CN113339941A - 一种变频空调器控制方法 - Google Patents
一种变频空调器控制方法 Download PDFInfo
- Publication number
- CN113339941A CN113339941A CN202110690185.3A CN202110690185A CN113339941A CN 113339941 A CN113339941 A CN 113339941A CN 202110690185 A CN202110690185 A CN 202110690185A CN 113339941 A CN113339941 A CN 113339941A
- Authority
- CN
- China
- Prior art keywords
- humidity
- temperature
- indoor
- air conditioner
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000005265 energy consumption Methods 0.000 claims abstract description 48
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 230000006870 function Effects 0.000 claims description 27
- 238000013528 artificial neural network Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 7
- 238000013178 mathematical model Methods 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 4
- 230000035807 sensation Effects 0.000 claims description 2
- 238000004378 air conditioning Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
- F24F11/47—Responding to energy costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
- F24F11/58—Remote control using Internet communication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Fuzzy Systems (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种变频空调器控制方法,包括以下步骤:(1)获得室内负荷随室内温湿度变化的负荷计算函数;(2)根据步骤(1)获得的负荷计算函数,计算温湿度参数库中各温湿度组合对应的室内负荷;(3)由预先建立的室内负荷与空调运行状态的关系模型,根据温湿度参数库中的温湿度组合及其对应的室内负荷计算各温湿度组合对应的空调能耗;(4)根据温湿度参数库中的温湿度组合对应的空调能耗和室内舒适度,使用温湿度设定函数确定设定温湿度组合,空调温湿度控制模块将室内温湿度控制在设定温湿度组合。这样,通过温湿度设定函数确定温湿度组合,在满足室内舒适度的同时实现较低能耗,同时兼顾了舒适度与能耗。
Description
技术领域
本发明涉及空调器控制方法技术领域,特别是涉及一种变频空调器控制方法。
背景技术
现今市场上的空调往往仅具备温度控制功能,针对降低空调能耗的研究工作也绝大部分集中在提升设备性能上(如改善压缩机性能或提升换热器的效率等)。相对地,空调的控制目标和策略相对简单。在空调仅有温度控制功能的基础上,若对控制目标进行优化以实现节能,则通常以牺牲舒适度为代价。
为了提高空调的舒适性,实现温湿度同时控制,有学者提出了一种基于权重规则表的PID型模糊逻辑控制方法,包括以下步骤:①PID信号转换单元对设定信号和反馈信号进行转换;②建立模糊集合,且定义每个模糊描述变量的权重值;③确定每个模糊描述变量的归属度;④将每个模糊描述变量的归属度乘以该模糊描述变量所对应的权重值并进行加和得到加和信号;⑤将加和信号输出给控制运算单元;⑥控制运算单元输出信号给执行单元进行执行,同时采集反馈信号至PID信号转换单元;⑦重复①~⑥直至设定信号与反馈信号相同。该方法将传统复杂的模糊规则表替换为简单的权重规则表,使得专家经验能够更加简洁直观的呈现;不需要经过反模糊化单元,优化了整体控制方法;控制过程具有极小的超调量和震荡。该方法在不增加硬件成本的基础上,结合变频技术与智能控制方法实现温湿度同时控制,使家用空调实现温湿度同时控制成为可能。但是,该方法往往会在一定程度上增加空调能耗。
一方面,室内温湿度控制对于塑造合适的室内热舒适环境以及良好的室内空气品质至关重要,过高或过低的温湿度均会给人体造成不适。另一方面,室内温湿度控制会影响室内负荷和空调能效,进而影响空调总能耗。
然而,目前并没有能够兼顾温湿度控制以及能耗优化的变频空调器控制方法,通过优化合适的室内温湿度设定点,在满足室内舒适度的同时具有较低能耗。
发明内容
针对现有技术中存在的上述不足,本发明提供了一种变频空调器控制方法。
一种变频空调器控制方法,包括以下步骤:(1)获得室内负荷随室内温湿度变化的负荷计算函数;(2)根据步骤(1)获得的负荷计算函数,计算温湿度参数库中各温湿度组合对应的室内负荷;(3)由预先建立的室内负荷与空调运行状态的关系模型,根据温湿度参数库中的温湿度组合及其对应的室内负荷计算各温湿度组合对应的空调能耗;(4)根据温湿度参数库中的温湿度组合对应的空调能耗和室内舒适度,使用温湿度设定函数确定设定温湿度组合,空调温湿度控制模块将室内温湿度控制在设定温湿度组合。这样,通过温湿度设定函数确定温湿度组合,在满足室内舒适度的同时实现较低能耗,同时兼顾了舒适度与能耗。
进一步,步骤(1)中室内负荷随室内温湿度变化的负荷计算函数由建模获得或由传感器实际测量得到的数据拟合获得。
进一步,通过建模获得步骤(1)中室内负荷随室内温湿度变化的负荷计算函数时,室内热负荷Qs随室内温度T变化规律为:
室内湿负荷Ql随室内湿度h变化规律为:
进一步,步骤(2)中温湿度参数库中温度取值范围为22℃~28℃,湿度取值范围为30%~70%相对湿度。
进一步,步骤(3)中室内负荷与空调运行状态的关系模型为基于各参量之间的物理关系的数学模型,或基于已有数据训练而得的数学模型。
进一步,步骤(3)中建立室内负荷与空调运行状态的关系模型时,通过实验测量获得稳定工况数据集,每组数据包括空调回风温度、空调回风湿度、送风机转速、压缩机转速、室内热负荷和室内湿负荷,建立神经网络,利用BP反向传播算法将测量的稳定工况数据集输入神经网络进行训练,输入层为空调回风温度、空调回风湿度、室内热负荷、室内湿负荷,输出层为送风机转速和压缩机转速,训练完成的神经网络即为表征室内负荷与空调运行状态的关系模型。
进一步,步骤(4)中温湿度设定函数为:其中,T为室内温度;h为室内湿度;Comfort是室内温度为T、室内湿度为h时对应的室内舒适度,取值范围为-0.5~0.5,无量纲;Ptot,nu是室内温度为T、室内湿度为h时对应的空调能耗无量纲化后的值,取值范围为0~1;α为权重系数,取值范围为0~1,温湿度参数库中使温湿度设定函数达到最小值的温湿度组合即为设定温湿度组合。
进一步,室内舒适度使用预计平均热感觉指标进行衡量。
本发明的变频空调器控制方法,通过温湿度设定函数确定温湿度组合,并通过空调温湿度控制模块,将室内温湿度控制在设定温湿度组合,在满足室内舒适度的同时实现较低能耗,在不增加硬件成本的条件下,同时兼顾了舒适度与能耗,节能的同时,保证用户的舒适。
附图说明
图1是本发明的变频空调器控制方法的一种实施方式的流程图。
图2是建立室内负荷与空调运行状态的关系的一种神经网络模型示意图。
具体实施方式
图1示意了一种变频空调器控制方法的流程图,该变频空调器控制方法包括以下步骤:
(1)获得室内负荷随室内温湿度变化的负荷计算函数;负荷计算函数是一个用来计算负荷的函数。
(2)根据步骤(1)获得的负荷计算函数,计算温湿度参数库中各温湿度组合对应的室内负荷。
(3)由预先建立的室内负荷与空调运行状态的关系模型,根据温湿度参数库中的温湿度组合及其对应的室内负荷计算各温湿度组合对应的空调能耗。在这个过程中,由于温湿度参数库中的各温湿度组合对应相应的室内负荷,各温湿度组合及其对应的室内负荷对应相应的空调能耗,因此,每一温湿度组合对应相应的空调能耗。
(4)根据温湿度参数库中的温湿度组合对应的空调能耗和室内舒适度,使用温湿度设定函数确定设定温湿度组合,设定的温湿度组合传递给空调温湿度控制模块,将室内温湿度控制在设定温湿度组合。应当说明,控制在设定温湿度组合是指室内温湿度基本维持在设定温湿度组合附近,包括温湿度组合在设定温湿度组合附近正常波动的情形。例如,温湿度设定函数为其中,T为室内温度;h为室内湿度;Comfort是室内温度为T、室内湿度为h时对应的室内舒适度,用PMV(Predicted MeanVote)衡量,取值范围为-0.5到0.5,Ptot,nu是室内温度为T、室内湿度为h时对应的空调能耗无量纲化后的值,例如将空调能耗归一化,取值范围为0~1。温湿度设定函数的第一项衡量舒适度,第二项衡量空调能耗,由权重系数α决定二者的重要性,α的取值由空调管理者或空调用户等控制空调的主体自行决定。温湿度参数库中使温湿度设定函数达到最小值的温湿度组合即为设定温湿度组合。α的取值范围为0到1,越接近0,空调能耗项的影响越大,选出的设定温湿度组合越节能;α越接近1,室内舒适度项的影响越大,选出的设定温湿度组合越舒适。例如,当α取值为1时,代表用户或空调管理者等控制空调的主体只关注舒适度而不关注能耗,此时控制策略会选择出最舒适的温湿度组合(对应PMV最接近于0)作为设定温湿度组合;当α取值为0时,代表用户或空调管理者等控制空调的主体在不破坏热舒适的前提下只关注能耗,此时控制策略会选择出最节能的温湿度组合作为设定温湿度组合。由于本发明中PMV取值范围为-0.5~0.5,即使α取值为0,也不会为了节能而破坏热舒适。
空调能耗的无量纲化可以通过以下公式(仅为举例)得到:
其中,Ptot为一组温湿度组合下计算得到的空调能耗,单位为瓦特,W;Ptot,max是空调能耗的最大值,对应压缩机和送风机均处于最大允许转速时的空调能耗,单位为瓦特,W;Ptot,min是空调能耗的最小值,对应压缩机和送风机均处于最小允许转速时的空调能耗,单位为瓦特,W。
在步骤(1)所述的室内热湿负荷随室内温湿度变化的负荷计算函数可以通过建模获得,也可以通过拟合传感器测量得到的数据获得。例如,将两组预先设置的温湿度组合先后作为设定温湿度组合传递给空调温湿度控制模块,将室内温湿度控制稳定,通过传感器测量空调送风温度、空调送风湿度、空调回风温度、空调回风湿度和风量,计算两组室内温湿度稳定时空调的制冷量。由于室内温湿度稳定时,空调制冷量与室内负荷相等,因此得到第一组稳定的室内温湿度T1,h1(含湿量)对应的室内热负荷Qs1,湿负荷Ql1;第二组稳定的室内温湿度T2,h2(含湿量)对应的室内热负荷Qs2,湿负荷Ql2,获得的室内热负荷Qs随室内温度T变化规律为:
室内湿负荷Ql随室内湿度h(含湿量)变化规律为:
在步骤(2)所述的温湿度参数库中温度取值范围为22℃到28℃,湿度取值范围为30%到70%相对湿度。
在步骤(3)中所述关系模型为基于各参量之间物理关系的数学模型,或基于已有数据训练而得的数学模型。例如,对于一个确定的空调器,建立如图2所示的神经网络,通过实验测量获得180组稳定工况数据,每组数据包括空调回风温度、空调回风湿度、送风机转速、压缩机转速、室内热负荷和室内湿负荷。在稳定工况下,室内热负荷与空调显热制冷量相等,室内湿负荷与空调潜热制冷量相等。利用BP反向传播算法,将获得的180组实验数据代入图2所示神经网络进行训练,输入层为回风干球温度(对应空调回风温度)、回风湿球温度(对应空调回风湿度)、显热制冷量(对应室内热负荷)、潜热制冷量(对应室内湿负荷),输出层为所需送风机转速和压缩机转速。训练完成的神经网络即为表征室内负荷与空调运行状态的关系模型。
本实施例主要涉及的功率变化部件为压缩机和送风机,室外风机功率几乎保持不变以达到最大散热效果,空调能耗可以用压缩机能耗和送风机能耗之和表示。由于本发明只需要不同温湿度组合下计算得到的空调能耗可对比即可,并不需要对能耗进行精确计算,所以压缩机能耗和送风机能耗可以根据厂家在额定工况下标定的转速与功率的关系得到,也可以根据传感器测得的数据进行拟合得到。即空调能耗可以通过空调运行状态估算。
空调温湿度控制模块能根据传递来的温湿度设定点,调节空调压缩机、送风机转速,使空调房间内温湿度稳定在温湿度设定点上,在本实施例中,温湿度设定函数确定的设定温湿度组合同样为此处的温湿度设定点。例如申请号为201410038997.X的中国发明专利公开的一种空调系统的基于权重规则表的PID型模糊逻辑控制方法。
室内舒适度根据温湿度参数库中的温湿度组合以及空调实时采集到的参数进行计算。所述的参数包括但不限于室内辐射温度、风速。当然,这些参数也可以采用预先设置的固定值或合理的假设值。
在本实施例中,室内初始温度为28℃,湿度70%。两组预先设置的温湿度组合为(25.1℃,50%)、(23.3℃,50%),先后作为设定温湿度组合传递给空调温湿度控制模块,将室内温湿度控制稳定。分别令α=0、0.5、1,依次进行步骤(1)-(4),控制效果如表1所示。由于本实施例中,发生明显能耗变化的空调部件为压缩机和送风机,因此表1中的实测空调总能耗为压缩机实测能耗与送风机实测能耗之和。α=0时对应的实测空调总能耗比α=1时对应的实测空调总能耗节能23.3%。实验结果达到了控制策略的预期效果,即α=0时计算出并控制到的温湿度组合最节能,α=1时计算出并控制到的温湿度组合最舒适。各组控制到的室内温湿度都满足舒适度需求。结合前文的分析可知,产生的节能效果一方面是由于舒适度在代价公式中的影响降低允许更高的设定温度与更高的设定湿度,从而降低了室内的热湿负荷;另一方面则是α=0时设定温湿度组合下的空调能效有所升高。
表1
α值 | 0 | 0.5 | 1 |
室内温度(℃) | 25 | 23.9 | 23.3 |
室内湿度 | 55% | 55% | 50% |
实测空调总能耗(W) | 1091 | 1201 | 1422 |
室内舒适度 | 0.5 | 0.2 | 0 |
Claims (8)
1.一种变频空调器控制方法,其特征在于,包括以下步骤:
(1)获得室内负荷随室内温湿度变化的负荷计算函数;
(2)根据步骤(1)获得的负荷计算函数,计算温湿度参数库中各温湿度组合对应的室内负荷;
(3)由预先建立的室内负荷与空调运行状态的关系模型,根据温湿度参数库中的温湿度组合及其对应的室内负荷计算各温湿度组合对应的空调能耗;
(4)根据温湿度参数库中的温湿度组合对应的空调能耗和室内舒适度,使用温湿度设定函数确定设定温湿度组合,空调温湿度控制模块将室内温湿度控制在设定温湿度组合。
2.根据权利要求1所述的变频空调器控制方法,其特征在于,步骤(1)中室内负荷随室内温湿度变化的负荷计算函数由建模获得或由传感器实际测量得到的数据拟合获得。
4.根据权利要求1所述的变频空调器控制方法,其特征在于,步骤(2)中温湿度参数库中温度取值范围为22℃~28℃,湿度取值范围为30%~70%相对湿度。
5.根据权利要求1所述的变频空调器控制方法,其特征在于,步骤(3)中室内负荷与空调运行状态的关系模型为基于各参量之间的物理关系的数学模型,或基于已有数据训练而得的数学模型。
6.根据权利要求5所述的变频空调器控制方法,其特征在于,步骤(3)中建立室内负荷与空调运行状态的关系模型时,通过实验测量获得稳定工况数据集,每组数据包括空调回风温度、空调回风湿度、送风机转速、压缩机转速、室内热负荷和室内湿负荷,建立神经网络,利用BP反向传播算法将测量的稳定工况数据集输入神经网络进行训练,输入层为空调回风温度、空调回风湿度、室内热负荷、室内湿负荷,输出层为送风机转速和压缩机转速,训练完成的神经网络即为表征室内负荷与空调运行状态的关系模型。
8.根据权利要求1-7任一项所述的变频空调器控制方法,其特征在于,室内舒适度使用预计平均热感觉指标进行衡量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2020106393796 | 2020-07-06 | ||
CN202010639379.6A CN111854063A (zh) | 2020-07-06 | 2020-07-06 | 一种变频空调器控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113339941A true CN113339941A (zh) | 2021-09-03 |
CN113339941B CN113339941B (zh) | 2022-06-10 |
Family
ID=73152185
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010639379.6A Pending CN111854063A (zh) | 2020-07-06 | 2020-07-06 | 一种变频空调器控制方法 |
CN202110690185.3A Active CN113339941B (zh) | 2020-07-06 | 2021-06-22 | 一种变频空调器控制方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010639379.6A Pending CN111854063A (zh) | 2020-07-06 | 2020-07-06 | 一种变频空调器控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111854063A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114198881A (zh) * | 2021-12-16 | 2022-03-18 | 珠海格力电器股份有限公司 | 空调控制方法、装置和空调 |
CN114294805A (zh) * | 2022-02-14 | 2022-04-08 | 珠海格力电器股份有限公司 | 空调器的控制方法及装置、空调器和非易失性存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111854063A (zh) * | 2020-07-06 | 2020-10-30 | 浙江大学 | 一种变频空调器控制方法 |
CN112923525A (zh) * | 2021-02-26 | 2021-06-08 | 深圳市励科机电科技工程有限公司 | 机器学习型舒适节能空调智能控制方法 |
CN114893859A (zh) * | 2022-05-13 | 2022-08-12 | 武汉理工大学 | 海洋平台舱室空调控制系统、方法和存储介质 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09126523A (ja) * | 1995-10-31 | 1997-05-16 | Mitsubishi Electric Corp | 空気調和装置 |
CN1924470A (zh) * | 2005-09-02 | 2007-03-07 | 浙江工业大学 | 具有舒适、节能和健康功能的空调控制装置 |
CN101055114A (zh) * | 2006-04-14 | 2007-10-17 | 株式会社东芝 | 空调控制装置 |
JP2008170025A (ja) * | 2007-01-09 | 2008-07-24 | Toshiba Corp | 空調制御装置 |
KR20150064346A (ko) * | 2013-12-03 | 2015-06-11 | 삼성전자주식회사 | 공조장치 또는 공조시스템의 온도 제어장치 및 방법 |
CN105320118A (zh) * | 2015-12-07 | 2016-02-10 | 张迎春 | 基于云平台的空调系统电力需求响应控制方法 |
CN105371423A (zh) * | 2015-01-15 | 2016-03-02 | 浙江省建筑科学设计研究院有限公司 | 基于湿日数的温湿度独立控制空调系统设计方法 |
CN106016620A (zh) * | 2016-06-15 | 2016-10-12 | 湖南大学 | 空调系统的节能、热舒适控制方法 |
CN106403207A (zh) * | 2016-10-24 | 2017-02-15 | 珠海格力电器股份有限公司 | 用于暖通空调系统的基于负荷预测的控制系统和控制方法 |
CN107044710A (zh) * | 2016-12-26 | 2017-08-15 | 深圳达实智能股份有限公司 | 基于联合智能算法的中央空调节能控制方法及系统 |
KR101948100B1 (ko) * | 2017-08-18 | 2019-02-14 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CN110686365A (zh) * | 2019-10-21 | 2020-01-14 | 珠海格力电器股份有限公司 | 温湿度的控制方法及空调系统 |
CN111336669A (zh) * | 2020-03-12 | 2020-06-26 | 苏州大学 | 基于模型预测控制的室内空调通风系统 |
CN111854063A (zh) * | 2020-07-06 | 2020-10-30 | 浙江大学 | 一种变频空调器控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2992944B2 (ja) * | 1993-05-20 | 1999-12-20 | 株式会社山武 | 設定値決定方法 |
CN102812303B (zh) * | 2009-12-16 | 2016-03-30 | 国家科学和工业研究组织 | Hvac控制系统和方法 |
WO2014059123A1 (en) * | 2012-10-11 | 2014-04-17 | Siemens Corporation | On-line optimization scheme for hvac demand response |
CN105042800B (zh) * | 2015-09-01 | 2017-11-07 | 东南大学 | 基于需求响应的变频空调负荷建模与运行控制方法 |
CN106369766A (zh) * | 2016-10-31 | 2017-02-01 | 广州华凌制冷设备有限公司 | 空调运行参数的调节方法、调节装置和终端 |
CN109631238A (zh) * | 2019-01-28 | 2019-04-16 | 宁波溪棠信息科技有限公司 | 一种提高空调系统运行能效的控制系统和控制方法 |
CN110332671B (zh) * | 2019-07-22 | 2021-01-15 | 珠海格力电器股份有限公司 | 室内机的控制方法、装置、设备和空调系统 |
CN110726216B (zh) * | 2019-10-29 | 2020-10-02 | 珠海格力电器股份有限公司 | 空调器及其控制方法、装置、系统、存储介质和处理器 |
-
2020
- 2020-07-06 CN CN202010639379.6A patent/CN111854063A/zh active Pending
-
2021
- 2021-06-22 CN CN202110690185.3A patent/CN113339941B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09126523A (ja) * | 1995-10-31 | 1997-05-16 | Mitsubishi Electric Corp | 空気調和装置 |
CN1924470A (zh) * | 2005-09-02 | 2007-03-07 | 浙江工业大学 | 具有舒适、节能和健康功能的空调控制装置 |
CN101055114A (zh) * | 2006-04-14 | 2007-10-17 | 株式会社东芝 | 空调控制装置 |
JP2008170025A (ja) * | 2007-01-09 | 2008-07-24 | Toshiba Corp | 空調制御装置 |
KR20150064346A (ko) * | 2013-12-03 | 2015-06-11 | 삼성전자주식회사 | 공조장치 또는 공조시스템의 온도 제어장치 및 방법 |
CN105371423A (zh) * | 2015-01-15 | 2016-03-02 | 浙江省建筑科学设计研究院有限公司 | 基于湿日数的温湿度独立控制空调系统设计方法 |
CN105320118A (zh) * | 2015-12-07 | 2016-02-10 | 张迎春 | 基于云平台的空调系统电力需求响应控制方法 |
CN106016620A (zh) * | 2016-06-15 | 2016-10-12 | 湖南大学 | 空调系统的节能、热舒适控制方法 |
CN106403207A (zh) * | 2016-10-24 | 2017-02-15 | 珠海格力电器股份有限公司 | 用于暖通空调系统的基于负荷预测的控制系统和控制方法 |
CN107044710A (zh) * | 2016-12-26 | 2017-08-15 | 深圳达实智能股份有限公司 | 基于联合智能算法的中央空调节能控制方法及系统 |
KR101948100B1 (ko) * | 2017-08-18 | 2019-02-14 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CN110686365A (zh) * | 2019-10-21 | 2020-01-14 | 珠海格力电器股份有限公司 | 温湿度的控制方法及空调系统 |
CN111336669A (zh) * | 2020-03-12 | 2020-06-26 | 苏州大学 | 基于模型预测控制的室内空调通风系统 |
CN111854063A (zh) * | 2020-07-06 | 2020-10-30 | 浙江大学 | 一种变频空调器控制方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114198881A (zh) * | 2021-12-16 | 2022-03-18 | 珠海格力电器股份有限公司 | 空调控制方法、装置和空调 |
CN114294805A (zh) * | 2022-02-14 | 2022-04-08 | 珠海格力电器股份有限公司 | 空调器的控制方法及装置、空调器和非易失性存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113339941B (zh) | 2022-06-10 |
CN111854063A (zh) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113339941B (zh) | 一种变频空调器控制方法 | |
CN104807137B (zh) | 空调温湿度的控制方法和装置 | |
CN106949598B (zh) | 网络流量负载变化时的网络中心机房节能优化方法 | |
CN112084707B (zh) | 基于冷冻水和冷却水变流量解耦的制冷机房节能优化方法及系统 | |
Lu et al. | Global optimization for overall HVAC systems––Part II problem solution and simulations | |
Liang et al. | Design of intelligent comfort control system with human learning and minimum power control strategies | |
CN108413567A (zh) | 基于物联网的中央空调节费优化方法与系统 | |
CN107178869A (zh) | 变频空调负荷的聚合控制削峰方法 | |
CN113203187B (zh) | 基于部分线性模型的建筑暖通空调负荷优化控制方法 | |
CN115325682A (zh) | 一种高效智能制冷机房性能监测的优化控制方法及装置 | |
CN105157183A (zh) | 一种空调器调节控制方法 | |
CN108168031A (zh) | 一种基于风阀位置重设定静压值的微调响应通风空调控制方法 | |
CN108302732A (zh) | 空调控制方法及空调器 | |
CN108006915A (zh) | 空调控制方法及空调器 | |
CN108302717A (zh) | 空调器的控制方法及空调器 | |
CN118368877B (zh) | 一种制冷机房系统的能耗优化控制方法、系统和网络侧服务端 | |
CN114440409A (zh) | 一种中央空调系统自适应节能控制方法 | |
CN108302706A (zh) | 空调控制方法及空调器 | |
CN113757852B (zh) | 基于数字孪生技术的多联机空调机组控制方法及控制系统 | |
CN111415036B (zh) | 一种中央空调系统并联冷机负荷优化分配方法 | |
CN112484250A (zh) | 一种基于室内热源信息的hvac在线监控系统及控制方法 | |
CN117313396A (zh) | 一种计及多主体需求响应的环境温度节能优化方法及系统 | |
CN111144610A (zh) | 考虑人体温度舒适度的城市楼宇能量枢纽优化方法及系统 | |
CN114282151A (zh) | 一种基于温湿度独立控制的分布式资源调度方法 | |
CN115130297A (zh) | 基于虚拟储能模型的变频空调聚合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 866 yuhangtang Road, Xihu District, Hangzhou City, Zhejiang Province Patentee after: ZHEJIANG University Country or region after: China Patentee after: Hisense Air Conditioning Co.,Ltd. Address before: 866 yuhangtang Road, Xihu District, Hangzhou City, Zhejiang Province Patentee before: ZHEJIANG University Country or region before: China Patentee before: HISENSE (SHANDONG) AIR-CONDITIONING Co.,Ltd. |
|
CP03 | Change of name, title or address |