CN113332982A - 一种TiO2负载的铜催化剂的制备方法和应用 - Google Patents

一种TiO2负载的铜催化剂的制备方法和应用 Download PDF

Info

Publication number
CN113332982A
CN113332982A CN202110720288.XA CN202110720288A CN113332982A CN 113332982 A CN113332982 A CN 113332982A CN 202110720288 A CN202110720288 A CN 202110720288A CN 113332982 A CN113332982 A CN 113332982A
Authority
CN
China
Prior art keywords
tio
copper catalyst
preparation
supported
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110720288.XA
Other languages
English (en)
Inventor
吴张雄
张依
王晓宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202110720288.XA priority Critical patent/CN113332982A/zh
Priority to PCT/CN2021/106745 priority patent/WO2023272795A1/zh
Publication of CN113332982A publication Critical patent/CN113332982A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种催化剂的制备,具体涉及一种TiO2负载的铜催化剂的制备方法和应用,所述TiO2负载的铜催化剂的制备方法,包括以下步骤,将钛源和铜盐溶解在溶剂中,得到前驱液;将所述前驱液进行喷雾干燥和热缩聚得到颗粒物;将所述颗粒物进行煅烧得到所述TiO2负载的铜催化剂。本发明可以简单快速合成TiO2负载的高分散低价态铜催化剂,同时,合成的TiO2负载的铜催化剂呈现出高度分散的状态,经过空气煅烧后还可以保持大量还原状态(Cu+/Cu0),能够在常温空气中稳定存在,且能够对光催化活化PMS降解水中的污染物表现出优异性能。

Description

一种TiO2负载的铜催化剂的制备方法和应用
技术领域
本发明涉及一种催化剂的制备,具体涉及一种TiO2负载的铜催化剂的制备方法和应用。
背景技术
高级氧化技术在水处理中有着广阔的应用前景,其中活化过一硫酸盐(PMS)产生活性自由基可有效去除水体中的难降解有机污染物。相比于均相催化活化,异相催化活化具有催化剂可回收、无二次污染等优势。将异相PMS活化与光催化耦合可加速电子传递,有助于提高PMS的活化效率和污染物的降解效率。TiO2基催化剂作为低廉无毒、高稳定性和较高的氧化电位的典型半导体,在光辅助异相PMS活化领域具有巨大的应用潜力。但未改性TiO2禁带宽度较宽,仅能响应紫外光,限制了其在太阳光驱动下的光催化应用。因此,想要提高TiO2在太阳光激发下的光催化效率,一方面需要缩短其禁带宽度,增强其对可见光的吸收,另一方面还应尽量避免禁带缩短后引起的光生载流子复合率提高所带来的负面影响。研究表明,在TiO2表面沉积金属是增强其对可见光响应并延长光生电子空穴对寿命的一种有效方式。当TiO2与金属纳米粒子结合时,光生电子将被重新分配和转移。金属纳米粒子上的电荷沉积使得金属的费米能级向电势更负的方向移动,导致复合材料的费米能级更接近TiO2的导带。费米能级的移动表示复合系统具有更好的电荷分离能力和更强的还原能力,从而带来更好的光催化反应活性。
过渡金属铜(Cu)由于在可见光-近红外区域具有很强的局域表面等离子体共振效应(localized surface plasmon resonance,LSPR)而被广泛应用于光催化剂的制备或修饰。然而,由于Cu纳米粒子(CuNPs)的高能热电子无法有效分离并迁移至表面发生反应,因此CuNPs需要与半导体结合形成合适的肖特基势垒,才能有效发挥其LSPR效应。特别是,LSPR效应通常发生在10-200nm的纳米颗粒之中,所以制备小尺寸的Cu NPs是十分有必要的。此外,Cu基催化剂多种价态之间的电子转移可有效促进PMS的活化产生硫酸根自由基(具体指低价态的Cu作为电子供体活化PMS,高价态的Cu又可被PMS还原至低价态)。因此,在TiO2表面负载小尺寸、低价态的Cu NPs,依靠其产生的LSPR效应,可有效提高对可见光的吸收,TiO2产生的光生电子在内部电磁场驱动下转移至CuNPs上,既可以提高TiO2载流子的分离效率,又可以促进Cu物种的价态循环,进而在界面活化PMS。
然而,制备负载型小尺寸且低价态的CuNPs催化剂并不容易。有研究通过脉冲电化学沉积的方式,将CuNPs负载在TiO2纳米管阵列上(Cu/TNAs),通过调整沉积循环的次数来控制Cu NPs的负载量。Cu NPs优异的LSPR效应使得合成的Cu/TNAs相较于纯TNAs具有更加出色的光电性能和光催化活性。也有研究通过湿法浸渍或者原子层沉积的方法将Cu负载在TiO2上,随后在氢气下煅烧或者紫外线照射的方式将铜还原。
上述制备方法存在一定的不足,如合成方法复杂、成本高且产量少。氢气煅烧不仅危险性较高,并且容易造成Cu NPs的团聚烧结,从而不利于材料光催化性能的提高。此外,负载的低价态铜在空气中很容易被氧化,难以长期保存。为此,一些研究还需要对CuNPs实施一些保护措施,比如在上面覆盖碳层保护,或者将其负载在还原性载体上等。
发明内容
为了解决上述技术问题,本发明提供了一种TiO2负载的铜催化剂的制备方法和应用,可以简单快速合成TiO2负载的高分散低价态铜催化剂,同时,合成的TiO2负载的铜催化剂呈现出高度分散的状态,经过空气煅烧后还可以保持大量还原状态(Cu+/Cu0),能够在常温空气中稳定存在,且能够对光催化活化PMS降解水中的污染物表现出优异性能。
按照本发明的技术方案,所述TiO2负载的铜催化剂的制备方法,包括以下步骤,
S1:将钛源和铜盐溶解在溶剂中,得到前驱液;
S2:将所述前驱液进行喷雾干燥和热缩聚得到颗粒物;
S3:将所述颗粒物进行煅烧得到所述TiO2负载的铜催化剂。
进一步的,所述钛源为钛酸异丙酯(TTIP)、钛酸异丁酯、异丙醇钛、四氯化钛和硫酸氧钛中的一种或多种。
进一步的,所述铜盐为硝酸铜和/或氯化铜。
进一步的,所述溶剂为乙醇,可以降低钛源的水解速度,同时易于喷干。
进一步的,所述前驱液中还加有盐酸,可抑制钛源的水解,具体的,可以采用质量分数为35%的浓盐酸。进一步的,盐酸与钛源的质量比为5-10:12。
进一步的,所述前驱液中还加有造孔剂,可以在煅烧过程中制造丰富的介孔,同时分解产生还原性气体溢出,在微球内部的封闭中空环境中还原铜物质。具体的,造孔剂可以采用三嵌段共聚物F127和/或P123。进一步的,造孔剂与钛源的质量比为1-2:3。
进一步的,钛源和铜盐的摩尔比为10-100:1。进一步的,铜的理论负载量为0.8wt.%-8wt.%。
进一步的,所述步骤S2中,喷雾干燥采用微流体喷雾干燥技术。
进一步的,所述步骤S2中,喷雾干燥在喷雾塔中进行,压缩空气使料罐中的前驱液通过微流体气溶胶喷嘴喷出,通过设置喷嘴上压电陶瓷的频率和幅值使得喷出的前驱液液柱被破碎成均匀的液滴。
进一步的,所述步骤S2中,喷雾干燥的温度为140-180℃,风速为200-350L min-1,喷雾干燥的时间不超过2s,利用喷雾过程快速干燥的特点以及微液滴限域作用,促使催化剂颗粒形成独特的形态、结构以及电子特性,达到控制铜物种化合价以及抑制其团聚的目的。
进一步的,所述步骤S2中,热缩聚的温度为90-120℃,时间为20-30h。
进一步的,所述步骤S3中,煅烧的温度为350-600℃,时间为2.5-5h。
进一步的,所述步骤S3中,煅烧在马弗炉中于空气气氛下进行,马弗炉的升温速率为1.5-2.5℃min-1
本发明的另一方面提供了上述制备方法制得的TiO2负载的铜催化剂在光催化活化PMS降解水中有机污染物的应用。
本发明的技术方案相比现有技术具有以下优点:
(1)本发明使用独特的微流体喷雾干燥技术首先将前驱液喷干,利用其快速干燥(小于2s)的特点以及特殊的微液滴限域作用,促使催化剂颗粒形成独特的形态、结构以及电子特性,达到控制铜物种化合价以及抑制其团聚的目的。
(2)本发明整个制备过程简单、快速、易操作,适用于工业化宏观与连续生产。
(3)本发明制备的TiO2负载的铜呈现高度分散的状态,在空气氛围下煅烧依然能保持大量的低价状态,且能够在空气中稳定存在。
(4)催化剂微球拥有丰富的介孔结构、均一的粒径分布以及紧密的界面接触。微球呈现表面褶皱,内部中空的结构。
(5)本发明制备的催化剂具有丰富的氧缺陷,CuNPs表现出LSPR效应,均有利于可见光的吸收利用和光生载流子的迁移。
(6)本发明可以通过调控铜前驱体的添加量和煅烧温度调控铜的价态和分散度。
(7)本发明制备的TiO2负载铜催化剂表现出良好的光催化活化PMS性能,反应过程中,CuNPs能够有效地被光生电子还原,使其即使在强氧化环境中依然能够保持还原状态。
附图说明
图1为本发明实施例1(Meso-CuOx@TiO2-8-350)、实施例2(Meso-CuOx@TiO2-4-350)、实施例3(Meso-CuOx@TiO2-2-350)、实施例4(Meso-CuOx@TiO2-0.8-350)和实施例5(Meso-TiO2-350)制备的TiO2负载铜催化剂的广角XRD图。
图2为本发明实施例1(Meso-CuOx@TiO2-8-350)、实施例6(Meso-CuOx@TiO2-8-400)、实施例7(Meso-CuOx@TiO2-8-500)和实施例8(Meso-CuOx@TiO2-8-600)制备的TiO2负载铜催化剂的广角XRD图。
图3为本发明实施例5(A)和实施例1(B)的SEM图。
图4为本发明实施例1和实施例5的氮气吸脱附曲线图(A)孔径分布图(B);
图5为本发明实施例1、实施例8和实施例9(CuOx@TiO2-8-350)的X射线光电子能谱Cu2p图谱。
图6为本发明实施例1和实施例5的电子顺磁共振图谱。
图7为本发明实施例1、实施例2、实施例5和实施例8的紫外可见漫反射图谱。
图8为本发明中铜负载量(A)和煅烧温度(B)对光催化活化PMS降解亚甲基蓝的性能影响。
图9为本发明实施例1反应前后的X射线光电子能谱Cu 2p对比图谱。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
将12g三嵌段共聚物(F127)加入至120g无水乙醇与16g浓盐酸(35%)中置于磁力搅拌器上,在350rpm与35℃的条件下,恒温搅拌0.5h直至固体完全溶解;接着向混合液中加入24g TTIP和2.052g Cu(NO3)2·3H2O,在相同条件下恒温搅拌0.5h后获得喷雾前驱液;经过喷雾干燥(喷雾干燥的温度为140-180℃,风速为200-350Lmin-1,喷雾干燥的时间1.5s)和热缩聚(热缩聚的温度为100℃,时间为24h)后的颗粒在马弗炉中于350℃煅烧3小时,铜的理论负载量为8wt%。
实施例2
将实施例1中Cu(NO3)2·3H2O的投加量改为1.026g,铜的理论负载量为4wt%,其他操作与实施例1相同。
实施例3
将实施例1中Cu(NO3)2·3H2O的投加量改为0.513g,铜的理论负载量为2wt%,其他操作与实施例1相同。
实施例4
将实施例1中Cu(NO3)2·3H2O的投加量改为0.205g,铜的理论负载量为0.8wt%,其他操作与实施例1相同。
实施例5
将实施例1中不加入Cu(NO3)2·3H2O,其他操作与实施例1相同。
实施例6
将实施例1中马弗炉煅烧温度改为400℃,其他操作与实施例1相同。
实施例7
将实施例1中煅烧温度改为500℃,其他操作与实施例1相同。
实施例8
将实施例1中煅烧温度改为600℃,其他操作与实施例1相同。
实施例9
将实施例1中不加入F127,其他操作与实施例1相同。
将实施例1-9所得产物进行检测,其中,在光催化活化PMS中,选用亚甲基蓝(MB),浓度为20mg/L为模拟污染物,360W氙灯配备300nm的滤光片为模拟太阳光(λ≥300nm),PMS的投加量为0.5mM,结果如下:
由图1可以看出,不同铜负载量样品XRD谱图的衍射峰型基本保持一致,均为锐钛矿相TiO2衍射峰。随着铜负载量的提高,并未出现锐钛矿相TiO2(101)晶面衍射峰的偏移及CuOx物种相关衍射峰,表明了铜物种的高度分散。
由图2可以看出,不同煅烧温度样品XRD谱图的衍射峰型显示出明显差异。随着煅烧温度升至500℃,除锐钛矿相TiO2衍射峰外,样品开始出现CuO相关衍射峰,表明煅烧温度的提高致使CuOx晶粒逐渐长大并开始被氧化。
图3SEM图显示,喷雾干燥法制备的TiO2样品均为表面褶皱微球,颗粒尺寸约为70μm,并且负载铜以后颗粒形貌并未有明显改变。生褶皱的表面。在光催化过程中,这样褶皱的表面有利于提高催化剂的光利用率和界面接触能力。
当表面褶皱壳层产生后,图4显示,所制得的TiO2催化剂都具有均一的介孔结构(孔径以~8nm为中心)。
图5显示,在350℃煅烧下,即使Cu负载量提高到8.0wt.%,依然未观察到Cu(II)的卫星峰,表明以Cu(0)/Cu(I)为主。而在8wt%负载下,进一步提高煅烧温度,则Cu(II)会逐步出现,但即使提高到600℃,依旧有大量的低价态Cu(0)/Cu(I)存在。而未加F127的样品发现350℃煅烧下就会出现明显的Cu(II)卫星峰,说明F127对于低价态Cu的形成具有至关重要的作用。
图6显示喷雾干燥制备的纯TiO2和负载铜以后都含有丰富的氧缺陷。
图7显示相比于纯的TiO2,负载铜以后会表现出LSPR效应,对可见光的吸收明显增加。
图8显示当固定煅烧温度为350℃时,光催化活化PMS降解亚甲基蓝的速率随着铜负载量的增多而提高。当固定负载量为8wt%时,降解速率随着煅烧温度的升高而降低,最终确定实施例1(Meso-CuOx@TiO2-8-350)为最佳样品。
图9可以看出光催化反应过程中的光生电子可有效保持铜的还原价态,而无光照时,铜物种很容易被氧化成高价态。
实施例10-11
将实施例1中F127的加入量分别改为8g和16g,其他操作与实施例1相同。
实施例12
将实施例1中F127改为P123,其他操作与实施例1相同。
实施例13-14
将实施例1中浓盐酸的加入量分别改为10g和20g,其他操作与实施例1相同。
实施例15-18
将实施例1中TTIP分别改为28g钛酸异丁酯、24g异丙醇钛、16g四氯化钛和13.5g硫酸氧钛,其他操作与实施例1相同。
实施例19
将实施例1中Cu(NO3)2·3H2O改为1.45gCuCl2·2H2O,其他操作与实施例1相同。
实施例20-21
将实施例1中煅烧时间分别改为2.5h和5h,其他操作与实施例1相同。
实施例22
将实施例1中热缩聚的温度改为120℃,时间为20h,其他操作与实施例1相同。
实施例23
将实施例1中热缩聚的温度改为90℃,时间为30h,其他操作与实施例1相同。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种TiO2负载的铜催化剂的制备方法,其特征在于,包括以下步骤,
S1:将钛源和铜盐溶解在溶剂中,得到前驱液;
S2:将所述前驱液进行喷雾干燥和热缩聚得到颗粒物;
S3:将所述颗粒物进行煅烧得到所述TiO2负载的铜催化剂。
2.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述钛源为钛酸异丙酯、钛酸异丁酯、异丙醇钛、四氯化钛和硫酸氧钛中的一种或多种。
3.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述铜盐为硝酸铜和/或氯化铜。
4.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述溶剂为乙醇。
5.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述前驱液中还加有盐酸。
6.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述前驱液中还加有造孔剂F127和/或P123。
7.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述步骤S2中,喷雾干燥的温度为140-180℃,风速为200-350Lmin-1,喷雾干燥的时间不超过2s。
8.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述步骤S2中,热缩聚的温度为90-120℃,时间为20-30h。
9.如权利要求1所述的TiO2负载的铜催化剂的制备方法,其特征在于,所述步骤S3中,煅烧的温度为350-600℃,时间为2.5-5h。
10.如权利要求1-9任一项所述的制备方法制得的TiO2负载的铜催化剂在光催化活化过一硫酸盐降解水中有机污染物的应用。
CN202110720288.XA 2021-06-28 2021-06-28 一种TiO2负载的铜催化剂的制备方法和应用 Pending CN113332982A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110720288.XA CN113332982A (zh) 2021-06-28 2021-06-28 一种TiO2负载的铜催化剂的制备方法和应用
PCT/CN2021/106745 WO2023272795A1 (zh) 2021-06-28 2021-07-16 一种TiO 2负载的铜催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110720288.XA CN113332982A (zh) 2021-06-28 2021-06-28 一种TiO2负载的铜催化剂的制备方法和应用

Publications (1)

Publication Number Publication Date
CN113332982A true CN113332982A (zh) 2021-09-03

Family

ID=77479261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110720288.XA Pending CN113332982A (zh) 2021-06-28 2021-06-28 一种TiO2负载的铜催化剂的制备方法和应用

Country Status (2)

Country Link
CN (1) CN113332982A (zh)
WO (1) WO2023272795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117899864A (zh) * 2024-03-15 2024-04-19 四川大学 一种室温制备负载铜的黑色二氧化钛的方法及负载铜的黑色二氧化钛

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298045A (zh) * 2008-06-12 2008-11-05 南京工业大学 用于催化氧化的金属/二氧化钛催化剂及其制备方法
WO2015120764A1 (zh) * 2014-02-17 2015-08-20 中国科学院过程工程研究所 一种共掺杂TiO2催化剂及其制备方法
CN108704644A (zh) * 2018-06-13 2018-10-26 苏州大学 负载纳米氧化铜的介孔氧化铝空心微球及其制备和应用
CN110394175A (zh) * 2019-06-26 2019-11-01 济南大学 一种模板法制备铜掺杂介孔二氧化钛的方法及应用
CN112958089A (zh) * 2021-02-08 2021-06-15 哈尔滨工业大学 用于催化过硫酸盐降解水中污染物的氧化铜催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112495379B (zh) * 2020-11-30 2022-06-24 重庆大学 一种Cu-TiO2复合材料及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298045A (zh) * 2008-06-12 2008-11-05 南京工业大学 用于催化氧化的金属/二氧化钛催化剂及其制备方法
WO2015120764A1 (zh) * 2014-02-17 2015-08-20 中国科学院过程工程研究所 一种共掺杂TiO2催化剂及其制备方法
CN108704644A (zh) * 2018-06-13 2018-10-26 苏州大学 负载纳米氧化铜的介孔氧化铝空心微球及其制备和应用
CN110394175A (zh) * 2019-06-26 2019-11-01 济南大学 一种模板法制备铜掺杂介孔二氧化钛的方法及应用
CN112958089A (zh) * 2021-02-08 2021-06-15 哈尔滨工业大学 用于催化过硫酸盐降解水中污染物的氧化铜催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘希涛等: "《活化过硫酸盐在环境污染控制中的应用》", 30 April 2008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117899864A (zh) * 2024-03-15 2024-04-19 四川大学 一种室温制备负载铜的黑色二氧化钛的方法及负载铜的黑色二氧化钛
CN117899864B (zh) * 2024-03-15 2024-06-07 四川大学 一种室温制备负载铜的黑色二氧化钛的方法及负载铜的黑色二氧化钛

Also Published As

Publication number Publication date
WO2023272795A1 (zh) 2023-01-05

Similar Documents

Publication Publication Date Title
Tahir et al. Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor
Jang et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥ 420 nm)
EP2445635B1 (en) Method for the preparation doped catalytic carbonaceous composite materials
Suzuki et al. Visible light-sensitive mesoporous N-doped Ta 2 O 5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO 2 reduction
CN109876809B (zh) 一种复合金属氧化物中空多壳层材料及其制备方法和用途
Yokoi et al. Preparation of a colloidal array of NaTaO3 nanoparticles via a confined space synthesis route and its photocatalytic application
Mekasuwandumrong et al. Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4
Joo et al. Tailored synthesis of C@ TiO2 yolk–shell nanostructures for highly efficient photocatalysis
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
Gradon et al. Advanced aerosol technologies towards structure and morphologically controlled next-generation catalytic materials
Huang et al. Properties and H2 production ability of Pt photodeposited on the anatase phase transition of nitrogen-doped titanium dioxide
Padmaja et al. Fabrication of hetero-structured mesoporours TiO2-SrTiO3 nanocomposite in presence of Gemini surfactant: characterization and application in catalytic degradation of Acid Orange
Zhang et al. One-step synthesis of mesoporous Pt–Nb 2 O 5 nanocomposites with enhanced photocatalytic hydrogen production activity
Yang et al. Fabrication of three-dimensional porous La-doped SrTiO 3 microspheres with enhanced visible light catalytic activity for Cr (VI) reduction
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN110745864B (zh) 一种钙钛矿型钛酸镧材料及其制备方法和应用
Peng et al. RETRACTED: Atomic layer deposition of Pt nanoparticles on ZrO2 based metal-organic frameworks for increased photocatalytic activity
Bhat et al. Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions
Yu et al. BixY1− xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting
CN113332982A (zh) 一种TiO2负载的铜催化剂的制备方法和应用
CN110560172A (zh) 一种具有光催化性能的锆金属有机框架异质结材料及其制备方法
CN113976110A (zh) 一种用于光催化醇水体系产氢的催化剂及其制备方法
CN113546687A (zh) 一种超薄钛基MOFs纳米片的可见光催化剂的制备方法及应用
Kominami et al. Stoichiometric decomposition of water by titanium (IV) oxide photocatalyst synthesized in organic media: Effect of synthesis and irradiation conditions on photocatalytic activity
CN109999774B (zh) 纳米二氧化钛/γ-氧化铝复合材料粉末的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210903

RJ01 Rejection of invention patent application after publication