CN113325696A - Hybrid control method for combining single neuron PID and model prediction applied to crosslinked cable production equipment - Google Patents
Hybrid control method for combining single neuron PID and model prediction applied to crosslinked cable production equipment Download PDFInfo
- Publication number
- CN113325696A CN113325696A CN202110608695.1A CN202110608695A CN113325696A CN 113325696 A CN113325696 A CN 113325696A CN 202110608695 A CN202110608695 A CN 202110608695A CN 113325696 A CN113325696 A CN 113325696A
- Authority
- CN
- China
- Prior art keywords
- pid
- model
- parameters
- output
- control method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 210000002569 neuron Anatomy 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000012937 correction Methods 0.000 claims abstract description 3
- 238000005070 sampling Methods 0.000 claims description 25
- 230000004069 differentiation Effects 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 240000002627 Cordeauxia edulis Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种温度控制方法,特别是涉及一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法。The invention relates to a temperature control method, in particular to a hybrid control method which is applied to a cross-linked cable production equipment combined with a single neuron PID and model prediction.
背景技术Background technique
一般的,如果已知系统精确模型,那么对于系统的控制是非常容易的,但是对温度系统进行精确建模是十分困难的。而基于此状况,目前,应用于温度控制的主要方法有PID控制、模糊逻辑控制、神经网络控制等方法,只需要调整参数,不涉及系统建模就可以达到预期的控制效果。其中PID控制应用最多最为广泛,它具有原理简单、易于实现,适用范围广,直接有效等优点。但是,PID方法在面对一些对控制精度有一定要求的系统时,其控制效果一般;模糊逻辑控制是通过专业人员制定模糊表,对系统不同状态进行查表推理相应的控制策略,非常适用于只工作在某些特定状态的系统,但是缺点是好的模糊表的制定一般需要由专业技术人员通过长时间的实地操作的经验积累和不断的测试得到;神经网络控制是近年来新兴的智能控制方法,对于非线性时变系统,时滞系统,以及难以建模的复杂系统都有良好的适应性和良好的控制品质,缺点是需要对大量的数据进行实时的运算处理,对处理器有较高的性能要求,而且开发难度较高,需要大量实际数据训练。Generally, if the exact model of the system is known, it is very easy to control the system, but it is very difficult to accurately model the temperature system. Based on this situation, at present, the main methods applied to temperature control include PID control, fuzzy logic control, neural network control and other methods. The expected control effect can be achieved only by adjusting the parameters without involving system modeling. Among them, PID control is the most widely used. It has the advantages of simple principle, easy implementation, wide application range, direct effect and so on. However, when faced with some systems that have certain requirements for control accuracy, the PID method has a general control effect; the fuzzy logic control is to formulate a fuzzy table by professionals, and look up the table to infer the corresponding control strategy for different states of the system, which is very suitable for The system only works in some specific states, but the disadvantage is that the formulation of a good fuzzy table generally needs to be obtained by professional technicians through long-term field operation experience accumulation and continuous testing; neural network control is an emerging intelligent control in recent years. The method has good adaptability and good control quality for nonlinear time-varying systems, time-delay systems, and complex systems that are difficult to model. High performance requirements and high development difficulty require a large amount of actual data training.
单神经元PID控制器以PID控制器作为基础,结合神经网络控制的适应性及其自学习性质,对系统模型未知的系统控制时会产生比单纯使用PID控制时更良好的控制效果,这在近年来的文献中都有所证实,而其学习规则一般都使用Hebb学习规则,规则的选取上需要根据系统性质选择较为合适的学习规则,但是对于单神经元PID控制学习规则如何选取,以何种学习方式能达到较好效果,目前没有相关文献在此方面进行探究。The single neuron PID controller is based on the PID controller, combined with the adaptability of neural network control and its self-learning properties, it will produce a better control effect than simply using PID control when the system model is unknown. It has been confirmed in the literature in recent years, and its learning rules generally use Hebb learning rules. The selection of rules needs to select more appropriate learning rules according to the nature of the system, but how to select learning rules for single neuron PID control, and how This learning method can achieve better results, and there is currently no relevant literature to explore this aspect.
发明内容SUMMARY OF THE INVENTION
针对现有单神经元PID技术中学习规则选择单一的问题,本发明提供了一种结合模型预测控制方法(MPC)的单神经元PID学习方法,利用该种方法可以对恒温控制系统实现良好的控制效果。本方法结合MPC的控制思想来对PID参数进行特定调整。本方法对温度系统使用一种简单有效的建模方法,通过对模型分析,得到系统未来大致的变化趋势,以未来一段时间内的误差平方和最小为原则对PID参数进行相应的调整,弥补了学习规则选择上的盲目性,提高了系统控制精度。Aiming at the problem of single selection of learning rules in the existing single neuron PID technology, the present invention provides a single neuron PID learning method combined with a model predictive control method (MPC). Control effect. The method combines the control idea of MPC to make specific adjustments to the PID parameters. This method uses a simple and effective modeling method for the temperature system. Through the analysis of the model, the general change trend of the system in the future is obtained, and the PID parameters are adjusted accordingly based on the principle of the minimum sum of squares of errors in the future period to make up for The blindness in the selection of learning rules improves the control accuracy of the system.
一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法,具体步骤如下:A hybrid control method combining single neuron PID and model prediction applied to cross-linked cable production equipment, the specific steps are as follows:
步骤1:建立温度系统模型;Step 1: Build a temperature system model;
所采用的温度系统模型为:The temperature system model used is:
其中,Y(k)为模型计算出的第k个采样时刻的系统输出;C(k)为第k个采样时刻的系统历史输出,Ai为该采样时刻向前第i个历史系统输出相应的加权系数,初值设定如下:A1(0)=A2(0)=A3(0)=…A7(0)=0,A8(0)=A9(0)=A10(0)=0.33;U(k)为第k个采样时刻的系统历史输入,Bi(k)为该采样时刻向前第i个历史系统输入相应的加权系数,初值设定为B1(0)=B2(0)=…=B10(0)=0,之后会对模型修正,故以上Ai、Bi的初值可微调;Among them, Y(k) is the system output at the k-th sampling time calculated by the model; C(k) is the system historical output at the k-th sampling time, and A i is the i-th historical system output corresponding to the previous sampling time The initial value is set as follows: A 1 (0)=A 2 (0)=A 3 (0)=...A 7 (0)=0, A 8 (0)=A 9 (0)=A 10 (0)=0.33; U(k) is the historical input of the system at the k-th sampling time, B i (k) is the corresponding weighting coefficient of the i-th historical system input before the sampling time, and the initial value is set to B 1 (0)=B 2 (0)=...=B 10 (0)=0, the model will be revised later, so the above initial values of A i and B i can be fine-tuned;
步骤2:模型参数反馈校正;Step 2: Model parameter feedback correction;
以系统真实输出作为反馈,实时校正步骤1中的模型参数Ai(k),Bi(k),i=1,2,…10;每次采样时刻调整的增量为:ΔAi,ΔBi;Using the real output of the system as feedback, the model parameters A i (k), B i (k), i=1, 2, ... 10 in step 1 are corrected in real time; the adjustment increments at each sampling time are: ΔA i , ΔB i ;
ΔAi=ZAi*EF(k)*C(k-i)ΔA i =ZA i *E F (k)*C(ki)
ΔBi=ZBi*EF(k)*U(k-i)ΔB i =ZB i *E F (k)*U(ki)
上述ZAi,ZBi为需要根据系统实际情况进行调节的学习速率参数,其中ZA1=ZA2=ZA3=…ZA7=0,ZB9=ZB10=0;剩余学习速率参数需要根据系统实际情况进行调节;EF(k)为该采样时刻的误差值;其中,The above ZA i and ZB i are learning rate parameters that need to be adjusted according to the actual situation of the system, wherein ZA 1 =ZA 2 =ZA 3 =... ZA 7 =0, ZB 9 =ZB 10 =0; the remaining learning rate parameters need to be adjusted according to the system Adjust according to the actual situation; E F (k) is the error value at the sampling moment; among them,
EF(k)=C(k)-Y(k);E F (k)=C(k)-Y(k);
因此,该时刻修正后的模型参数如下:Therefore, the corrected model parameters at this moment are as follows:
Ai(k)=Ai(k-1)+ΔAi A i (k)=A i (k-1)+ΔA i
Bi(k)=Bi(k-1)+ΔBi B i (k)=B i (k-1)+ΔB i
步骤3:本步骤开始对PID参数进行调节,即通过步骤1步骤2获得的模型来计算得到该采样时刻往后10个采样时刻的均方误差;Step 3: This step starts to adjust the PID parameters, that is, the mean square error of 10 sampling moments after the sampling time is calculated by using the model obtained in Step 1 and Step 2;
令J为学习依据:Let J be the learning basis:
其中,in,
EY(k+i)=R-Y(k+i)E Y (k+i)=RY(k+i)
通过对PID的比例系数KP、积分系数KI、微分系数KD进行偏微分以得到单神经元PID的三个预参数的增量如下:The three pre-parameters of the single neuron PID are obtained by performing partial differentiation on the proportional coefficient K P , the integral coefficient K I and the differential coefficient K D of the PID The increments are as follows:
其中,R为系统输出设定值,ZP、ZI、ZD为需要根据系统实际情况进行调节的学习速率参数;Among them, R is the system output setting value, Z P , Z I , and Z D are the learning rate parameters that need to be adjusted according to the actual situation of the system;
得到调节后的PID预参数:Get the adjusted PID pre-parameters:
步骤4:PID输出;Step 4: PID output;
对步骤3中的PID的三个预参数进行归一化处理得到PID的比例系数KP、积分系数KI、微分系数KD:Three pre-parameters to the PID in step 3 Perform normalization to obtain the proportional coefficient K P , the integral coefficient K I , and the differential coefficient K D of the PID:
得到本采样时刻控制器最终给到系统的输入U(k):Obtain the input U(k) that the controller finally gives to the system at this sampling time:
U(k)=KP(k)*E(k)+KI(k)*EI(k)+KD(k)*ED(k)U(k)=K P (k)*E(k)+K I (k)*E I (k)+K D (k)*E D (k)
其中in
E(k)=R-C(k)E(k)=R-C(k)
ED(k)=E(k)-E(k-1)E D (k)=E(k)-E(k-1)
其中,K为需要根据系统实际情况进行调节的PID增益参数。另外由于控制温度系统,需要根据系统实际情况适当添加积分饱和来限制EI(k)。将输出U(k)给到系统中,则完成该次采样所需要执行的操作,返回步骤2循环执行。Among them, K is the PID gain parameter that needs to be adjusted according to the actual situation of the system. In addition, due to the control of the temperature system, it is necessary to appropriately add integral saturation to limit E I (k) according to the actual situation of the system. If the output U(k) is given to the system, the operations that need to be performed for this sampling are completed, and the loop returns to step 2 for execution.
与现有技术相比,本发明的优点如下:Compared with the prior art, the advantages of the present invention are as follows:
1、调节过程包含系统未来信息,针对性的减少了由于温度系统时滞特性对控制器带来的干扰;1. The adjustment process includes the future information of the system, which reduces the disturbance to the controller due to the time delay characteristics of the temperature system;
2、使用未来一段时间内的误差平方和作为调整依据,使得控制效果更加平稳;2. Use the sum of squares of errors in the future period as the adjustment basis to make the control effect more stable;
3、由于动态调节PID参数,抗干扰能力强,此方法有较强的鲁棒性。3. Due to the dynamic adjustment of PID parameters and strong anti-interference ability, this method has strong robustness.
附图说明Description of drawings
图1为本发明的一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法的原理框图;Fig. 1 is a kind of principle block diagram of the hybrid control method that is applied to the single neuron PID of the cross-linked cable production equipment combined with model prediction according to the present invention;
图2为本发明的一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法的预测模型图;Fig. 2 is a kind of prediction model diagram of the hybrid control method that is applied to the single neuron PID of the cross-linked cable production equipment combined with model prediction according to the present invention;
图3为本发明的一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法的学习依据图;3 is a learning basis diagram of a hybrid control method applied to a single neuron PID and model prediction combination of a cross-linked cable production equipment according to the present invention;
图4为本发明的一种应用于交联电缆生产设备的单神经元PID与模型预测结合的混合控制方法所依附的系统示意图。FIG. 4 is a schematic diagram of a system to which a hybrid control method combining single neuron PID and model prediction applied to a cross-linked cable production equipment according to the present invention is attached.
具体实施方式Detailed ways
下面结合附图对本发明的方案做进一步说明。The solution of the present invention will be further described below in conjunction with the accompanying drawings.
本发明所涉及的温度控制系统框图如图4所示:The temperature control system block diagram involved in the present invention is shown in Figure 4:
本发明所采用的主控屏幕型号为西门子SIMATIC HMI,控制器为西门子PLC300,控制屏幕使用WINCC7.3版本作为组态软件,用以控制和监控生产过程。The model of the main control screen adopted in the present invention is Siemens SIMATIC HMI, the controller is Siemens PLC300, and the control screen uses WINCC7.3 version as configuration software to control and monitor the production process.
一次完整的控制过程如下:A complete control process is as follows:
通过主控屏幕输入设定温度R;控制器读取热电偶的温度信号C(k);通过上述控制方法得到输出U(k),根据U(k)大小,控制加热信号和冷却信号,给到安装在挤出机上的加热瓦和循环水冷却阀门上,完成一次控制。Input the set temperature R through the main control screen; the controller reads the temperature signal C(k) of the thermocouple; obtains the output U(k) through the above control method, and controls the heating signal and cooling signal according to the size of U(k) to give To the heating tile and circulating water cooling valve installed on the extruder, one control is completed.
本实施例的具体实施对象为某交联电缆生产线挤出机,本实施实例使用的参数适用于本系统,也可为其他温度系统作为参考,具体实施时需要根据实际运行状况作适当调整。实现方式为通过微控制器编程实现,通过每间隔1秒的时间对系统输出的采样一次,同时执行学习算法和PID算法,计算出本次输出量再输出至系统,输出值U范围为-1000~+1000。The specific implementation object of this embodiment is an extruder of a cross-linked cable production line. The parameters used in this embodiment are applicable to this system, and can also be used as a reference for other temperature systems. The specific implementation needs to be appropriately adjusted according to the actual operating conditions. The implementation method is to realize through microcontroller programming. By sampling the output of the system every 1 second, and executing the learning algorithm and PID algorithm at the same time, the output value of this time is calculated and then output to the system. The output value U is in the range of -1000. ~+1000.
初始化:初值的设定为:A1=A2=A3=…A7=0,A8=A9=A10=0.33;B1=B2=…=B10=0;K=30。KP=30、KI=1、KD=100; Initialization: The initial value is set as: A1 = A2 = A3=... A7 = 0 , A8 = A9 = A10 =0.33; B1 = B2=...= B10 = 0 ; K= 30. K P =30, K I =1, K D =100;
参数设定为:ZA1=ZA2=ZA3=…ZA7=0,ZA8=ZA9=ZA10=10-4,ZB1=ZB2=ZB3=…ZB8=10-7,ZB9=ZB10=0。ZP=1、ZI=10-3、ZD=0.1;The parameters are set as: ZA1=ZA2=ZA3=...ZA7= 0 , ZA8 = ZA9 = ZA10 = 10-4 , ZB1 = ZB2 = ZB3 = ... ZB8 = 10-7 , ZB 9 =ZB 10 =0. Z P =1, Z I =10 -3 , Z D =0.1;
每次采样所进行的操作如下:The operations performed for each sample are as follows:
步骤1:使用温度模型Step 1: Use the Temperature Model
及历史数据,C(k-i)、U(k-i),i=1,2,3…10计算出本采样时刻的预测系统输出Y(k),对系统输出采样得到输出实际值C(k),与预测值Y(k)作差:and historical data, C(k-i), U(k-i), i=1, 2, 3...10 Calculate the predicted system output Y(k) at this sampling time, and sample the system output to obtain the actual output value C(k), Difference from the predicted value Y(k):
EF(k)=C(k)-Y(k)E F (k)=C(k)-Y(k)
步骤2:使用如下公式计算模型增量ΔAi,ΔBi,i=1,2,3…10。Step 2: Calculate the model increments ΔA i , ΔB i , i=1, 2, 3...10 using the following formulas.
ΔAi=ZAi*EF(k)*C(k-i)ΔA i =ZA i *E F (k)*C(ki)
ΔBi=ZBi*EF(k)*U(k-i)ΔB i =ZB i *E F (k)*U(ki)
使用上述增量更新所有Ai,Bi,i=1,2,3…10。Update all A i , B i , i=1,2,3...10 using the above increments.
Ai(k)=Ai(k-1)+ΔAi A i (k)=A i (k-1)+ΔA i
Bi(k)=Bi(k-1)+ΔBi B i (k)=B i (k-1)+ΔB i
步骤3:计算预测数据。Step 3: Calculate the forecast data.
计算如下数据:Calculate the following data:
E(k)=R-C(k)E(k)=R-C(k)
ED(k)=E(k)-E(k-1)E D (k)=E(k)-E(k-1)
U(k)=KP*E(k)+KI*EI(k)+KD*ED(k)U(k)=K P *E(k)+K I *E I (k)+K D *E D (k)
添加抗积分饱和,如果EI(k)>200,则EI(k)=200;如果EI(k)<-200,则EI(k)=-200。同时限制输出大小,如果U(k)>1000,则U(k)=1000;如果U(k)<-1000,则U(k)=-1000。Add anti-integration windup, if E I (k)>200, then E I (k)=200; if E I (k)<-200, then E I (k)=-200. At the same time, the output size is limited. If U(k)>1000, then U(k)=1000; if U(k)<-1000, then U(k)=-1000.
使用步骤2中更新后的加权参数Ai(k),Bi(k),i=1,2,3…10,与上述数据的U(k)、Y(k)(用模型预测的值Y(k)代替实际系统输出C(k))带入步骤1中模型公式,求出Y(k+1);Using the updated weighting parameters A i (k), B i (k), i=1, 2, 3...10 in step 2, and the above data U(k), Y(k) (values predicted by the model Instead of the actual system output C(k)), Y(k) is brought into the model formula in step 1, and Y(k+1) is obtained;
继续计算如下数据:Continue to calculate the following data:
EY(k+1)=R-Y(k+1)E Y (k+1)=RY(k+1)
EYI(k+1)=EI(k)+EY(k+1)E YI (k+1)=E I (k)+E Y (k+1)
EYD(k+1)=EY(k+1)-E(k)E YD (k+1)=E Y (k+1)-E(k)
UY(k+1)=KP*EY(k+1)+KI*EYI(k+1)+KD*EYD(k+1)U Y (k+1)=K P *E Y (k+1)+K I *E YI (k+1)+K D *E YD (k+1)
同样的,添加抗积分饱和,如果EYI(k+i)>200,则EYI(k+1)=200;如果EYI(k+1)<-200,则EYI(k+1)=-200。Similarly, adding anti-integration saturation, if E YI (k+i)>200, then E YI (k+1)=200; if E YI (k+1)<-200, then E YI (k+1) =-200.
同时限制输出大小,如果UY(k+i)>1000,则UY(k+i)=1000;如果UY(k+i)<-1000,则UY(k+i)=-1000。At the same time limit the output size, if U Y (k+i)>1000, then U Y (k+i)=1000; if U Y (k+i)<-1000, then U Y (k+i)=-1000 .
使用步骤2中更新后的加权参数Ai(k),Bi(k),i=1,2,3…10,与上述数据的U(k)、Y(k+1)(用模型预测的值Y(k+1)代替实际系统输出C(k))带入步骤1中模型公式,求出Y(k+2);Using the updated weighting parameters A i (k), B i (k), i=1, 2, 3...10 in step 2, and U(k), Y(k+1) of the above data (predicted by the model The value of Y(k+1), instead of the actual system output C(k)), is brought into the model formula in step 1 to obtain Y(k+2);
迭代上述过程,可算得Y(k+i),UY(k+i),EY(k+i),EYI(k+i),EYD(k+i),i=1,2,3…10。Iterating the above process, we can calculate Y(k+i), U Y (k+i), E Y (k+i), E YI (k+i), E YD (k+i), i=1,2 ,3…10.
步骤4:计算 Step 4: Calculate
首先,经过化简得到:First, after simplification we get:
当i=2,3…10。有如下公式:When i=2,3...10. There is the following formula:
通过上述公式可逐一计算得到 The above formula can be calculated one by one to get
步骤5:计算 Step 5: Calculate
首先,经过化简得到:First, after simplification we get:
当i=2,3…10。有如下公式:When i=2,3...10. There is the following formula:
通过上述公式可逐一计算得到 The above formula can be calculated one by one to get
步骤6:计算 Step 6: Calculate
首先,经过化简得到:First, after simplification we get:
当i=2,3…10。有如下公式:When i=2,3...10. There is the following formula:
通过上述公式可逐一计算得到 The above formula can be calculated one by one to get
步骤7:计算的增量进而更新得到调整后的 Step 7: Calculate increment Then update the adjusted
经推导可得can be derived by
使用步骤3、步骤4计算得到的数据代入上述公式,得到ZP为学习速率。Substitute the data calculated in steps 3 and 4 into the above formula to get ZP is the learning rate.
步骤8:计算的增量进而更新得到调整后的 Step 8: Calculate increment Then update the adjusted
经推导可得can be derived by
使用步骤3、步骤4计算得到的数据代入上述公式,得到ZI为学习速率。Substitute the data calculated in steps 3 and 4 into the above formula to get Z I is the learning rate.
步骤9:计算的增量进而更新得到调整后的 Step 9: Calculate increment Then update the adjusted
经推导可得can be derived by
使用步骤3、步骤4计算得到的数据代入上述公式,得到ZD为学习速率。Substitute the data calculated in steps 3 and 4 into the above formula to get Z D is the learning rate.
步骤10:将步骤9更新得到的数据代入如下公式更新KP、KI、KD。Step 10: Substitute the data updated in Step 9 into the following formula to update K P , K I , and K D .
步骤11:通过如下公式和步骤3步骤10数据计算本次采样最终输出。Step 11: Calculate the final output of this sampling by the following formula and the data in Step 3 and Step 10.
U(k)=KP*E(k)+KI*EI(k)+KD*ED(k)U(k)=K P *E(k)+K I *E I (k)+K D *E D (k)
限制输出大小,如果U(k)>1000,则U(k)=1000;如果U(k)<-1000,则U(k)=-1000。Limit the output size, if U(k)>1000, then U(k)=1000; if U(k)<-1000, then U(k)=-1000.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110608695.1A CN113325696B (en) | 2021-06-01 | 2021-06-01 | A hybrid control method combining single neuron PID and model prediction for cross-linked cable production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110608695.1A CN113325696B (en) | 2021-06-01 | 2021-06-01 | A hybrid control method combining single neuron PID and model prediction for cross-linked cable production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113325696A true CN113325696A (en) | 2021-08-31 |
CN113325696B CN113325696B (en) | 2022-07-19 |
Family
ID=77423178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110608695.1A Active CN113325696B (en) | 2021-06-01 | 2021-06-01 | A hybrid control method combining single neuron PID and model prediction for cross-linked cable production equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113325696B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116627028A (en) * | 2023-07-21 | 2023-08-22 | 阳谷新太平洋电缆有限公司 | Control method for crosslinked cable production line |
CN117631530A (en) * | 2024-01-24 | 2024-03-01 | 汉河(阳谷)电缆有限公司 | Cross-linked cable production temperature control method |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0321249D0 (en) * | 2002-09-11 | 2003-10-08 | Fisher Rosemount Systems Inc | Integrated model predictive control and optimization within a process control system |
GB0619184D0 (en) * | 2005-09-30 | 2006-11-08 | Fisher Rosemount Systems Inc | On-line adaptive model predictive control in a process control system |
US20070078529A1 (en) * | 2005-09-30 | 2007-04-05 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
CN106855957A (en) * | 2015-12-09 | 2017-06-16 | 四川大学 | Factory's bus load prediction based on similar day and least square method supporting vector machine |
CN107045289A (en) * | 2017-06-05 | 2017-08-15 | 杭州电子科技大学 | A kind of nonlinear neural network optimization PID control method of electric furnace temperature |
CN107688291A (en) * | 2017-08-23 | 2018-02-13 | 苏州大学 | The feedforward of piezoelectric ceramics platform and closed loop composite control method, system based on single neuron |
CN107909149A (en) * | 2017-10-26 | 2018-04-13 | 西北农林科技大学 | A kind of Temperature in Greenhouse Forecasting Methodology based on Genetic BP Neutral Network |
CN108444110A (en) * | 2018-04-11 | 2018-08-24 | 南通大学 | Air source heat pump hot water system design method based on BP neural network forecasts |
CN109268159A (en) * | 2018-09-18 | 2019-01-25 | 吉林大学 | Lean-Burn Gasoline Engine fuel air ratio system control method |
CN109634098A (en) * | 2018-12-25 | 2019-04-16 | 江苏大学 | A kind of fattening house environment conditioning system and method |
CN110943659A (en) * | 2019-10-31 | 2020-03-31 | 北京控制工程研究所 | A working mode recognition and position control system of a laser terminal coarse pointing mechanism |
CN111158282A (en) * | 2019-12-27 | 2020-05-15 | 吉林大学 | A single neuron FPGA control method and system for cross-linked cable production line |
CN111336683A (en) * | 2020-03-10 | 2020-06-26 | 南通大学 | MPC-PID cascade control method for air source heat pump temperature control system |
US20200249637A1 (en) * | 2017-09-22 | 2020-08-06 | Nec Corporation | Ensemble control system, ensemble control method, and ensemble control program |
-
2021
- 2021-06-01 CN CN202110608695.1A patent/CN113325696B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0321249D0 (en) * | 2002-09-11 | 2003-10-08 | Fisher Rosemount Systems Inc | Integrated model predictive control and optimization within a process control system |
GB0619184D0 (en) * | 2005-09-30 | 2006-11-08 | Fisher Rosemount Systems Inc | On-line adaptive model predictive control in a process control system |
US20070078529A1 (en) * | 2005-09-30 | 2007-04-05 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
CN106855957A (en) * | 2015-12-09 | 2017-06-16 | 四川大学 | Factory's bus load prediction based on similar day and least square method supporting vector machine |
CN107045289A (en) * | 2017-06-05 | 2017-08-15 | 杭州电子科技大学 | A kind of nonlinear neural network optimization PID control method of electric furnace temperature |
CN107688291A (en) * | 2017-08-23 | 2018-02-13 | 苏州大学 | The feedforward of piezoelectric ceramics platform and closed loop composite control method, system based on single neuron |
US20200249637A1 (en) * | 2017-09-22 | 2020-08-06 | Nec Corporation | Ensemble control system, ensemble control method, and ensemble control program |
CN107909149A (en) * | 2017-10-26 | 2018-04-13 | 西北农林科技大学 | A kind of Temperature in Greenhouse Forecasting Methodology based on Genetic BP Neutral Network |
CN108444110A (en) * | 2018-04-11 | 2018-08-24 | 南通大学 | Air source heat pump hot water system design method based on BP neural network forecasts |
CN109268159A (en) * | 2018-09-18 | 2019-01-25 | 吉林大学 | Lean-Burn Gasoline Engine fuel air ratio system control method |
CN109634098A (en) * | 2018-12-25 | 2019-04-16 | 江苏大学 | A kind of fattening house environment conditioning system and method |
CN110943659A (en) * | 2019-10-31 | 2020-03-31 | 北京控制工程研究所 | A working mode recognition and position control system of a laser terminal coarse pointing mechanism |
CN111158282A (en) * | 2019-12-27 | 2020-05-15 | 吉林大学 | A single neuron FPGA control method and system for cross-linked cable production line |
CN111336683A (en) * | 2020-03-10 | 2020-06-26 | 南通大学 | MPC-PID cascade control method for air source heat pump temperature control system |
Non-Patent Citations (6)
Title |
---|
FENGLI GAO: "Application_of_Fuzzy-PID_in_Controlling_System_of_XLPE_Cable_Production_Line", 《2020 ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES)》 * |
M. S. TSOEU: "Unconstrained MPC and PID evaluation for motion profile tracking applications", 《IEEE AFRICON "11》 * |
侯涛: "基于改进多目标进化算法的温室环境 PID控制的仿真研究", 《中国优秀硕士学位论文集 农业科技辑》 * |
文科星: "智能PID算法的研究及其在温度控制中的应用", 《中国优秀硕士学位论文辑》 * |
李金霞: "时滞系统的DMC—神经元PID串级控制的研究", 《中国优秀硕士学位论文辑 自动化技术》 * |
殷悦: "基于模型的氧化催化器温度控制研究", 《中国优秀硕士学位论文辑 工程科技II辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116627028A (en) * | 2023-07-21 | 2023-08-22 | 阳谷新太平洋电缆有限公司 | Control method for crosslinked cable production line |
CN116627028B (en) * | 2023-07-21 | 2023-09-29 | 阳谷新太平洋电缆有限公司 | Control method for crosslinked cable production line |
CN117631530A (en) * | 2024-01-24 | 2024-03-01 | 汉河(阳谷)电缆有限公司 | Cross-linked cable production temperature control method |
CN117631530B (en) * | 2024-01-24 | 2024-04-02 | 汉河(阳谷)电缆有限公司 | Cross-linked cable production temperature control method |
Also Published As
Publication number | Publication date |
---|---|
CN113325696B (en) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114185264B (en) | A PID controller parameter tuning method based on physical information neural network | |
CN113325696B (en) | A hybrid control method combining single neuron PID and model prediction for cross-linked cable production equipment | |
CN112286043A (en) | PID parameter tuning method based on the step response characteristic data of the controlled object | |
CN109960149B (en) | Automatic disturbance rejection control parameter setting method for pH neutralization process | |
CN114216256B (en) | Ventilation system air volume control method of off-line pre-training-on-line learning | |
CN118466173B (en) | Environment temperature control optimization method for canine house | |
CN111176115A (en) | Valve position control method based on fuzzy neural network and humanoid intelligent control | |
CN111413865B (en) | A Disturbance Compensation Single-loop Superheated Steam Temperature Active Disturbance Rejection Control Method | |
CN110097929A (en) | A kind of blast furnace molten iron silicon content on-line prediction method | |
CN116700393A (en) | Reaction kettle temperature control method based on fuzzy control | |
CN116880191A (en) | Intelligent control method of process industrial production system based on time sequence prediction | |
US9098078B2 (en) | Control algorithm based on modeling a controlled object | |
CN116627028A (en) | Control method for crosslinked cable production line | |
CN111930010A (en) | LSTM network-based general MFA controller design method | |
CN111077771A (en) | Self-tuning fuzzy PID control method | |
CN113587120B (en) | Control method of plasma ash melting furnace | |
CN108427271A (en) | Pressurized-water reactor nuclear power plant primary Ioops coolant temperature control method | |
CN116184830B (en) | A method for controlling the opening of a cage-type electric throttle valve | |
CN110412873A (en) | Terminal Constraint-Based 2D Iterative Learning Predictive Control Method for Time-Delay Intermittent Processes | |
CN114428457B (en) | A Robust Active Disturbance Rejection Control Method for Systems with Time Delay | |
CN116184833A (en) | Robust predictive control method for double-layer structure | |
CN115877811B (en) | Flow process treatment method, device and equipment | |
CN116428879A (en) | Control method and system for combustion optimization of heating furnace | |
JPH05125713A (en) | Controller for reverse regulating gate for flow rate of dam | |
CN112379601A (en) | MFA control system design method based on industrial process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |