于横荡加速度的线性水动力导数;
Figure BDA0003110748570000036
表示水动力转艏力矩关于艏摇角加速度的线性水动力导数;ΔX表示测量过程中水面机器人受到的纵荡方向干扰力;ΔY表示测量过程中水面机器人受到的横荡方向干扰力;ΔN表示测量过程中水面机器人受到的艏摇方向干扰力矩。
所述步骤(2)中,先建立水域流场三维结构模型,然后由水域流场三维结构模型进行网格划分后获得网格划分模型,对网格划分模型进行纯纵荡、纯横荡和纯艏摇结构网格的划分获得了纯纵横荡结构网格和纯艏摇结构网格。
所述步骤(4)具体为:在水面上布置水面机器人和摄像系统,将给定水面机器人的推力施加到水面机器人的推进器上,利用摄像系统实时采集获得水面机器人单一时刻下的横荡速度测量值u*、纵荡速度测量值v*和艏摇角速度测量值r*,构成了该时刻的位姿信息,v*表示机器人的速度测量值向量;其中v*=[u* v* r*]T
所述步骤(5)具体为:
(5.1)根据步骤(4)中水池试验得到当前时刻的位姿信息,利用当前的水动力系数估计向量
Figure BDA0003110748570000037
通过以下公式计算得到速度向量的估计值向量的导数
Figure BDA0003110748570000038
Figure BDA0003110748570000039
Figure BDA0003110748570000041
Figure BDA0003110748570000042
Figure BDA0003110748570000043
Figure BDA0003110748570000044
式中,
Figure BDA0003110748570000045
表示水面机器人的速度向量v的估计值向量的导数;
Figure BDA0003110748570000046
表示质量矩阵M的估计值;
Figure BDA0003110748570000047
表示阻尼矩阵D的估计值;Λ表示设定的正定矩阵;us表示补偿矩阵;
Figure BDA0003110748570000048
表示质量矩阵M的估计值
Figure BDA0003110748570000049
的逆矩阵;Uprop表示给定水面机器人的推力施加到水面机器人的推进器上而形成的推进器提供的推力矩阵;
Figure BDA00031107485700000410
分别表示水面机器人的纵荡速度、横荡速度、艏摇角速度的估计值的导数;
Figure BDA00031107485700000411
分别为
Figure BDA00031107485700000412
Xu、Yv、Yr、Nv、Nr的导数。
(5.2)由水面机器人的速度向量v的估计值向量的导数
Figure BDA00031107485700000413
处理获得水面机器人的速度向量v的估计值向量
Figure BDA00031107485700000414
Figure BDA00031107485700000415
对速度向量估计值向量
Figure BDA00031107485700000416
和步骤(4)试验得到的测量值向量v*进行对比,具体是建立以下公式的辅助误差向量和辅助向量模型计算辅助误差向量κ:
Figure BDA00031107485700000417
Figure BDA00031107485700000418
式中,Δu表示纵荡速度误差;Δv表示横荡速度误差;Δr表示艏摇角速度误差;
Figure BDA00031107485700000419
Figure BDA00031107485700000420
Figure BDA00031107485700000421
在获得辅助误差向量后,建立以下参数自适应率公式,根据辅助误差向量κ在步骤(3)设定的参数自适应率的迭代约束范围内对参数自适应率公式进行求解获得水面机器人的水动力系数的估计值向量的导数,进而处理获得水面机器人的水动力系数的估计值向量
Figure BDA00031107485700000422
Figure BDA00031107485700000423
式中,
Figure BDA00031107485700000424
表示水面机器人的水动力系数的估计值向量
Figure BDA00031107485700000425
的导数,Γ为正定矩阵,
Figure BDA00031107485700000426
表示非连续映射函数;
非连续映射函数
Figure BDA0003110748570000051
表示为:
Figure BDA0003110748570000052
Figure BDA0003110748570000053
式中,(Γκ)i表示Γκ矩阵的第i个元素,T表示矩阵转置;
Figure BDA0003110748570000054
表示
Figure BDA0003110748570000055
的第i个元素,θimaxθimin分别表示
Figure BDA0003110748570000056
中元素的最大值和最小值。
相较于现有其他方法,本发明所构建的水动力系数自适应率,利用非连续映射,可以保证水动力系数的估计值严格保持在最小值和最大值之间,而不会因为测量数据中外界干扰的影响而变为无穷大的数据,有助于提高水动力系数估计系统的对外界干扰的抗干扰(测量噪声、外界干扰力等)能力。
除此之外,本发明的自适应率针对每个水动力系数自身进行了参数估计,而不是像传统方案一样针对某几个水动力系数的和或者商进行参数估计,因此计算过程更加明确易行。
本发明方法特别地增加了补偿矩阵us,在增加补偿矩阵之后,使所设计的算法,在使用存在外界干扰和测量误差工况下获取的试验数据时,得到的水动力系数可以更好地进行精准的速度向量预测。
所述的补偿矩阵us设置为:
根据外界干扰力的阈值和传感器噪声的阈值,设定补偿矩阵:
Figure BDA0003110748570000057
式中,ε1、ε2和ε3均代表预先设置的第一、第二、第三富余量参数,ε123>0,M1,M2,M3是质量矩阵M的三个列向量,
Figure BDA0003110748570000058
|| ||2表示二范数,|| ||2,max表示二范数的最大值,sgn()表示符号函数,| |max表示行列式的最大值;ΔX表示测量过程中水面机器人受到的纵荡方向干扰力;ΔY表示测量过程中水面机器人受到的横荡方向干扰力;ΔN表示测量过程中水面机器人受到的艏摇方向干扰力矩,Δvm表示测量误差矩阵。
方法采用以下装置,包括摄像系统、水面机器人、陀螺仪、左推进器、右推进器、控制器、SD卡和上位机,陀螺仪、左推进器、右推进器、控制器和SD卡均位于水面机器人内部,陀螺仪、左推进器、右推进器和SD卡均与控制器电连接;摄像系统与上位机位于水面机器人外的附近,摄像系统与上位机通信连接,摄像系统中的双摄像头朝向水面机器人进行拍摄。
本发明中,加粗的字母为向量。
本发明的有益效果是:
1.利用CFD技术初步得到了水动力的范围,迭代结果更逼近真实值;
2.在设计参数估计器时充分考虑了测量噪声及外界干扰的影响,更加符合测量实际。
3.不需要单独获得角加速度信息,避免了对角速度求导所造成的传感器信息精度的下降。
因此,本发明可广泛应用于欠驱动水面机器人的水动力系数估计工作中。
附图说明
图1是本发明的结构示意图。
图2是混合自适应参数估计的流程图。
图3是混合自适应参数估计的控制框图。
图中:1-摄像系统,2-水面机器人,3-陀螺仪,4-左推进器,5-右推进器,6-控制器,7-SD卡,8-上位机。
具体实施方式
本发明要解决的技术问题设计一种针对欠驱动水面机器人的水动力导数估计方式,该方法考虑实验过程中外界干扰和测量噪声,且不需要得到角加速度的具体信息,最终得到的水动力导数接近真实值且广义速度的预测误差可以收敛到0。
方法采用的装置如图1所示,方法采用以下装置,包括摄像系统1、水面机器人2、陀螺仪3、左推进器4、右推进器5、控制器6、SD卡7和上位机8,陀螺仪3、左推进器4、右推进器5、控制器6和SD卡7均位于水面机器人2内部,陀螺仪3、左推进器4、右推进器5和SD卡7均与控制器6电连接;摄像系统1与上位机8位于水面机器人2外的附近,摄像系统1与上位机8通信连接,摄像系统1中的双摄像头朝向水面机器人2进行拍摄,摄像系统1用于对水面机器人2进行定位,通过拍摄的图像进行处理分析获得水面机器人2的定位结果。
陀螺仪3用于记录水面机器人2的角速度;
左推进器4、右推进器5构成了推进器,推进器用于为水面机器人2提供前进和转向的动力。
控制器6用于对数据进行采集、处理和记录。
SD卡7用于记录陀螺仪3的数据。
上位机8用于记录摄像系统1中的双摄像头的数据,并进行图像分析处理。
本发明欠驱动水面机器人是指水面机器人的动力只有前后、旋转,不具有左右驱动力,如图1所示的例子,本发明获得的水动力系数通常用于欠驱动水面机器人的运动控制器的设计。
如图2和图3所示,本发明的具体实施情况如下:
(1)获取水面机器人的物理参数,物理参数包括水面机器人的质量、转动惯量和两个推进器之间的距离,根据水面机器人的物理参数建立水面机器人的线性动力学模型,线性动力学模型为步骤(6)-步骤(7)进行水动力参数估计提供模型基础;
(1)中的线性动力学模型具体为:
Figure BDA0003110748570000071
式中,v表示水面机器人的速度向量;
Figure BDA0003110748570000072
表示水面机器人的速度向量v的导数;ΔU表示测量水动力系数过程中附体坐标系下水面机器人受到的外界干扰力;M是质量矩阵,H(v)是柯氏力矩阵,D是阻尼矩阵,Uprop是推进器提供的推力矩阵;
附体坐标系是指以水面机器人重心为原点,水面机器人的前后方向为X轴,以水面机器人的左右方向为Y轴,以水面机器人的上下方向为Z轴。
v、M、H(v)、D、和Uprop分别计算为:
v=[u v r]T
Figure BDA0003110748570000073
H(v)=[mvr -mur 0]T
Figure BDA0003110748570000074
Uprop=[Fpl+Fpr 0(Fpl-Fpr)l]T
ΔU=[ΔX ΔY ΔN]T
式中,u表示水面机器人的纵荡速度;v表示水面机器人的横荡速度;r表示水面机器人的艏摇角速度;m代表水面机器人的质量;Iz代表水面机器人关于Z轴的转动惯量;Z轴为以水面机器人重心为起点,垂直于水面机器人的自身水平面的一条坐标轴;l代表水面机器人中两个推进器之间的距离的一半;Fpl表示左推进器的推进力;Fpr代表右推进器的推进力;Xu表示纵荡方向水动力关于纵荡速度的线性水动力导数;Yv表示横荡方向水动力关于横荡速度的线性水动力导数;Yr表示横荡方向水动力关于艏摇角速度的线性水动力导数;Nv表示水动力转艏力矩关于横荡速度的线性水动力导数;Nr表示水动力转艏力矩关于艏摇角速度的线性水动力导数;
Figure BDA0003110748570000081
表示纵荡方向水动力关于纵荡加速度的线性水动力导数;
Figure BDA0003110748570000082
表示横荡方向水动力关于横荡加速度的线性水动力导数;
Figure BDA0003110748570000083
表示横荡方向水动力关于艏摇角加速度的线性水动力导数;
Figure BDA0003110748570000084
表示水动力转艏力矩关于横荡加速度的线性水动力导数;
Figure BDA0003110748570000085
表示水动力转艏力矩关于艏摇角加速度的线性水动力导数;ΔX表示测量过程中水面机器人受到的纵荡方向干扰力;ΔY表示测量过程中水面机器人受到的横荡方向干扰力;ΔN表示测量过程中水面机器人受到的艏摇方向干扰力矩。
(2)针对水面机器人,建立水域流场的网格划分模型,且划分为纯纵横荡结构网格和纯艏摇结构网格,为步骤(3)中进行流体仿真提供网格;
步骤(2)中,先建立水域流场三维结构模型,然后由水域流场三维结构模型进行网格划分后获得网格划分模型,在处理软件ICEM中对网格划分模型进行纯纵荡、纯横荡和纯艏摇结构网格的划分获得了纯纵横荡结构网格和纯艏摇结构网格。
水域流场三维结构模型是指水面机器人所在水域流场的三维模型,水域流场三维结构模型包括了纯纵荡、纯横荡和纯艏摇结构网格。水域流场三维结构模型满足以下条件:
a.水面机器人的头部与水域流场入口之间的距离等于水面机器人的长度L;
b.水面机器人的尾部与水域流场出口之间的距离为2L;
c.水域流场的宽度为3L;
d.水域流场的深度为8.3h,其中h为水面机器人在水域流场中的吃水深度。
在ICEM中进行纯纵荡、纯横荡和纯艏摇结构网格的划分。
(3)将步骤(2)中划分的纯纵横荡结构网格和纯艏摇结构网格在流体计算软件Fluent中进行纯纵荡、纯横荡和纯艏摇的仿真,仿真时获得横荡力曲线和艏摇力矩曲线,利用横荡力曲线和艏摇力矩曲线输入到步骤(1)的线性动力学模型中拟合得到Xu、Yv、Yr、Nv、Nr
Figure BDA0003110748570000086
的10个水动力系数;
由10个水动力系数组建水动力系数向量θ中,水动力系数向量θ中有10个元素,10个元素依次为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9和θ10,其中,
Figure BDA0003110748570000091
Figure BDA0003110748570000092
θ6=Xu,θ7=Yv,θ8=Yr,θ9=Nv,θ10=Nr
以水动力系数向量θ作为步骤(5)迭代过程中的水动力系数估计向量
Figure BDA0003110748570000093
的初始值,同时设置水动力系数向量θ中的每个元素的自适应范围作为步骤(5)迭代过程中参数自适应率的迭代约束范围,即自适应范围的上下限θminmax
(4)通过水池试验获得水面机器人在给定推力下的各个时刻的位姿信息,即为试验数据,为后续进行步骤(5)水动力参数的自适应调整提供试验数据;
步骤(4)具体为:在平静的水面上布置水面机器人和摄像系统,摄像系统用以确定水面机器人位置,将给定水面机器人的推力施加到水面机器人的推进器上,利用摄像系统实时采集获得水面机器人单一时刻下的横荡速度测量值u*、纵荡速度测量值v*和艏摇角速度测量值r*,构成了该时刻的位姿信息,v*表示机器人的速度测量值向量;其中v*=[u* v*r*]T
具体实施采用正弦推力,正弦推力是指推力按照正弦变化。
(5)根据步骤(4)中水池试验得到的位姿信息处理获得速度向量的估计值向量,进而建立辅助误差向量和辅助向量模型计算辅助误差向量k,再建立参数自适应率公式获得水面机器人的水动力系数的估计值向量
Figure BDA00031107485700000911
(5.1)利用步骤(4)得到的试验数据,进行10个水动力参数的估计。根据步骤(4)中水池试验得到当前时刻的位姿信息,即横荡速度测量值u*、纵荡速度测量值v*和艏摇角速度测量值r*,利用当前的水动力系数估计向量
Figure BDA0003110748570000094
通过以下公式计算得到速度向量的估计值向量的导数
Figure BDA0003110748570000095
Figure BDA0003110748570000096
Figure BDA0003110748570000097
Figure BDA0003110748570000098
Figure BDA0003110748570000099
Figure BDA00031107485700000910
补偿矩阵us根据水池试验时外界干扰力阈值以及水池试验时池边布置的双摄像头的测量噪声阈值设置为:
根据外界干扰力的阈值和传感器噪声的阈值,设定补偿矩阵:
Figure BDA0003110748570000101
Figure BDA0003110748570000102
Figure BDA0003110748570000103
Figure BDA0003110748570000104
(5.2)由水面机器人的速度向量v的估计值向量的导数
Figure BDA0003110748570000105
处理获得水面机器人的速度向量v的估计值向量
Figure BDA0003110748570000106
Figure BDA0003110748570000107
对速度向量估计值向量
Figure BDA0003110748570000108
和步骤(4)试验得到的测量值向量v*进行对比,具体是建立以下公式的辅助误差向量和辅助向量模型计算辅助误差向量k:
Figure BDA0003110748570000109
κ=[κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10]T
式中
Figure BDA00031107485700001010
Figure BDA00031107485700001011
Figure BDA00031107485700001012
则满足:
Figure BDA00031107485700001013
式中,
Figure BDA00031107485700001014
表示参数误差向量,
Figure BDA00031107485700001015
表示速度估计误差,T表示矩阵转置,ΔM表示质量矩阵估计误差,ΔD表示阻尼矩阵估计误差。
Figure BDA00031107485700001025
表示代表了的意思。
在获得辅助误差向量后,建立以下参数自适应率公式,根据辅助误差向量k在步骤(3)设定的参数自适应率的迭代约束范围内对参数自适应率公式进行求解获得水面机器人的水动力系数的估计值向量的导数,进而处理获得水面机器人的水动力系数的估计值向量
Figure BDA00031107485700001016
利用参数自适应率对步骤(3)给定的每个元素的自适应范围内进行反馈以实现水动力系数的自适应修正:
Figure BDA00031107485700001017
Figure BDA00031107485700001018
式中,
Figure BDA00031107485700001019
表示水面机器人的水动力系数的估计值向量的导数,κ表示辅助误差向量,Γ为正定矩阵,
Figure BDA00031107485700001020
表示非连续映射函数;
非连续映射函数
Figure BDA00031107485700001021
表示为:
Figure BDA00031107485700001022
Figure BDA00031107485700001023
则该映射满足:
Figure BDA00031107485700001024
Figure BDA0003110748570000111
(6)重复步骤(5),以上一次迭代获得的水面机器人的水动力系数的估计值向量
Figure BDA0003110748570000112
中的各个估计值和水池试验获得下一个时刻的位姿信息代入到步骤(5)的速度向量的估计值向量的公式中进行迭代循环,直至步骤(4)获得水池试验获得各个时刻的位姿信息均迭代循环处理过,则完成全部的参数估计过程,完成水动力系数混合自适应估计。
以上的实例并非对本发明作任何形式上的限定,任何熟悉本专业的技术人员可以利用上述揭示的技术内容加以变更或修饰为等同变化的等效实例,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实例所作的任何的简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

1.一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:包括以下具体步骤:
(1)获取水面机器人的物理参数,根据水面机器人的物理参数建立水面机器人的线性动力学模型;
(2)针对水面机器人,建立水域流场的网格划分模型,且划分为纯纵横荡结构网格和纯艏摇结构网格;
(3)将步骤(2)中划分的纯纵横荡结构网格和纯艏摇结构网格进行纯纵荡、纯横荡和纯艏摇的仿真,仿真时获得横荡力曲线和艏摇力矩曲线,利用横荡力曲线和艏摇力矩曲线输入到步骤(1)的线性动力学模型中拟合得到Xu、Yv、Yr、Nv、Nr
Figure FDA0003110748560000011
的10个水动力系数;由10个水动力系数组建水动力系数向量θ中,水动力系数向量θ中有10个元素,10个元素依次为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9和θ10,其中,
Figure FDA0003110748560000012
θ6=Xu,θ7=Yv,θ8=Yr,θ9=Nv,θ10=Nr;以水动力系数向量θ作为步骤(5)迭代过程中的水动力系数估计向量
Figure FDA0003110748560000013
的初始值,同时设置水动力系数向量θ中的每个元素的自适应范围作为步骤(5)迭代过程中参数自适应率的迭代约束范围;
(4)通过水池试验获得水面机器人在给定推力下的各个时刻的位姿信息;
(5)根据步骤(4)中水池试验得到的位姿信息处理获得速度向量的估计值向量,进而建立辅助误差向量和辅助向量模型计算辅助误差向量κ,再建立参数自适应率公式获得水面机器人的水动力系数的估计值向量
Figure FDA0003110748560000014
(6)重复步骤(5),以上一次迭代获得的水面机器人的水动力系数的估计值向量
Figure FDA0003110748560000015
和水池试验获得下一个时刻的位姿信息代入到步骤(5)的速度向量的估计值向量的公式中进行迭代循环,直至步骤(4)获得水池试验获得各个时刻的位姿信息均迭代循环处理过,完成水动力系数混合自适应估计。
2.根据权利要求1所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:所述(1)中的线性动力学模型具体为:
Figure FDA0003110748560000016
式中,v表示水面机器人的速度向量;
Figure FDA0003110748560000017
表示水面机器人的速度向量v的导数;ΔU表示测量水动力系数过程中附体坐标系下水面机器人受到的外界干扰力;M是质量矩阵,H(v)是柯氏力矩阵,D是阻尼矩阵,Uprop是推进器提供的推力矩阵;
上述v、M、H(v)、D和Uprop分别计算为:
v=[u v r]T
Figure FDA0003110748560000021
H(v)=[mvr -mur 0]T
Figure FDA0003110748560000022
Uprop=[Fpl+Fpr 0 (Fpl-Fpr)l]T
ΔU=[ΔX ΔY ΔN]T
式中,u表示水面机器人的纵荡速度;v表示水面机器人的横荡速度;r表示水面机器人的艏摇角速度;m代表水面机器人的质量;Iz代表水面机器人关于Z轴的转动惯量;l代表水面机器人中两个推进器之间的距离的一半;Fpl表示左推进器的推进力;Fpr代表右推进器的推进力;Xu表示纵荡方向水动力关于纵荡速度的线性水动力导数;Yv表示横荡方向水动力关于横荡速度的线性水动力导数;Yr表示横荡方向水动力关于艏摇角速度的线性水动力导数;Nv表示水动力转艏力矩关于横荡速度的线性水动力导数;Nr表示水动力转艏力矩关于艏摇角速度的线性水动力导数;
Figure FDA0003110748560000023
表示纵荡方向水动力关于纵荡加速度的线性水动力导数;
Figure FDA0003110748560000024
表示横荡方向水动力关于横荡加速度的线性水动力导数;
Figure FDA0003110748560000025
表示横荡方向水动力关于艏摇角加速度的线性水动力导数;
Figure FDA0003110748560000026
表示水动力转艏力矩关于横荡加速度的线性水动力导数;
Figure FDA0003110748560000027
表示水动力转艏力矩关于艏摇角加速度的线性水动力导数;ΔX表示测量过程中水面机器人受到的纵荡方向干扰力;ΔY表示测量过程中水面机器人受到的横荡方向干扰力;ΔN表示测量过程中水面机器人受到的艏摇方向干扰力矩。
3.根据权利要求1所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:所述步骤(2)中,先建立水域流场三维结构模型,然后由水域流场三维结构模型进行网格划分后获得网格划分模型,对网格划分模型进行纯纵荡、纯横荡和纯艏摇结构网格的划分获得了纯纵横荡结构网格和纯艏摇结构网格。
4.根据权利要求1所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:所述步骤(4)具体为:在水面上布置水面机器人和摄像系统,将给定水面机器人的推力施加到水面机器人的推进器上,利用摄像系统实时采集获得水面机器人单一时刻下的横荡速度测量值u*、纵荡速度测量值v*和艏摇角速度测量值r*,构成了该时刻的位姿信息,v*表示机器人的速度测量值向量;其中v*=[u* v* r*]T
5.根据权利要求1所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:所述步骤(5)具体为:
(5.1)根据步骤(4)中水池试验得到当前时刻的位姿信息,利用当前的水动力系数估计向量
Figure FDA0003110748560000031
通过以下公式计算得到速度向量的估计值向量的导数
Figure FDA0003110748560000032
Figure FDA0003110748560000033
Figure FDA0003110748560000034
Figure FDA0003110748560000035
Figure FDA0003110748560000036
Figure FDA0003110748560000037
式中,
Figure FDA0003110748560000038
表示水面机器人的速度向量v的估计值向量的导数;
Figure FDA0003110748560000039
表示质量矩阵M的估计值;
Figure FDA00031107485600000310
表示阻尼矩阵D的估计值;Λ表示设定的正定矩阵;us表示补偿矩阵;
Figure FDA00031107485600000311
表示质量矩阵M的估计值
Figure FDA00031107485600000312
的逆矩阵;Uprop表示给定水面机器人的推力施加到水面机器人的推进器上而形成的推进器提供的推力矩阵;
Figure FDA00031107485600000313
分别表示水面机器人的纵荡速度、横荡速度、艏摇角速度的估计值的导数;
Figure FDA00031107485600000314
分别为
Figure FDA00031107485600000315
Xu、Yv、Yr、Nv、Nr的导数。
(5.2)由水面机器人的速度向量v的估计值向量的导数
Figure FDA00031107485600000316
处理获得水面机器人的速度向量v的估计值向量
Figure FDA00031107485600000317
Figure FDA00031107485600000318
对速度向量估计值向量
Figure FDA00031107485600000319
和步骤(4)试验得到的测量值向量v*进行对比,具体是建立以下公式的辅助误差向量和辅助向量模型计算辅助误差向量κ:
Figure FDA00031107485600000320
Figure FDA00031107485600000321
式中,Δu表示纵荡速度误差;Δv表示横荡速度误差;Δr表示艏摇角速度误差;
Figure FDA00031107485600000322
Figure FDA0003110748560000041
Figure FDA0003110748560000042
在获得辅助误差向量后,建立以下参数自适应率公式,根据辅助误差向量κ在步骤(3)设定的参数自适应率的迭代约束范围内对参数自适应率公式进行求解获得水面机器人的水动力系数的估计值向量的导数,进而处理获得水面机器人的水动力系数的估计值向量
Figure FDA0003110748560000043
Figure FDA0003110748560000044
式中,
Figure FDA0003110748560000045
表示水面机器人的水动力系数的估计值向量
Figure FDA0003110748560000046
的导数,Γ为正定矩阵,
Figure FDA0003110748560000047
表示非连续映射函数;
非连续映射函数
Figure FDA0003110748560000048
表示为:
Figure FDA0003110748560000049
Figure FDA00031107485600000410
式中,(Γκ)i表示Γκ矩阵的第i个元素,T表示矩阵转置;
Figure FDA00031107485600000411
表示
Figure FDA00031107485600000412
的第i个元素,θimaxθimin分别表示
Figure FDA00031107485600000413
中元素的最大值和最小值。
6.根据权利要求5所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:所述的补偿矩阵us设置为:
根据外界干扰力的阈值和传感器噪声的阈值,设定补偿矩阵:
Figure FDA00031107485600000414
式中,ε1、ε2和ε3均代表第一、第二、第三富余量参数,ε123>0,M1,M2,M3是质量矩阵M的三个列向量,
Figure FDA00031107485600000415
|| ||2表示二范数,|| ||2,max表示二范数的最大值,sgn()表示符号函数,| |max表示行列式的最大值;ΔX表示测量过程中水面机器人受到的纵荡方向干扰力;ΔY表示测量过程中水面机器人受到的横荡方向干扰力;ΔN表示测量过程中水面机器人受到的艏摇方向干扰力矩,Δvm表示测量误差矩阵。
7.根据权利要求1所述的一种欠驱动水面机器人的水动力系数混合自适应估计方法,其特征在于:方法采用以下装置,包括摄像系统(1)、水面机器人(2)、陀螺仪(3)、左推进器(4)、右推进器(5)、控制器(6)、SD卡(7)和上位机(8),陀螺仪(3)、左推进器(4)、右推进器(5)、控制器(6)和SD卡(7)均位于水面机器人(2)内部,陀螺仪(3)、左推进器(4)、右推进器(5)和SD卡(7)均与控制器(6)电连接;摄像系统(1)与上位机(8)位于水面机器人(2)外的附近,摄像系统(1)与上位机(8)通信连接,摄像系统(1)中的双摄像头朝向水面机器人(2)进行拍摄。
CN202110648289.8A 2021-06-10 2021-06-10 欠驱动水面机器人的水动力系数混合自适应估计方法 Active CN113341718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110648289.8A CN113341718B (zh) 2021-06-10 2021-06-10 欠驱动水面机器人的水动力系数混合自适应估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110648289.8A CN113341718B (zh) 2021-06-10 2021-06-10 欠驱动水面机器人的水动力系数混合自适应估计方法

Publications (2)

Publication Number Publication Date
CN113341718A true CN113341718A (zh) 2021-09-03
CN113341718B CN113341718B (zh) 2022-07-08

Family

ID=77476424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110648289.8A Active CN113341718B (zh) 2021-06-10 2021-06-10 欠驱动水面机器人的水动力系数混合自适应估计方法

Country Status (1)

Country Link
CN (1) CN113341718B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789538A (zh) * 2012-05-15 2012-11-21 哈尔滨工程大学 一种动力定位船水动力系数辨识方法
CN108563130A (zh) * 2018-06-27 2018-09-21 山东交通学院 一种欠驱动船舶自适应神经网络自动靠泊控制方法,设备及介质
CN109656143A (zh) * 2019-02-25 2019-04-19 曲阜师范大学 一种海面全驱动船舶的自适应跟踪控制方法及系统
CN110253574A (zh) * 2019-06-05 2019-09-20 浙江大学 一种多任务机械臂位姿检测和误差补偿方法
CN110989628A (zh) * 2019-12-27 2020-04-10 哈尔滨工程大学 一种基于cfd的欠驱动水面船舶航向控制方法
WO2020087846A1 (zh) * 2018-10-31 2020-05-07 东南大学 基于迭代扩展卡尔曼滤波融合惯性与单目视觉的导航方法
US20200410147A1 (en) * 2019-06-28 2020-12-31 Viettel Group Aerodynamic derivatives calculation method for flight vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789538A (zh) * 2012-05-15 2012-11-21 哈尔滨工程大学 一种动力定位船水动力系数辨识方法
CN108563130A (zh) * 2018-06-27 2018-09-21 山东交通学院 一种欠驱动船舶自适应神经网络自动靠泊控制方法,设备及介质
WO2020087846A1 (zh) * 2018-10-31 2020-05-07 东南大学 基于迭代扩展卡尔曼滤波融合惯性与单目视觉的导航方法
CN109656143A (zh) * 2019-02-25 2019-04-19 曲阜师范大学 一种海面全驱动船舶的自适应跟踪控制方法及系统
CN110253574A (zh) * 2019-06-05 2019-09-20 浙江大学 一种多任务机械臂位姿检测和误差补偿方法
US20200410147A1 (en) * 2019-06-28 2020-12-31 Viettel Group Aerodynamic derivatives calculation method for flight vehicle
CN110989628A (zh) * 2019-12-27 2020-04-10 哈尔滨工程大学 一种基于cfd的欠驱动水面船舶航向控制方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HAITONG XU: "L1 adaptive backstepping control for path-following of underactuated marine surface ships", 《EUROPEAN JOURNAL OF CONTROL》 *
HAITONG XU: "L1 adaptive backstepping control for path-following of underactuated marine surface ships", 《EUROPEAN JOURNAL OF CONTROL》, 31 August 2020 (2020-08-31) *
MEILIN LI: "Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence", 《NEUROCOMPUTING》 *
MEILIN LI: "Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence", 《NEUROCOMPUTING》, 31 October 2019 (2019-10-31) *
刘丽萍: "基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪", 《天津大学学报(自然科学与工程技术版)》 *
刘丽萍: "基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪", 《天津大学学报(自然科学与工程技术版)》, 31 July 2020 (2020-07-31) *
周华: "基于滑模变结构的欠驱动浮空器轨迹跟踪控制", 《浙江大学学报(工学版)》 *
周华: "基于滑模变结构的欠驱动浮空器轨迹跟踪控制", 《浙江大学学报(工学版)》, 30 June 2017 (2017-06-30) *
潘小云: "自 适应攻角摆翼推进的水动力性能分析", 《第三十届 全 国 水动 力 学研讨会 暨第 十五届全国水动力学学术会议文集》 *
潘小云: "自 适应攻角摆翼推进的水动力性能分析", 《第三十届 全 国 水动 力 学研讨会 暨第 十五届全国水动力学学术会议文集》, 31 August 2019 (2019-08-31) *

Also Published As

Publication number Publication date
CN113341718B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN107168312B (zh) 一种补偿uuv运动学和动力学干扰的空间轨迹跟踪控制方法
CN107024863B (zh) 一种避免微分爆炸的uuv轨迹跟踪控制方法
CN109656143B (zh) 一种海面全驱动船舶的自适应跟踪控制方法及系统
CN111547212B (zh) 一种无动力式快速潜浮auv的浮力控制方法
CN110333658B (zh) 一种带输入约束和漂角补偿的欠驱动船舶航向控制方法
CN112036099B (zh) 一种基于帆船风帆攻角确定最小回转半径的方法
CN110989628A (zh) 一种基于cfd的欠驱动水面船舶航向控制方法
CN109521798B (zh) 基于有限时间扩张状态观测器的auv运动控制方法
CN111025909B (zh) 船舶运动控制系统的Kalman三自由度解耦滤波方法
CN113359785A (zh) 一种微小型auv水下运动和悬停控制方法
CN115079698A (zh) 欺骗攻击任务下的无人水面船路径跟踪时间触发控制方法
CN113341718B (zh) 欠驱动水面机器人的水动力系数混合自适应估计方法
CN112836448B (zh) 一种船舶水动力系数的实船试验方法
CN112051732B (zh) 一种考虑岸壁效应的航标船自适应神经网络分数阶滑模控制系统及方法
CN112666983A (zh) 一种基于流场速度分解方法的auv稳定悬停装置
Kiselev et al. Identification of AUV hydrodynamic characteristics using model and experimental data
CN113671977B (zh) 一种海上作业船状态同步稳定鲁棒控制方法
CN115755891A (zh) 一种高海况下近水面航行器运动控制方法
CN113479304B (zh) 多舵面水下拖曳式航行器的平行潜浮与相对潜浮一体化深度控制系统及方法
CN110209181A (zh) 一种基于测距仪的水下清洗机器人自主竖立着落船舷控制方法
CN115686034A (zh) 考虑速度传感器失效的无人潜航器轨迹跟踪控制方法
CN114527772A (zh) 一种auv轨迹跟踪控制器设计方法与系统
CN111830832A (zh) 仿生滑翔机器海豚平面路径跟踪方法及系统
Dantas et al. AUV control in the diving plane subject to waves
Li et al. Motion characteristics simulations of supercavitating vehicle based on a three-dimensional cavity topology algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant