CN113324893A - 一种基于压缩感知的流式荧光成像系统及成像方法 - Google Patents

一种基于压缩感知的流式荧光成像系统及成像方法 Download PDF

Info

Publication number
CN113324893A
CN113324893A CN202110535206.4A CN202110535206A CN113324893A CN 113324893 A CN113324893 A CN 113324893A CN 202110535206 A CN202110535206 A CN 202110535206A CN 113324893 A CN113324893 A CN 113324893A
Authority
CN
China
Prior art keywords
laser
signal
collimator
fluorescence
compressed sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110535206.4A
Other languages
English (en)
Other versions
CN113324893B (zh
Inventor
雷诚
李如冰
刘胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202110535206.4A priority Critical patent/CN113324893B/zh
Publication of CN113324893A publication Critical patent/CN113324893A/zh
Application granted granted Critical
Publication of CN113324893B publication Critical patent/CN113324893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1431Signal processing the electronics being integrated with the analyser, e.g. hand-held devices for on-site investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1438Using two lasers in succession
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及细胞流式检测及高速成像技术,具体涉及一种基于压缩感知的流式荧光成像系统及成像方法,该成像系统包括依次连接的激光器、可编程结构光系统、微流控芯片、荧光收集模块和信号处理单元。该系统首先将激光编码,产生编码结构光束,该结构光束作为激发光,入射至微流控芯片中的荧光标记的目标细胞上,产生荧光信号。包含细胞信息的荧光信号经信号采集器采集,信号处理单元利用压缩感知算法快速重构目标细胞图像。该流式荧光成像系统解决现有荧光成像受制于电子器件存储能力的问题,提出一种成像速度更快,成像质量好的流式荧光成像系统。其结构简单,既能获得高质量的细胞荧光图像,同时减少了传统成像技术的数据冗余,实现高速成像。

Description

一种基于压缩感知的流式荧光成像系统及成像方法
技术领域
本发明属于细胞流式检测及高速成像技术领域,特别涉及一种基于压缩感知的流式荧光成像系统及成像方法。
背景技术
当前,流式细胞分析已经成为检验医学发展的一个热点,通过流式细胞仪来检测细胞或微小颗粒的生物物理、生物化学特性。随着技术的革新,流式细胞仪可以实现待测样品的定量分析,同时可以进行多色荧光检测,但是目前商用的流式细胞仪大多只能实现定量的表型分析,可产生统计学上可靠的结果,缺乏成像能力,无法提供细胞形态学、细胞结构和亚细胞信号分布的完整信息。而具备成像功能的流式细胞仪却远远不能达到非成像流式细胞仪的分析速度,检测速率最高5000细胞/s,不能满足临床的检测需求。能够快速完成细胞检测,同时为医学工作者提供完整的细胞信息是当前的急需解决的问题。
荧光成像技术因其成像方便直观,标记靶点多样等原因广泛应用于生物研究。目前在生物医学、材料化学等领域里得到快速发展。将荧光成像技术和流式检测技术结合在一起,是流式细胞成像分析的关键方法。但传统荧光成像系统重建图像需要成百上千帧,过程很慢,且存储数据量非常大。而电子器件存在信息传输的物理极限,若需在尽可能短的采样时间内获取并处理数据目前仍存在很大挑战。
2007年,陶哲轩等人提出压缩感知理论,该理论突破了传统奈奎斯特采样,不同于以往采样存储之后再压缩,可以在采样的过程中直接压缩,极大程度减少处理过程的数据存储量,同时快速恢复原始信号,并保证测量精度。2019年,王中阳和韩申生课题组已经提出利用鬼成像方法加快超分辨率荧光光学显微镜的成像速度,将随机相位调制器加入到荧光显微镜中实现荧光信号的编码,并结合鬼成像技术与随机测量压缩感知方法,大幅度提高图像信息获取效率,数量级地减少重构超分辨图像所需的采样帧数,但系统受制于sCMOS的拍摄速度,仅能实现亚毫秒速度发生的生物过程。
发明内容
针对背景技术存在的问题,本发明提供一种结合压缩感知和荧光成像的装置以及流式荧光成像方法。
为解决上述技术问题,本发明采用如下技术方案:一种基于压缩感知的流式荧光成像系统,包括依次连接的激光器、可编程结构光系统、微流控芯片、荧光收集模块和信号处理单元;
激光器作为系统激光光源;
可编程结构光系统用于将激光光源编码,产生结构光,激发目标细胞上的荧光基团产生荧光信号;
微流控芯片用于控制待测细胞在微流通道中匀速、稳定流动;
荧光收集模块用于收集包含待测细胞信息的荧光信号;
信号处理单元用于将荧光信号转换为数字信号,并利用压缩感知算法恢复细胞图像。
在上述基于压缩感知的流式荧光成像系统中,可编程结构光系统采用码型发生器和调制器将伪随机二进制编码调制在激光的时域信号上,再利用空间色散器完成时域与空间域的映射;或采用空间光调制器、数字微镜阵列直接调制激光信号,产生结构光。
在上述基于压缩感知的流式荧光成像系统中,可编程结构光系统采用码型发生器和调制器将伪随机二进制编码调制在激光的时域信号上,再利用空间色散器完成时域与空间域的映射时,其成像系统为:激光器包括第一飞秒激光器、色散光纤和低通滤波器;可编程结构光系统包括任意波形发生器、光电调制器、掺铒光纤激光放大器、偏振器、第一准直器、第一衍射光栅和第一4f透镜系统;荧光收集模块包括第一长波长二向色镜、第一物镜和第二准直器;信号处理单元包括第一光电倍增管、高速示波器和第一计算机;第一飞秒脉冲激光器依次连接色散光纤和光电调制器的光输入端,第一飞秒激光器的射频信号端连接低通滤波器的输入端,低通滤波器的输出端一端连接任意波形发生器的外部时钟信道,另一端连接高速示波器;任意波形发生器的输出端分别连接光电调制器的电信号输入端和高速示波器;光电调制器的光信号输出端依次连接掺铒光纤激光放大器、偏振器、第一准直器、第一衍射光栅、第一4f透镜系统、第一长波长二向色镜、第一物镜和微流控芯片;第一长波长二向色镜依次连接第二准直器、第一光电倍增管、高速示波器和第一计算机;第一微流控芯片放置于第一物镜的工作焦距处。
在上述基于压缩感知的流式荧光成像系统中,第一衍射光栅以距离d1=100mm和角度θ1=45°置于第一准直器前方,第一4f透镜系统以距离d2=105mm和角度θ2=15°置于距离第一衍射光栅前方d3=155mm处;第一长波长二向色镜以距离d4=20mm和角度θ3=45°平行放置在4f透镜系统正前方;第一显微物镜以距离d5=25mm平行置于第一长波长二向色镜的前方;微流控芯片以距离d6=8.5mm平行置于第一物镜的前方;第二准直器以距离d7=50m和角度θ4=45°置于第一长波长二向色镜反射光路上。
在上述基于压缩感知的流式荧光成像系统中,第一飞秒激光器选用中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;色散光纤选用群速度色散为300ps/nm的单模光纤;光电调制器为1550nm波段的40Gbps的马赫-曾德尔调制器;低通滤波器选用美国Mini-Circuits公司的SLP-100+;任意波形发生器选用美国是德科技的M8195A;掺铒光纤激光放大器选用工作波长1550nm波段;偏振器选用Thorlabs的FPC561;第一准直器选用Thorlabs的F260FC-1550;第一衍射光栅选用刻线密度600/mm;第一4f透镜系统选型为焦距f=100mm、焦距f=50mm;第一长波长二向色镜选型为Thorlabs的DMLP735B;第一物镜选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二准直器选型为Thorlabs的F260FC-1550;第一光电倍增管选型为Thorlabs的PMM02;高速示波器选型为美国是德科技的DSA91304A。
在上述基于压缩感知的流式荧光成像系统中,可编程结构光系统采用空间光调制器、数字微镜阵列直接调制激光信号,产生结构光,其成像系统结构为:激光器包括第二飞秒激光器和第三准直器;可编程结构光系统包括第二衍射光栅、分束器、第二4f透镜组和空间光调制器;荧光收集模块包括第二长波长二向色镜、第四准直器和第二物镜;信号处理单元包括第二光电倍增管和第二计算机;第二飞秒激光器连接第三准直器,第三准直器依次连接第二衍射光栅、分束器和空间光调制器;分束器依次连接第二4f透镜组、第二长波长二向色镜、第二物镜和第二微流控芯片;第二长波长二向色镜依次连接第四准直器、第二光电倍增管和第二计算机;分束器放置于第二物镜的工作焦距处。
在上述基于压缩感知的流式荧光成像系统中,第二衍射光栅以距离d21=100mm和角度θ21=50°置于第三准直器前方;分束器以距离d22=80mm和角度θ22=10°置于第二衍射光栅的前方;空间光调制器以距离d23=100mm置于分束器正前方;第二长波长二向色镜以距离d26=20mm和角度θ23=45°平行放置在第二4f透镜系统正前方;第二物镜以距离d27=25mm平行置于第二长波长二向色镜的前方;第二微流控芯片以距离d28=9mm平行置于第二物镜的正前方。
在上述基于压缩感知的流式荧光成像系统中,第二飞秒激光器选型为中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;第三准直器选型为Thorlabs的F260FC-1550;第二衍射光栅选型为刻线密度600/mm;分束器选型为Thorlabs的CCM1-BS015/M;空间光调制器选型为Thorlabs的EXULUS-HD4;第二长波长二向色镜选型为Thorlabs的DMLP735B;第二物镜的选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二光电倍增管选型为Thorlabs的PMM02。
在上述基于压缩感知的流式荧光成像系统中,第二长波长二向色镜位于第二物镜的焦点处;第二微流控芯片位于脉冲入射方向的垂直平面,待测细胞流动方向与脉冲色散方向垂直,待测细胞位于结构脉冲光的焦点处。
一种基于压缩感知的流式荧光成像系统的成像方法,包括以下步骤:
步骤1、激光器产生光信号,入射至可编程结构光系统,经过编码调制输出结构光信号;
步骤2、结构光信号入射至微流控芯片;
步骤3、微流控芯片中经过荧光标记的待测细胞受激辐射,产生荧光信号,经荧光收集系统,传输至信号处理单元;
步骤4、信号处理单元将荧光信号转为数字电信号记录保存,利用压缩感知算法将采集的荧光信号恢复为细胞图片。
与现有技术相比,本发明中利用压缩感知原理、荧光成像原理,提出了一种成像速度更快,成像质量好的流式荧光成像系统。本发明所提出的系统为一维线扫描系统,成像帧速度高,同时保证图片恢复质量。结构简单,码率更高且易于调整。同时基于压缩感知的算法,可以有效提升系统采样和图片恢复的速率,提高图片信噪比,实现高速荧光成像的目标。本发明流式荧光成像方法结合压缩感知的低采样带宽和荧光成像的高成像精度,选择合适的方式实现测量编码和荧光信号的同步,同时解决了采集荧光信号的高质恢复问题。该流式荧光成像系统结构简单,既能获得高质量的细胞荧光图像,同时减少了传统成像技术的数据冗余,实现高速成像。
附图说明
图1为本发明一种基于压缩感知的流式荧光成像系统结构示意图;
图2为本发明实施例1基于压缩感知的流式荧光成像系统结构示意图;
其中,101-第一飞秒激光器、102-色散光纤、103-任意波形发生器(AWG)、104-光电调制器、105-掺铒光纤激光放大器、106-第一衍射光栅、107-第一长波长二向色镜、108-第一物镜、109-第一微流控芯片、110-第一光电倍增管(PMT)、111-高速示波器、112-第一计算机。
图3为本发明实施例2基于压缩感知的流式荧光成像系统结构示意图;
其中,201-第二飞秒激光器、202-第二衍射光栅、203-分束器、204-空间光调制器、205-第二长二向色镜、206-第二物镜、207第二微流控芯片、208-第二光电倍增管(PMT)、209-第二计算机。
具体实施方式
下面将结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合具体实施例对本发明作进一步说明,但不作为本发明的限定。
本实施例提出一种结合压缩感知和荧光成像的流式荧光成像方法,结合压缩感知的低采样带宽和荧光成像的高成像精度,选择合适的方式实现测量编码和荧光信号的同步,并且解决采集荧光信号的高质恢复问题。
本实施例是通过以下技术方案来实现的,如图1所示,一种基于压缩感知的流式荧光成像系统,包含激光器、可编程结构光系统、微流控芯片、荧光收集模块、信号处理单元。
其中,激光器作为光源,可编程结构光系统对其进行随机编码调制,生成随机编码结构光,用于激发荧光标记的待测细胞,实现对待测细胞的稀疏采样。可编程结构光系统可利用码型发生器、光电调制器将伪随机二进制编码调制在激光信号的时域波形上,利用空间色散器件产生结构光。也可采用空间光调制器件直接调制激光信号,产生结构光。
其中,微流控芯片作为成像系统的液流单元,将检测细胞限制在液流轴线上,控制细胞流速,保证液流是稳液。微流控芯片放置在物镜的工作焦距处,使通道内的荧光标记的细胞能够受激辐射产生荧光。
其中,荧光收集模块主要包括分束器和物镜,物镜采集产生的荧光信号,并传递至分束器。分束器放置于物镜的工作焦距处,用于将作用于荧光标记细胞的激发光和产生的荧光信号分离,并将荧光信号传输至信号处理单元。
其中,信号处理单元主要包括信号采集器和计算处理模块,将测量的荧光信号转换为数字电信号记录保存。信号采集器采用单像素探测器将荧光信号转换为数字电信号。计算机利用压缩感知算法将采集的荧光信号恢复为细胞图片。
该系统的成像原理:激光器产生激光信号,经过可编程结构光系统,利用码型发生器或空间光调制器对激光信号进行编码调制。调制后的结构光经过物镜聚焦在微流控芯片通道中的细胞上,实现压缩采样。微流控通道中的荧光标记的细胞受激产生荧光信号,经过物镜,分束器,由信号采集器接收转换为数字电信号保存记录,传输至计算机,将采集的荧光信号恢复为细胞图片。
实施例1
如图2所示,基于压缩感知的流式荧光成像系统,包括:第一飞秒激光器101、色散光纤102、任意波形发生器(AWG)103、光电调制器104、掺铒光纤激光放大器105、第一衍射光栅106、第一长波长二向色镜107、第一物镜108、第一微流控芯片109、第一光电倍增管(PMT)110、高速示波器111、第一计算机112。
本实施例1系统的成像方法:首先,第一飞秒脉冲激光器101产生脉冲激光;光信号经过色散光纤102展宽,连接光电调制器104的光输入端。第一飞秒激光器101的射频信号端接低通滤波器,连接任意波形发生器(AWG)103的外部时钟,任意波形发生器(AWG)103的输出端连接光电调制器104的电信号输入端。其后,光电调制器104的光信号输出端连接掺铒光纤放大器105,将信号放大,经过偏振器、第一准直器至第一衍射光栅106在空间色散,再通过第一4f透镜系统、第一长波长二向色镜107、第一物镜108聚焦在第一微流控芯片109中的检测对象上。检测对象上的荧光基团受激产生荧光信号,经过第一物镜108,由第一长波长二向色镜107反射至第二准直器,由第一光电倍增管(PMT)110接收放大,经高速示波器111采集传输至第一计算机112处理恢复图像,实现基于压缩感知的超快荧光成像。
其中,掺铒光纤激光放大器与偏振器、第一准直器连接;第一衍射光栅106以一定距离如d1=100mm和角度如θ1=45°置于第一准直器前方;第一4f透镜系统的以一定距离如d2=105mm和角度如θ2=15°置于第一衍射光栅106的前方一定距离处如d3=155mm;第一长波长二向色镜107以一定距离如d4=20mm和角度如θ3=45°平行放置在第一4f透镜系统正前方;第一物镜108以一定的距离如d5=25mm平行置于第一长波长二向色镜107的前方;第一微流控芯片109以一定的距离如d6=8.5mm平行置于第一物镜108的前方;第二准直器以一定距离例如d7=50m和角度例如θ4=45°置于第一长波长二向色镜107反射光路上;第一光电倍增管(PMT)110连接第二准直器。
并且,第一飞秒激光器101选型为中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;色散光纤102为群速度色散为300ps/nm的单模光纤;光电调制器104为1550nm波段的40Gbps的马赫-曾德尔调制器;低通滤波器选型为美国Mini-Circuits公司的SLP-100+;任意波形发生器(AWG)103的选型为美国是德科技的M8195A;掺铒光纤激光放大器105选型为工作波长1550nm波段;偏振器选型为Thorlabs的FPC561;第一准直器选型为Thorlabs的F260FC-1550;第一衍射光栅106选型为刻线密度600/mm;第一4f透镜系统选型为焦距f=100mm、焦距f=50mm;第一长波长二向色镜107选型为Thorlabs的DMLP735B;第一物镜108选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二准直器选型为Thorlabs的F260FC-1550;光电倍增管(PMT)110选型为Thorlabs的PMM02;高速示波器111选型为美国是德科技的DSA91304A。
具体实施时,1)第一飞秒激光器101产生飞秒脉冲,其中心波长为1550nm,带宽为30nm,脉宽为100fs,重复频率为101.7MHz,成像的帧速率等于脉冲的重复频率,实现101.7MHz的成像速度;
2)色散光纤102连接飞秒激光器101,将飞秒脉冲在时域拉伸展宽至脉冲宽度5ns,色散光纤102输出端连接光电调制器104的光信号输入端;
3)低通滤波器输入端连接第一飞秒激光器101射频信号输出端,对第一飞秒激光器101输出电信号做低通滤波,低通滤波器输出端一端连接任意波形发生器(AWG)103的外部参考时钟信道,另一端连接高速示波器111,作为触发信号;
4)任意波形发生器(AWG)103接收低通滤波器的触发信号后,产生与触发信号相同频率的随机二进制编码信号,并分别传输给光电调制器104电信号输入端和高速示波器111;
5)光电调制器104根据任意波形发生器(AWG)103的随机二进制编码信号对时域拉伸后的脉冲进行调制,如图2所示,使得每一个脉冲都稀疏化;掺铒光纤激光放大器105输入端连接光电调制器104的光信号输出端,将调制脉冲信号放大;
6)掺铒光纤激光放大器105输出端连接偏振器,第一准直器,将调制脉冲从一定角度以空间光形式入射到第一衍射光栅106上,将入射的飞秒脉冲在空间域色散形成一维色散脉冲,实现时域至频域的映射;
7)第一4f透镜系统、第一长波长二向色镜107和第一物镜108将一维色散脉冲聚焦于第一微流控芯片109通道上,第一微流控芯片109位于脉冲入射方向的垂直平面,检测对象位于微流控通道内,流动方向与脉冲色散方向垂直;当检测对象移动的时候,线型一维色散编码脉冲照亮检测对象的不同位置,激发检测对象上的荧光基团产生包含检测对象表面信息的荧光信号。
8)第一物镜108接收采集的荧光信号,由第一长波长二向色镜107反射至第二准直器,后耦合至光纤;第一光电倍增管(PMT)110连接第二准直器,接收并放大检测对象的荧光信号,转换为模拟电信号,并传输至高速示波器111,转换为数字电信号,之后传输给第一计算机112。
9)第一计算机112采集高速示波器111的随机二进制编码信号和检测对象荧光信号,利用MATLAB软件,采用压缩感知正交匹配追踪算法,将采集的数字信号恢复为检测对象图片信息,并进行存储。
其中,本实施例1中计算机产生随机二进制编码送入任意波形发生器(AWG),可通过调制随机编码的码率调整压缩亚采样的采样率。
综上,基于压缩感知的流式荧光成像系统,采用飞秒激光器、任意波形发生器、光电调制器组成的压缩感知亚采样系统,可以具备更高的码率且易于调整。同时系统采用时域拉伸成像系统,压缩感知测量和一维线性扫描,可以更好的利用飞秒激光器的高脉冲重复频率,实现高速成像,保证图片信噪比。
实施例2
如图3所示,本实施例2基于压缩感知的流式荧光成像系统,包括:第二飞秒激光器201、第二衍射光栅202、分束器203、空间光调制器204、第二长波长二向色镜205、第二物镜206、第二微流控芯片207、第二光电倍增管(PMT)208、第二计算机209。
实施例2系统的成像原理:首先,第二飞秒脉冲激光器201产生脉冲激光;光信号经过第二衍射光栅202在空间域色散展宽,通过分束器203,到达空间光调制器204,调制后的脉冲反射至分束器203,再经分束器203反射至第二长波长二向色镜205、第二物镜206聚焦在第二微流控芯片207中的待测细胞上。荧光标记的待测细胞受激产生荧光信号,经过第二物镜206,由第二长波长二向色镜205反射至、第二光电倍增管(PMT)208,经第二光电倍增管(PMT)208采集后,传输至第二计算机209处理恢复细胞图像,实现基于压缩感知的荧光成像。
其中,第二飞秒激光器201连接第三准直器;第二衍射光栅202以一定距离例如d21=100mm和角度例如θ21=50°置于第三准直器前方;分束器203以一定距离例如d22=80mm和角度例如θ22=10°置于第二衍射光栅202的前方;空间调制器204以一定距离例如d3=100mm置于所述分束器203正前方;所述的长波长二向色镜205以一定距离例如d26=20mm和角度例如θ23=45°平行放置在第二4f透镜系统正前方;第二物镜206以一定距离例如d7=25mm平行置于第二长波长二向色镜205的前方;第二微流控芯片207以一定距离例如d28=9mm平行置于第二物镜206的正前方。
具体的,第二飞秒激光器201选型为中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;准直器选型为Thorlabs的F260FC-1550;第二衍射光栅202选型为刻线密度600/mm;分束器203选型为Thorlabs的CCM1-BS015/M;空间光调制器204选型为Thorlabs的EXULUS-HD4;第二长波长二向色镜205选型为Thorlabs的DMLP735B;第二物镜206的选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二光电倍增管(PMT)208选型为Thorlabs的PMM02。
如图3所示,具体实施时,⑴第二飞秒激光器201产生飞秒脉冲,其中心波长为1550nm,带宽为30nm,脉宽为100fs,重复频率为101.7MHz;
⑵第二飞秒激光器连接第三准直器,脉冲从一定角度以空间的形式入射至第二衍射光栅202上,将入射的飞秒脉冲在空间域色散形成一维色散脉冲;
⑶分束器203接收色散后的脉冲光,脉冲光以与分束器203镀膜呈45°方向入射,穿过分束器203入射至空间光调制器204;
⑷空间光调制器204对入射脉冲调制产生编码结构光,结构光反射至分束器203,与分束器203镀膜层呈45°;
⑸分束器203将结构光反射至第二4f透镜组,第二长波长二向色镜205和第二物镜206组成的平行聚焦光路,将一维色散结构光脉冲聚焦于第二微流控芯片207通道上;第二长波长二向色镜205位于第二物镜206的焦点处;第二微流控芯片207位于脉冲入射方向的垂直平面,待测细胞流动方向与脉冲色散方向垂直,待测细胞位于结构脉冲光的焦点处;
⑹第二微流控芯片207中的待测荧光标记细胞受激辐射产生包含细胞生物信息的荧光信号,反射经过第二物镜206采集聚焦,由第二长波长二向色镜205反射至第四准直器,后耦合至光纤;第二光电倍增管(PMT)208连接第三准直器;将光信号转为数字电信号,之后传输至第二计算机209;
⑺第二计算机209采集利用MATLAB软件,采用压缩感知正交匹配追踪算法,将采集的荧光信号恢复为完整细胞图片,并进行存储。
综上,本实施例2基于压缩感知的流式荧光成像系统,采用飞秒激光器和空间光调制器来实现压缩感知的亚采样测量过程,其编码调节更加简易,且编码和脉冲天然同步。系统整体结构简单,具备很好的实用性和可调性。
以上仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

1.一种基于压缩感知的流式荧光成像系统,其特征在于:包括依次连接的激光器、可编程结构光系统、微流控芯片、荧光收集模块和信号处理单元;
激光器作为系统激光光源;
可编程结构光系统用于将激光光源编码,产生结构光,激发目标细胞上的荧光基团产生荧光信号;
微流控芯片用于控制待测细胞在微流通道中匀速、稳定流动;
荧光收集模块用于收集包含待测细胞信息的荧光信号;
信号处理单元用于将荧光信号转换为数字信号,并利用压缩感知算法恢复细胞图像。
2.根据权利要求1所述基于压缩感知的流式荧光成像系统,其特征在于:可编程结构光系统采用码型发生器和调制器将伪随机二进制编码调制在激光的时域信号上,再利用空间色散器完成时域与空间域的映射;或采用空间光调制器、数字微镜阵列直接调制激光信号,产生结构光。
3.根据权利要求2所述基于压缩感知的流式荧光成像系统,其特征在于:可编程结构光系统采用码型发生器和调制器将伪随机二进制编码调制在激光的时域信号上,再利用空间色散器完成时域与空间域的映射时,其成像系统为:激光器包括第一飞秒激光器、色散光纤和低通滤波器;可编程结构光系统包括任意波形发生器、光电调制器、掺铒光纤激光放大器、偏振器、第一准直器、第一衍射光栅和第一4f透镜系统;荧光收集模块包括第一长波长二向色镜、第一物镜和第二准直器;信号处理单元包括第一光电倍增管、高速示波器和第一计算机;第一飞秒脉冲激光器依次连接色散光纤和光电调制器的光输入端,第一飞秒激光器的射频信号端连接低通滤波器的输入端,低通滤波器的输出端一端连接任意波形发生器的外部时钟信道,另一端连接高速示波器;任意波形发生器的输出端分别连接光电调制器的电信号输入端和高速示波器;光电调制器的光信号输出端依次连接掺铒光纤激光放大器、偏振器、第一准直器、第一衍射光栅、第一4f透镜系统、第一长波长二向色镜、第一物镜和微流控芯片;第一长波长二向色镜依次连接第二准直器、第一光电倍增管、高速示波器和第一计算机;第一微流控芯片放置于第一物镜的工作焦距处。
4.根据权利要求3所述基于压缩感知的流式荧光成像系统,其特征在于:第一衍射光栅以距离d1=100mm和角度θ1=45°置于第一准直器前方,第一4f透镜系统以距离d2=105mm和角度θ2=15°置于距离第一衍射光栅前方d3=155mm处;第一长波长二向色镜以距离d4=20mm和角度θ3=45°平行放置在4f透镜系统正前方;第一显微物镜以距离d5=25mm平行置于第一长波长二向色镜的前方;微流控芯片以距离d6=8.5mm平行置于第一物镜的前方;第二准直器以距离d7=50m和角度θ4=45°置于第一长波长二向色镜反射光路上。
5.根据权利要求3所述基于压缩感知的流式荧光成像系统,其特征在于:第一飞秒激光器选用中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;色散光纤选用群速度色散为300ps/nm的单模光纤;光电调制器为1550nm波段的40Gbps的马赫-曾德尔调制器;低通滤波器选用美国Mini-Circuits公司的SLP-100+;任意波形发生器选用美国是德科技的M8195A;掺铒光纤激光放大器选用工作波长1550nm波段;偏振器选用Thorlabs的FPC561;第一准直器选用Thorlabs的F260FC-1550;第一衍射光栅选用刻线密度600/mm;第一4f透镜系统选型为焦距f=100mm、焦距f=50mm;第一长波长二向色镜选型为Thorlabs的DMLP735B;第一物镜选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二准直器选型为Thorlabs的F260FC-1550;第一光电倍增管选型为Thorlabs的PMM02;高速示波器选型为美国是德科技的DSA91304A。
6.根据权利要求2所述基于压缩感知的流式荧光成像系统,其特征在于:可编程结构光系统采用空间光调制器、数字微镜阵列直接调制激光信号,产生结构光,其成像系统结构为:激光器包括第二飞秒激光器和第三准直器;可编程结构光系统包括第二衍射光栅、分束器、第二4f透镜组和空间光调制器;荧光收集模块包括第二长波长二向色镜、第四准直器和第二物镜;信号处理单元包括第二光电倍增管和第二计算机;第二飞秒激光器连接第三准直器,第三准直器依次连接第二衍射光栅、分束器和空间光调制器;分束器依次连接第二4f透镜组、第二长波长二向色镜、第二物镜和第二微流控芯片;第二长波长二向色镜依次连接第四准直器、第二光电倍增管和第二计算机;分束器放置于第二物镜的工作焦距处。
7.根据权利要求6所述基于压缩感知的流式荧光成像系统,其特征在于:第二衍射光栅以距离d21=100mm和角度θ21=50°置于第三准直器前方;分束器以距离d22=80mm和角度θ22=10°置于第二衍射光栅的前方;空间光调制器以距离d23=100mm置于分束器正前方;第二长波长二向色镜以距离d26=20mm和角度θ23=45°平行放置在第二4f透镜系统正前方;第二物镜以距离d27=25mm平行置于第二长波长二向色镜的前方;第二微流控芯片以距离d28=9mm平行置于第二物镜的正前方。
8.根据权利要求6所述基于压缩感知的流式荧光成像系统,其特征在于:第二飞秒激光器选型为中心波长1550nm、谱宽为30nm、脉宽100fs、重复频率101.7MHz的脉冲激光器;第三准直器选型为Thorlabs的F260FC-1550;第二衍射光栅选型为刻线密度600/mm;分束器选型为Thorlabs的CCM1-BS015/M;空间光调制器选型为Thorlabs的EXULUS-HD4;第二长波长二向色镜选型为Thorlabs的DMLP735B;第二物镜的选型为Thorlabs的MY50X-825,数值孔径0.42,放大倍率50x;第二光电倍增管选型为Thorlabs的PMM02。
9.根据权利要求6所述基于压缩感知的流式荧光成像系统,其特征在于:第二长波长二向色镜位于第二物镜的焦点处;第二微流控芯片位于脉冲入射方向的垂直平面,待测细胞流动方向与脉冲色散方向垂直,待测细胞位于结构脉冲光的焦点处。
10.根据权利要求1-9任意一项所述基于压缩感知的流式荧光成像系统的成像方法,其特征在于:包括以下步骤:
步骤1、激光器产生光信号,入射至可编程结构光系统,经过编码调制输出结构光信号;
步骤2、结构光信号入射至微流控芯片;
步骤3、微流控芯片中经过荧光标记的待测细胞受激辐射,产生荧光信号,经荧光收集系统,传输至信号处理单元;
步骤4、信号处理单元将荧光信号转为数字电信号记录保存,利用压缩感知算法将采集的荧光信号恢复为细胞图片。
CN202110535206.4A 2021-05-17 2021-05-17 一种基于压缩感知的流式荧光成像系统及成像方法 Active CN113324893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110535206.4A CN113324893B (zh) 2021-05-17 2021-05-17 一种基于压缩感知的流式荧光成像系统及成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110535206.4A CN113324893B (zh) 2021-05-17 2021-05-17 一种基于压缩感知的流式荧光成像系统及成像方法

Publications (2)

Publication Number Publication Date
CN113324893A true CN113324893A (zh) 2021-08-31
CN113324893B CN113324893B (zh) 2022-08-16

Family

ID=77415731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110535206.4A Active CN113324893B (zh) 2021-05-17 2021-05-17 一种基于压缩感知的流式荧光成像系统及成像方法

Country Status (1)

Country Link
CN (1) CN113324893B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326100A (zh) * 2021-12-29 2022-04-12 武汉大学 一种二维高速、高分辨率成像系统及基于该系统的实时熔池监测方法
CN114326099A (zh) * 2021-12-29 2022-04-12 武汉大学 一维高速、高分辨率成像系统及基于该系统的实时熔池监测方法
CN114441418A (zh) * 2022-01-28 2022-05-06 天津凌视科技有限公司 用于高速流动微粒的成像系统、成像方法及可读存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715881A (zh) * 2004-07-02 2006-01-04 中国科学院大连化学物理研究所 一种集成式微流控芯片控制与分析平台
CN104054266A (zh) * 2011-10-25 2014-09-17 中国科学院空间科学与应用研究中心 一种时间分辨单光子或极弱光多维成像光谱系统及方法
CN104267407A (zh) * 2014-09-12 2015-01-07 清华大学 基于压缩采样的主动成像方法和系统
CN105044897A (zh) * 2015-07-07 2015-11-11 中国科学院上海高等研究院 基于稀疏约束的快速随机光学重构成像系统及方法
CN205580999U (zh) * 2016-04-21 2016-09-14 深圳市博瑞生物科技有限公司 一种基于荧光显微镜的微流控芯片液滴检测系统
CN108414446A (zh) * 2018-03-30 2018-08-17 广东顺德墨赛生物科技有限公司 微流控芯片荧光检测设备、方法以及装置
CN108956432A (zh) * 2018-08-10 2018-12-07 武汉大学 一种基于结构光的流式高速超分辨成像装置及方法
CN109100304A (zh) * 2018-08-10 2018-12-28 武汉大学 一种基于时域拉伸的单像素高速超分辨成像装置及方法
US20200057289A1 (en) * 2017-04-28 2020-02-20 Thinkcyte, Inc. Imaging flow cytometer
CN111537477A (zh) * 2020-04-23 2020-08-14 华东师范大学 一种超快时间分辨率和低激发阈值多光子荧光显微成像系统
CN112255166A (zh) * 2020-11-10 2021-01-22 中国科学院苏州生物医学工程技术研究所 扫描流式细胞成像分析仪
CN112638529A (zh) * 2018-06-13 2021-04-09 新克赛特株式会社 细胞计数的方法和系统
CN112731783A (zh) * 2020-12-16 2021-04-30 中山大学 一种高通量单像素全息成像方法及其系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715881A (zh) * 2004-07-02 2006-01-04 中国科学院大连化学物理研究所 一种集成式微流控芯片控制与分析平台
CN104054266A (zh) * 2011-10-25 2014-09-17 中国科学院空间科学与应用研究中心 一种时间分辨单光子或极弱光多维成像光谱系统及方法
CN104267407A (zh) * 2014-09-12 2015-01-07 清华大学 基于压缩采样的主动成像方法和系统
CN105044897A (zh) * 2015-07-07 2015-11-11 中国科学院上海高等研究院 基于稀疏约束的快速随机光学重构成像系统及方法
CN205580999U (zh) * 2016-04-21 2016-09-14 深圳市博瑞生物科技有限公司 一种基于荧光显微镜的微流控芯片液滴检测系统
US20200057289A1 (en) * 2017-04-28 2020-02-20 Thinkcyte, Inc. Imaging flow cytometer
CN108414446A (zh) * 2018-03-30 2018-08-17 广东顺德墨赛生物科技有限公司 微流控芯片荧光检测设备、方法以及装置
CN112638529A (zh) * 2018-06-13 2021-04-09 新克赛特株式会社 细胞计数的方法和系统
CN108956432A (zh) * 2018-08-10 2018-12-07 武汉大学 一种基于结构光的流式高速超分辨成像装置及方法
CN109100304A (zh) * 2018-08-10 2018-12-28 武汉大学 一种基于时域拉伸的单像素高速超分辨成像装置及方法
CN111537477A (zh) * 2020-04-23 2020-08-14 华东师范大学 一种超快时间分辨率和低激发阈值多光子荧光显微成像系统
CN112255166A (zh) * 2020-11-10 2021-01-22 中国科学院苏州生物医学工程技术研究所 扫描流式细胞成像分析仪
CN112731783A (zh) * 2020-12-16 2021-04-30 中山大学 一种高通量单像素全息成像方法及其系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRYAN T. BOSWORTH ET AL.: "High-speed flow microscopy using", 《OPTICS EXPRESS》 *
CHENG LEI ET AL.: "GHz Optical Time-Stretch Microscopy by", 《IEEE PHOTONICS JOURNAL》 *
VINCENT STUDER ET AL.: "Compressive fluorescence microscopy for", 《PNAS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326100A (zh) * 2021-12-29 2022-04-12 武汉大学 一种二维高速、高分辨率成像系统及基于该系统的实时熔池监测方法
CN114326099A (zh) * 2021-12-29 2022-04-12 武汉大学 一维高速、高分辨率成像系统及基于该系统的实时熔池监测方法
CN114326099B (zh) * 2021-12-29 2024-04-02 武汉大学 一维高速、高分辨率成像系统及基于该系统的实时熔池监测方法
CN114441418A (zh) * 2022-01-28 2022-05-06 天津凌视科技有限公司 用于高速流动微粒的成像系统、成像方法及可读存储介质

Also Published As

Publication number Publication date
CN113324893B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN113324893B (zh) 一种基于压缩感知的流式荧光成像系统及成像方法
CN104597590B (zh) 一种超分辨荧光光谱成像显微镜
CN102841083B (zh) 一种激光扫描位相显微成像方法及系统
CN113624666B (zh) 一种基于点阵激光扫描的流式成像系统
US20130126755A1 (en) Method and device for simultaneous multi-channel and multi-method acquisition of synchronized parameters in cross-system fluorescence lifetime applications
CN111537477B (zh) 一种超快时间分辨率和低激发阈值多光子荧光显微成像系统
US20110031414A1 (en) Device for microscopy having selective illumination of a plane
CN110793633B (zh) 基于集束光纤的单像元多光谱计算成像系统及成像方法
CN1912587A (zh) 时间分辨荧光光谱测量和成像方法及其装置
CN104122662A (zh) 一种超高密度超分辨光学闪烁显微成像系统及方法
CN202563160U (zh) 一种同轴光路实现多路频分复用荧光共焦显微成像系统
CN110967817A (zh) 基于双微透镜阵列的图像扫描显微成像方法与装置
CN102608748A (zh) 一种同轴光路实现多路频分复用荧光共焦显微成像方法
WO2019015437A1 (zh) 层析内窥显微光谱成像装置
CN111879740A (zh) 基于光子复位技术的全光学超分辨显微装置
CN114895450A (zh) 基于二次谐波的超分辨显微成像系统及成像方法
CN117214068B (zh) 一种运动微粒成像探测系统
WO2023135367A1 (en) An apparatus and a method for fluorescence imaging
CN106872559B (zh) 一种超分辨生物分子质谱成像装置及其工作方法
JP2006284243A (ja) 高時間分解能画像化方法及び装置並びに全反射型蛍光顕微鏡
CN112957011B (zh) 高灵敏度微弱荧光信号探测系统、方法、存储介质及应用
TWI714378B (zh) 一種用於高速深組織成像的大角度光域掃描系統
CN212410444U (zh) 一种图像扫描显微成像系统
CN211718616U (zh) 一种简易荧光显微镜
US11899354B1 (en) Ultrafast photographing apparatus based on polarization-time mapping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant