CN113320442B - 氢能汽车辅助能源soc控制方法及系统 - Google Patents

氢能汽车辅助能源soc控制方法及系统 Download PDF

Info

Publication number
CN113320442B
CN113320442B CN202110577042.1A CN202110577042A CN113320442B CN 113320442 B CN113320442 B CN 113320442B CN 202110577042 A CN202110577042 A CN 202110577042A CN 113320442 B CN113320442 B CN 113320442B
Authority
CN
China
Prior art keywords
soc
interval
auxiliary energy
upper limit
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110577042.1A
Other languages
English (en)
Other versions
CN113320442A (zh
Inventor
程飞
郝义国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanggang Grove Hydrogen Automobile Co Ltd
Original Assignee
Huanggang Grove Hydrogen Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanggang Grove Hydrogen Automobile Co Ltd filed Critical Huanggang Grove Hydrogen Automobile Co Ltd
Priority to CN202110577042.1A priority Critical patent/CN113320442B/zh
Publication of CN113320442A publication Critical patent/CN113320442A/zh
Application granted granted Critical
Publication of CN113320442B publication Critical patent/CN113320442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及辅助能源控制领域,提供一种氢能汽车辅助能源SOC控制方法,包括步骤:氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;整车控制器VCU计算获得SOC调节区间上限SP2和SOC调节区间下限SP1;整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T;整车控制器VCU获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1,传输至辅助能源控制器进行配置存储;辅助能源控制器根据配置存储进行对应的修正参数配置。本发明在不增加任何整车硬件的情况下实现,成本低廉;同时具有很高的稳定性和可靠性,最终实现氢能汽车在辅助能源SOC跳变之后依旧可以正常使用。

Description

氢能汽车辅助能源SOC控制方法及系统
技术领域
本发明涉及辅助能源控制领域,尤其涉及一种氢能汽车辅助能源SOC控制方法及系统。
背景技术
由于氢能汽车的普及,越来越多的氢能汽车将出现在我们的视野当中,氢能汽车由于多能量源的高压架构,导致其能量管理更为复杂,由于传统的辅助能源SOC采用电流积分算法预估SOC,而这种算法导致只有在满充或满放时才会对SOC进行修正,但是由于氢能汽车使用辅助能源的方式不同,导致辅助能源不会进行满充满放,从而导致氢能汽车的辅助能源存在SOC跳变的风险,SOC跳变的最后结果可能会导致氢能汽车无法正常启动,需要外部给电池补充电量之后才能继续使用,这给氢能汽车的使用和维护带来了极大的不便。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于,解决现有技术中,传统的动力电池SOC跳变方法存在跳变风险,对氢燃料电池汽车的使用和维护带来了极大不便的技术问题。
为实现上述目的,本发明提供一种氢能汽车辅助能源SOC控制方法,包括步骤:
S1:氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
S2:所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
S3:所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T;
S4:所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
S5:所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
S6:所述辅助能源控制器根据所述配置存储进行对应的修正参数配置。
优选地,步骤S2具体为:
S21:所述整车控制器VCU通过所述最大充放电功率Pmax和所述电池充放电温度系数Kt1,计算获得功率调节区间上限P2和功率调节区间下限P1
所述功率调节区间上限P2的计算公式为:
P2=0.85*Pmax*Kt1
所述功率调节区间下限P1的计算公式为:
P1=0.80*Pmax*Kt1
S22:所述整车控制器VCU通过辅助能源的充放电特性表,查找出所述功率调节区间上限P2对应的所述SOC调节区间上限SP2,和所述功率调节区间下限P1对应的所述SOC调节区间下限SP1
其中,所述SOC调节区间上限SP2和所述SOC调节区间下限SP1满足:SP2-SP1≥30%,SP2-SP1≤80%。
优选地,步骤S3中,所述区间调整值T的计算公式为:
T=C1/C2*5%
其中,所述区间调整值T满足:T≥2%,T≤5%。
优选地,步骤S4中,所述修正后的SOC调节区间上限SPT2的计算公式为:
SPT2=SP2-T
所述修正后的SOC调节区间下限SPT1的计算公式为:
SPT1=SP1+T。
优选地,所述步骤S4后,所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1传输至辅助能源控制单元;
所述辅助能源控制单元根据所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,设置对应的电池参数阈值,所述辅助能源控制单元将各电池参数修正至对应的所述电池参数阈值;
所述电池参数包括:工作温度、工作电流单节电压阈值V1、总电压阈值V2、单节内阻Ω1和总内阻Ω2
优选地,步骤S6具体为:
若各所述电池参数均达到所述电池参数阈值的上限,则所述辅助能源控制单元将所述SOC调节区间上限SP2修正为所述修正后的SOC调节区间上限SPT2
若各所述电池参数均达到所述电池参数阈值的下限,则所述辅助能源控制单元将所述SOC调节区间下限SP1修正为所述修正后的SOC调节区间下限SPT1
一种氢能汽车辅助能源SOC控制系统,包括模块:
启动模块,用于将氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
SOC调节区间计算模块,用于通过所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
区间调整值计算模块,用于所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T
修正模块,用于所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
储存模块,用于将所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
配置模块,用于将所述辅助能源控制器根据所述配置存储进行对应的修正参数配置。
本发明具有以下有益效果:
本发明提供的氢能汽车辅助能源SOC控制方法,在不增加任何整车硬件的情况下实现,成本低廉;同时具有很高的稳定性和可靠性,最终实现氢能汽车在辅助能源SOC跳变之后依旧可以正常使用。
附图说明
图1为本发明实施例方法流程图;
图2为本发明实施例系统结构图;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本发明提供一种氢能汽车辅助能源SOC控制方法,包括步骤:
S1:氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
S2:所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
具体实现中,辅助能源的最大充放电功率Pmax根据辅助能源的型号具体确定,电池充放电温度系数Kt1由辅助能源的电池温度特性具体决定;
S3:所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T;
具体实现中,辅助能源的出厂总容量C2和当前容量C1由辅助能源的型号具体确定;
S4:所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
S5:所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
S6:所述辅助能源控制器根据所述配置存储进行对应的修正参数配置;
本实施例中,步骤S2具体为:
S21:所述整车控制器VCU通过所述最大充放电功率Pmax和所述电池充放电温度系数Kt1,计算获得功率调节区间上限P2和功率调节区间下限P1
所述功率调节区间上限P2的计算公式为:
P2=0.85*Pmax*Kt1
所述功率调节区间下限P1的计算公式为:
P1=0.80*Pmax*Kt1
S22:所述整车控制器VCU通过辅助能源的充放电特性表,查找出所述功率调节区间上限P2对应的所述SOC调节区间上限SP2,和所述功率调节区间下限P1对应的所述SOC调节区间下限SP1
其中,所述SOC调节区间上限SP2和所述SOC调节区间下限SP1满足:SP2-SP1≥30%,SP2-SP1≤80%;
本实施例中,步骤S3中,所述区间调整值T的计算公式为:
T=C1/C2*5%
其中,所述区间调整值T满足:T≥2%,T≤5%。
本实施例中,步骤S4中,所述修正后的SOC调节区间上限SPT2的计算公式为:
SPT2=SP2-T
所述修正后的SOC调节区间下限SPT1的计算公式为:
SPT1=SP1+T。
本实施例中,步骤S4后,所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1传输至辅助能源控制单元;
所述辅助能源控制单元根据所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,设置对应的电池参数阈值,所述辅助能源控制单元将各电池参数修正至对应的所述电池参数阈值;
所述电池参数包括:工作温度、工作电流单节电压阈值V1、总电压阈值V2、单节内阻Ω1和总内阻Ω2
例如,在工作温度为常温以及工作电流小于50A的情况下,电池参数阈值的设置具体为:工作电流单节电压阈值V1的下限为2.605V,V1的上限为3.165V;总电压阈值V2的下限为420V,V2的上限为535V;单节内阻Ω1的下限为0.003欧姆,Ω1的上限为0.005欧姆;总内阻Ω2的下限为0.48欧姆,Ω2的上限为0.80欧姆。
本实施例中,步骤S6具体为:
若各所述电池参数均达到所述电池参数阈值的上限,则所述辅助能源控制单元将所述SOC调节区间上限SP2修正为所述修正后的SOC调节区间上限SPT2
若各所述电池参数均达到所述电池参数阈值的下限,则所述辅助能源控制单元将所述SOC调节区间下限SP1修正为所述修正后的SOC调节区间下限SPT1
参考图2,本发明提供一种氢能汽车辅助能源SOC控制系统,包括模块:
启动模块10,用于将氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
SOC调节区间计算模块20,用于通过所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
区间调整值计算模块30,用于所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T
修正模块40,用于所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
储存模块50,用于将所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
配置模块60,用于将所述辅助能源控制器根据所述配置存储进行对应的修正参数配置。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为标识。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种氢能汽车辅助能源SOC控制方法,其特征在于,包括步骤:
S1:氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
S2:所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
S3:所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T;
S4:所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
S5:所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
S6:所述辅助能源控制器根据所述配置存储进行对应的修正参数配置。
2.根据权利要求1所述的氢能汽车辅助能源SOC控制方法,其特征在于,步骤S2具体为:
S21:所述整车控制器VCU通过所述最大充放电功率Pmax和所述电池充放电温度系数Kt1,计算获得功率调节区间上限P2和功率调节区间下限P1
所述功率调节区间上限P2的计算公式为:
P2=0.85*Pmax*Kt1
所述功率调节区间下限P1的计算公式为:
P1=0.80*Pmax*Kt1
S22:所述整车控制器VCU通过辅助能源的充放电特性表,查找出所述功率调节区间上限P2对应的所述SOC调节区间上限SP2,和所述功率调节区间下限P1对应的所述SOC调节区间下限SP1
其中,所述SOC调节区间上限SP2和所述SOC调节区间下限SP1满足:SP2-SP1≥30%,SP2-SP1≤80%。
3.根据权利要求1所述的氢能汽车辅助能源SOC控制方法,其特征在于,步骤S3中,所述区间调整值T的计算公式为:
T=C1/C2*5%
其中,所述区间调整值T满足:T≥2%,T≤5%。
4.根据权利要求1所述的氢能汽车辅助能源SOC控制方法,其特征在于,步骤S4中,所述修正后的SOC调节区间上限SPT2的计算公式为:
SPT2=SP2-T
所述修正后的SOC调节区间下限SPT1的计算公式为:
SPT1=SP1+T。
5.根据权利要求1所述的氢能汽车辅助能源SOC控制方法,其特征在于,所述步骤S4后,所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1传输至辅助能源控制单元;
所述辅助能源控制单元根据所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,设置对应的电池参数阈值,所述辅助能源控制单元将各电池参数修正至对应的所述电池参数阈值;
所述电池参数包括:工作温度、工作电流单节电压阈值V1、总电压阈值V2、单节内阻Ω1和总内阻Ω2
6.根据权利要求5所述的氢能汽车辅助能源SOC控制方法,其特征在于,步骤S6具体为:
若各所述电池参数均达到所述电池参数阈值的上限,则所述辅助能源控制单元将所述SOC调节区间上限SP2修正为所述修正后的SOC调节区间上限SPT2
若各所述电池参数均达到所述电池参数阈值的下限,则所述辅助能源控制单元将所述SOC调节区间下限SP1修正为所述修正后的SOC调节区间下限SPT1
7.一种氢能汽车辅助能源SOC控制系统,其特征在于,包括模块:
启动模块,用于将氢能汽车上电启动,激活整车控制器VCU和辅助能源控制器;
SOC调节区间计算模块,用于通过所述整车控制器VCU通过获取辅助能源的最大充放电功率Pmax和电池充放电温度系数Kt1,计算获得SOC调节区间上限SP2和SOC调节区间下限SP1
区间调整值计算模块,用于所述整车控制器VCU通过获取辅助能源的出厂总容量C2和当前容量C1,计算获得区间调整值T;
修正模块,用于所述整车控制器VCU通过所述区间调整值T调节所述SOC调节区间上限SP2和所述SOC调节区间下限SP1的值,获得修正后的SOC调节区间上限SPT2和修正后的SOC调节区间下限SPT1
储存模块,用于将所述整车控制器VCU将所述修正后的SOC调节区间上限SPT2和所述修正后的SOC调节区间下限SPT1,传输至所述辅助能源控制器进行配置存储;
配置模块,用于将所述辅助能源控制器根据所述配置存储进行对应的修正参数配置。
CN202110577042.1A 2021-05-26 2021-05-26 氢能汽车辅助能源soc控制方法及系统 Active CN113320442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110577042.1A CN113320442B (zh) 2021-05-26 2021-05-26 氢能汽车辅助能源soc控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110577042.1A CN113320442B (zh) 2021-05-26 2021-05-26 氢能汽车辅助能源soc控制方法及系统

Publications (2)

Publication Number Publication Date
CN113320442A CN113320442A (zh) 2021-08-31
CN113320442B true CN113320442B (zh) 2023-07-04

Family

ID=77416950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110577042.1A Active CN113320442B (zh) 2021-05-26 2021-05-26 氢能汽车辅助能源soc控制方法及系统

Country Status (1)

Country Link
CN (1) CN113320442B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104827922A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 燃料电池汽车及其控制方法和控制系统
WO2017110390A1 (ja) * 2015-12-25 2017-06-29 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN107264324A (zh) * 2017-06-30 2017-10-20 北京新能源汽车股份有限公司 燃料电池汽车的能量控制方法、装置和燃料电池汽车
DE102016222935A1 (de) * 2016-11-21 2018-05-24 Hyundai Motor Company Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
CN111469715A (zh) * 2020-04-28 2020-07-31 南京汽车集团有限公司 一种基于燃料电池汽车能量分配的控制方法
CN111572411A (zh) * 2020-04-22 2020-08-25 郑州宇通客车股份有限公司 一种燃料电池车辆的动力系统、能量控制方法及装置
CN112297956A (zh) * 2020-11-10 2021-02-02 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车soc校准和电芯均衡控制装置
CN112590623A (zh) * 2020-12-17 2021-04-02 武汉格罗夫氢能汽车有限公司 一种提高氢燃料电池汽车续驶里程的控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478086B1 (ko) * 2017-11-22 2022-12-16 현대자동차주식회사 연료전지 차량시스템 및 이를 제어하는 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104827922A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 燃料电池汽车及其控制方法和控制系统
WO2017110390A1 (ja) * 2015-12-25 2017-06-29 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
DE102016222935A1 (de) * 2016-11-21 2018-05-24 Hyundai Motor Company Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
CN107264324A (zh) * 2017-06-30 2017-10-20 北京新能源汽车股份有限公司 燃料电池汽车的能量控制方法、装置和燃料电池汽车
CN111572411A (zh) * 2020-04-22 2020-08-25 郑州宇通客车股份有限公司 一种燃料电池车辆的动力系统、能量控制方法及装置
CN111469715A (zh) * 2020-04-28 2020-07-31 南京汽车集团有限公司 一种基于燃料电池汽车能量分配的控制方法
CN112297956A (zh) * 2020-11-10 2021-02-02 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车soc校准和电芯均衡控制装置
CN112590623A (zh) * 2020-12-17 2021-04-02 武汉格罗夫氢能汽车有限公司 一种提高氢燃料电池汽车续驶里程的控制方法

Also Published As

Publication number Publication date
CN113320442A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US8796984B2 (en) Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
US8815423B2 (en) Fuel cell system comprising voltage adjustment portion, control method for the fuel cell system, and vehicle equipped with the fuel cell system
US10232735B2 (en) Control device for power supply system
US9099705B2 (en) Fuel cell system, and control method for fuel cell system
US9142848B2 (en) Fuel cell vehicle and method of controlling fuel cell and storage battery provided in the fuel cell vehicle
US9796270B2 (en) Power supply system and fuel cell vehicle
US9437888B2 (en) Fuel cell system and control method therefor
US8486574B2 (en) Method and system for power control in an automotive vehicle
CN110943509B (zh) 一种电动汽车充电过充保护方法及系统
CN101755359A (zh) 燃料电池系统及其控制方法
US8715873B2 (en) Fuel cell system with improved cold start properties and method of operating same
US20120013289A1 (en) Fuel cell system, and electric vehicle equipped with the fuel cell system
US8450021B2 (en) Method for HV bus voltage control in fuel cell vehicles featuring HV lithium batteries
US8710790B2 (en) Fuel cell system, and electric vehicle equipped with the fuel cell system
JP5513553B2 (ja) ハイブリッドシステムの動作を管理する方法
US8427097B2 (en) Hybrid electrical power source
CN113320442B (zh) 氢能汽车辅助能源soc控制方法及系统
US9796291B1 (en) Low charge acceptance mitigation using a traction battery
CN115635876A (zh) 低压电池充电控制系统及方法
CN112366769B (zh) 一种吹扫阶段NiH电池充电控制系统及方法
US11277022B2 (en) Power supply device
CN109873465B (zh) 多电源供电分配系统及其分配方法
US10135082B2 (en) Fuel cell system and control method of fuel cell system
JP7379434B2 (ja) 燃料電池システムの制御方法及び燃料電池システム
CN116191509A (zh) 光储系统的控制方法、光储系统及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant