CN113316682B - 废塑料发电工艺及系统 - Google Patents

废塑料发电工艺及系统 Download PDF

Info

Publication number
CN113316682B
CN113316682B CN201980088282.6A CN201980088282A CN113316682B CN 113316682 B CN113316682 B CN 113316682B CN 201980088282 A CN201980088282 A CN 201980088282A CN 113316682 B CN113316682 B CN 113316682B
Authority
CN
China
Prior art keywords
steam
dry saturated
gasifier
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980088282.6A
Other languages
English (en)
Other versions
CN113316682A (zh
Inventor
詹姆斯·阿利斯泰尔·福克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTH AFRICA, University of
Original Assignee
SOUTH AFRICA, University of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTH AFRICA, University of filed Critical SOUTH AFRICA, University of
Publication of CN113316682A publication Critical patent/CN113316682A/zh
Application granted granted Critical
Publication of CN113316682B publication Critical patent/CN113316682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0979Water as supercritical steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1253Heating the gasifier by injecting hot gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1269Heating the gasifier by radiating device, e.g. radiant tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1269Heating the gasifier by radiating device, e.g. radiant tubes
    • C10J2300/1276Heating the gasifier by radiating device, e.g. radiant tubes by electricity, e.g. resistor heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1687Integration of gasification processes with another plant or parts within the plant with steam generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1876Heat exchange between at least two process streams with one stream being combustion gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种将碳材料转化为电能的工艺和系统。碳材料12在气化炉16中被气化成合成气18,并且蒸汽14被供应到气化炉16。合成气18被供应到燃气轮机30、36、38以产生电力。在燃气轮机30、36、38之前将空气24添加到合成气18中。来自燃气轮机30、36、38的废气40在第一冷却装置42中用水46冷却以产生蒸汽52。蒸汽用于至少一台蒸汽轮机中以产生电能56,并且来自至少一台蒸汽轮机56的蒸汽58被再循环至气化炉16。

Description

废塑料发电工艺及系统
技术领域
本发明涉及一种将废塑料转化为电力的工艺及系统,特别是使用集成气化联合循环的方法和系统。
背景技术
塑料的生产是大生意;据预测,到2020年,塑料市场的价值将超过6500亿美元[1,2],在过去的50多年中这个行业一直保持稳定增长[3]。这种增长不可避免地伴随着废物的产生,据估计到2020年,废塑料的年产量将超过4.5亿吨[4]。
很大一部分废塑料最终进入垃圾填埋场或世界海洋[6]并最终进入食物链。再加上塑料的缓慢的讲解速度(可能超过1000年),很明显环境危机正显得很突出。
尽管如此,塑料的便利性和低成本可能会使该行业本身继续增长,随着原生塑料的生产和随之而来的废物的,几乎有增无减的继续。
为了避免迫在眉睫的环境危机,需要解决现代社会产生的大量废塑料的战略和技术。
因此本发明的一个目的是提供一种用于将废塑料转为能量的替代方法和/或系统。
因此,本发明的一个目的是提供一种将废塑料转化为能量的方法和/或系统,其至少部分地减轻上述缺点。
发明内容
根据本发明的第一实施例,提供了一种将碳材料,例如典型的废塑料聚乙烯或聚乙烯对聚酯转换为能量的工艺,包括以下步骤:
a、在气化炉中将碳材料气化为合成气,其中蒸汽供应给气化炉;
b、将合成气提供给燃气轮机以产生电能,其中在进入燃气轮机之前,将空气添加到合成气中;
c、在第一冷却装置中用水冷却来自燃气轮机的废气以产生蒸汽;和
d、至少一台蒸汽轮机使用步骤c中产生的蒸汽来产生电能;
其中,来自步骤d中的蒸汽可循环到气化炉。
气化炉的温度可以在800K至1200K之间,优选在900K和1100K之间,更优选为1000K。气化炉的压力优选在0.5至1.5bar之间。
燃气轮机的燃烧温度可低于1800K,优选低于1600K,更优选低于1300K。
通常,该工艺包括两个蒸汽轮机。优选地,在被输送至第二蒸汽轮机之前,来自第一蒸汽轮机的蒸汽被输送至减压装置,例如绝热减压装置,优选来自第二蒸汽轮机的蒸汽是干饱和蒸汽。
第一冷却装置的废气或排放到大气中,或被送往碳隔离装置。
该工艺可以进一步包括第二冷却装置,用于冷却来自气化炉的合成气。
通常,来自第一冷却装置的蒸汽被输送到第二冷却装置,或者来自第二冷却装置的蒸汽被输送到第一冷却装置并且产生的蒸汽在至少一个蒸汽轮机中使用。所产生的蒸汽的温度优选在570K至980K之间,更优选在650K和800K之间并且优选770K。所产生的蒸汽的压力可以在120bar至80bar之间,优选110bar和90bar,更优选为100bar。
该工艺还可包括在被输送到第一冷却装置或第二冷却装置之前增加水压力的泵。
来自燃气轮机或蒸汽轮机的电能或来自可再生能源的电能,例如风能或太阳能,或至少两个或两个以上的组合,优选地用于气化炉。
根据本发明的第二实施例,提供了一种将碳材料,例如废塑料,通常是聚乙烯或聚对苯二甲酸乙二醇酯转化为电能的系统,包括:
a、气化炉,用于将碳材料气化成合成气,其中蒸汽供应给气化炉;
b、燃气轮机,用于从合成气中产生电能,其中在进入燃气轮机之前,将空气添加到合成气中;
c、第一冷却装置,用于用水冷却来自燃气轮机的废气以产生蒸汽;和
d、至少一个蒸汽轮,用于从步骤c中产生的蒸汽来产生电能;
其中,来自步骤d中的蒸汽可再循环至气化炉。
气化炉可在800K至1200K之间的温度下运行,优选在900K和1100K之间,更优选1000K。气化炉优选在0.5至1.5bar之间运行。
燃气轮机在温度可能低于1800K、优选低于1600K和更优选低于1300K时运行。
通常,系统包括两个蒸汽轮机。优选地,在被输送到第二蒸汽轮机之前来自第一蒸汽轮机的蒸汽被输送到减压装置,例如绝热减压装置,优选来自第二汽轮机的蒸汽是干饱和蒸汽。
来自第一冷却装置的废气或排放到大气中,或被送往碳隔离装置。
系统还可包括用于冷却来自气化炉的合成气的第二冷却装置。
通常,来自第一冷却装置的蒸汽被输送到第二冷却装置,或者来自第二冷却装置的蒸汽被输送到第一冷却装置,并且所产生的蒸汽被用于至少一个蒸汽轮机。所产生的蒸汽的温度优选在570K至980K之间,更优选在650K和800K之间且并且优选770K。所产生的蒸汽的压力可以在120bar至80bar之间,优选110bar和90bar,更优选为100bar。
来自燃气轮机或蒸汽轮机的电能或来自可再生能源的电能,例如风能或太阳能,或至少两个或两个以上的组合的电能优选用于气化炉。
系统还可包括在被发送到第一冷却装置或第二冷却装置之前增加水压力的泵。
附图说明
图1为使用集成气化联合循环(IGCC)和水公用设施系统将废塑料,特别是聚乙烯,废物转化为电能的工艺流程图;
图2是燃烧温度与空气流量和压力比的函数关系图,显示了建筑材料的典型温度极限;
图3是布雷顿循环和蒸汽轮机(系统)做功输出与燃烧温度的函数关系图;
图4是系统功输出与排气温度和压力比的函数图;
图5是闭环水公共设施系统在向气化和泵提供能量需求后的净功输出与燃烧温度和压力比的函数图;
图6是闭环水公共设施系统的系统热效率与气流速率和压力比的函数关系图;
图7是相比与气流速率与蒸汽轮机的功输出函数图的布雷顿循环的功输出图;
图8是使用IGCC和集成水公共设施系统将废塑料,特别是聚乙烯废物转化为电能的工艺流程图,按比例缩放为n=4000;
图9是集成水公共设施系统的系统净功输出与燃烧温度和压力比的函数图;
图10是集成水公共设施系统的系统热效率与气流速率和压力比的函数图;
图11是使用一些用于气化的涡轮机功率的水集成IGCC系统每吨聚乙烯的净能量输出与燃烧温度和压力比的函数图;和
图12是使用可再生能源进行气化的水集成IGCC系统每吨聚乙烯的净能量输出与燃烧温度和压力比的函数图。
具体实施方式
本发明寻求通过气化成合成气然后使用燃气发动机产生电能来减少废塑料的量,特别是聚乙烯和聚对苯二甲酸乙二醇酯。本发明解决了废塑料对环境的严重影响和许多国家的电能短缺问题。
集成气化联合循环(IGCC)已经利用化石燃料和生物质进行广泛的研究[7-9]。IGCC是一种涉及使用含碳燃料通过部分氧化生成合成气(主要由氢气和一氧化碳以及一定量的二氧化碳和水组成的混合物)的技术。然后这种合成气在燃气轮机中燃烧(焦耳-布雷顿循环)来产生电能。一些额外产生的电能可以通过从热排放蒸汽中产生蒸汽并将该蒸汽送入蒸汽轮机(朗肯循环)来实现。
本发明提供了一种使用废塑料,特别是聚乙烯废塑料作为燃料的IGCC,但与其他方法不同,通过在不使用氧气(或空气)而是仅使用蒸汽或水的情况下完成聚乙烯的气化。目标是避免使用空气浓缩或分离技术(以及这些技术带来的能源成本)。
其他类型的塑料,例如聚对苯二甲酸乙二醇酯(PET),在该系统中也是可行的,因为气化可以设计为分解由PET热分解产生的任何苯和苯芳烃。由于产生高度腐蚀性的氯化氢,该系统不适用于聚氯乙烯塑料。
这种处理废塑料的方法本质上是塑料焚烧的一种形式。然而,这种旨在回收尽可能多的能量的焚烧,导致废物量和发电量的减少。
本发明提出了一种从聚乙烯废塑料产生电能的加工系统。IGCC系统每吨聚乙烯可产生13到18GJ的电能,相比于煤炭其每吨大约为9.6GJ,热效率在45-55%之间,全部不使用气化过程中的氧气或空气。还发现该系统可以被设计为回收水的大部分潜热,并且每质量聚合物产生的能量实际上与聚合物的尺寸无关。
该方法利用蒸汽气化而不添加氧气。发明人认为,在气化过程中不添加空气,相关的能源成本将会降低。
本发明提供了一种通过使用集成的工艺-公共设施系统回收至少一些潜热的方法,这种方法很少被实践并且从未在废物到能源系统上实施。
本发明使用合成气发电并供应气化本身所需的能量。然而,这并不是合成气的唯一用途;合成气有很多应用。
例子
任何IGCC系统的第一步都是将碳燃料气化成合成气,即一氧化碳和氢气的混合物。在该示例中,碳燃料是聚乙烯。聚乙烯的化学式可以方便地用其乙烯单体来表示:
(C2H4)n
其中:
·n是单体数。
聚乙烯分子链可以包含数以千计的单体,这些单体在不同分子之间可以有很大差异。为了处理这种差异,所有的材料和能量都根据“单体数量”进行平衡;n将被执行。使用这种方法,分析可以简单地针对任何n值进行缩放。另一种方法是在整个分析过程中为n选择合适的值以使用。
可以证明聚乙烯的生成能量随着链中单体数量的增加而线性增加,聚乙烯的形成焓和吉布斯自由能可以用n来定义,表示为:
有了这些数据,写出以蒸汽为氧化剂的聚乙烯气化物料平衡是一件很简单的事情:
(-C2H4-)n+2nH2O→2nCO+4nH2
热力学平衡模型的简单应用表明,这种物质平衡在较高温度下将是非常有利和自发的。在1000K时,这种材料平衡将接近完成。这个温度没有高到需要特殊的建筑材料,但足够高以进行有利的转化。假设该过程预计将进行到完成就足够了。
如果在环境条件下将聚乙烯和水送入气化,则该系统在1000K时的能量平衡如下:
其中:
·ΔHgasification是在1000K下进行聚乙烯气化所需的能量
·Cp是相关组件的热容量
·T是温度
·化学计量系数表示以mol/s为单位的流速。
在没有氧气的情况下,需要大量的能量,每1mol/s的聚乙烯进料气化需要571nkW。这种能量需要来自某个地方。这将会在稍后讨论。
聚乙烯IGCC:垃圾发电系统
废弃聚乙烯IGCC系统(10)如图1所示。该系统的两个最重要参数是焦耳-布雷顿循环(以下简称“布雷顿循环”)压缩机中的压缩比和气流。这些参数影响因变量,特别是温度、总功率输出和整个系统的热效率。
为了研究这些影响,使用Soave-Redlich-Kwong(SRK)状态方程在ASPEN Plus和ASPEN ASW中对系统进行了模拟。
参考图1,1mol/s的聚乙烯(12)在气化炉(16)中与2n mol/s的水(14)在1000K和1bar的压力下气化。为了实现完全气化,气化(16)的温度和压力是根据热力学基础选择的。由于许多原因,例如动力学,不同的条件可能是优选的。
离开气化炉(16)的合成气(18),例如在混合器(26)中与空气(24)混合之前,例如在热交换器(20)中与水(52)冷却。选择空气(24)的流速主要是为了确保合成气(22)的完全燃烧。空气和合成气混合物(28)被送入压缩机(30)。这种燃烧(34)释放大量能量。用化学计量氧气燃烧合成气的绝热温升可达4000K以上。在化学计量空气中,温度可以超过1400K。
卡诺原理,概括为[式.1],
其中:
·μthermal是发动机的热效率
·Th是热容器/发动机的温度
·Tc是冷库/排气的温度。
清楚地表明,在任何动力循环中温度越高,效率越高,效率越高,发动机将产生的电能越大。但是,存在物质限制。将这个温度保持在可控制的范围是通过供给过量空气来实现的。本发明通常试图将燃烧温度保持在1300K以下,这对于镍合金来说是高的,但不需要超级合金。
布雷顿循环(30-38)的压缩机(30)和涡轮机(38)被假定为等熵运行。布雷顿循环的热效率很好理解,其推导可以在大量来源[10,11]和应用热力学教科书中找到。使用[式.1]的小修改,可以轻松定义和计算此热效率,
其中:
·T1是进入压缩机的气流(28)的温度
·T2是离开压缩机的气流(32)的温度。
离开压缩机的气流(32)的温度优选在400K至900K之间。离开涡轮机(38)的优选温度在400K至900K之间的热排气(40)被水(46)冷却,例如在热交换器(42)中,产生较冷的热排气(44),然后要么排放到大气中,要么进行某种形式的碳隔离装置。
在程序方面,图1中的虚线,水(50)首先被泵送(48)到100bar(46),然后用于冷却来自系统的热排气(40),水(52)被然后用于冷却离开气化炉(16)的合成气(18)。最终目标是在100bar和770K(54)下提高蒸汽,这些情况通常由商用蒸汽轮机处理。
在“阶段1”中,蒸汽(54)通过等熵涡轮机(56)并作为干饱和蒸汽(58)离开。由于该蒸汽(58)的压力仍然升高(10-12bar),包括第二阶段以将蒸汽降低到环境压力并同时恢复一些额外的功。蒸汽(58)经过绝热减压(60),来自绝热减压(60)的蒸汽(62)被送到“阶段2”蒸汽轮机(64)。干饱和蒸汽(66)从最终涡轮机(64)排出。这种干饱和蒸汽(66)有多种用途:它可以被冷却并送回泵系统,这使得“闭环”水公共设施成为可能。或者,它可以作为进料送至气化器,作为“集成”水公共设施,这将对系统的能源效率产生深远的影响。
案例1:闭环供水公共设施系统
燃烧温度和系统的工作输出都取决于气流。根据[式2],气流越接近化学计量要求,燃烧温度越高,布雷顿循环的效率越高。
图2显示了燃烧温度如何随空气流量和压力比(定义为离开压缩机的压力除以进入压缩机的压力)而变化。40n mol/s的气流速率,其中“n”是单体的数量,是提供合成气完全燃烧所需的化学计量氧气量的空气流量。低气流速率导致燃烧温度超出大多数建筑材料的操作限制。超级合金或陶瓷需要50n mol/s的气流速率才能使燃烧温度低于1600K。对于低于1300K的温度,镍合金需要超过80n mol/s的气流速率。
图3显示了布雷顿循环和蒸汽轮机的总输出功。然而,正如预期的那样,更高的压缩比会导致更大的工作输出;较高的温度似乎会导致较少的工作输出,这似乎是不寻常的。卡诺原理清楚地表明,更高的温度会导致更高的效率,这应该会导致更高的功输出,但模拟似乎与此相矛盾。可以通过使用图3的变化来找到对此的解释。
检查图3和图4一起表明,较高的燃烧温度会导致材料在较高温度下从布雷顿循环中排出。在较高温度下排气实际上是潜在功率的损失,因此实际上代表了整个系统的效率损失。布雷顿循环确实会更有效率,但整个系统实际上效率会更低。这是一个有趣的结果,显示了“系统级”工程的价值,优化系统中的单个单元实际上可能对整个系统产生负面影响。
图3和图4表示系统涡轮机的功输出,但回想一下,该过程的气化部分需要输入能量才能运行。最明显的进行方式是使用涡轮机提供的部分动力来提供气化所需的能量,任何多余的能量都将成为系统的净工作量。
自然地,为气化(和其他装置)提供能量会影响IGCC系统可以产生的总功,并降低整个系统的整体热效率,图5。
系统的热效率可以推导出如下,
同样对于系统,
其中:
·μthermalBrayton+steam是布雷顿循环和蒸汽轮机的热效率,如[式2]所定义
·Wbrayton是布雷顿循环产生的功,不为气化提供能量
·Wsteam是由蒸汽轮机产生的功,而没有为气化提供能量
·Wsystem是系统为气化提供能量后产生的功
·Q是系统中可用的总能量。
由于两种情况下系统总能量相同,系统的热效率由[式3]给出,
图6显示系统的热效率不是气流或压力比的特别强的函数,范围在22%和29%之间。更大的压力比通常需要更大(且更昂贵)的设备,图6显示,为整体更便宜的系统牺牲几个百分点的效率可能是一种可行的设计权衡。对设备主题的进一步检查表明,与布雷顿循环的功输出相比,蒸汽轮机的功贡献很小。
图7显示了布雷顿循环的功输出,作为压力比在30和50之间的区域。该区域在850n到1000n kW之间。相比之下,蒸汽轮机的贡献很小,只有25n kW。两个蒸汽轮机的存在仅将系统效率提高了1.7%。
案例2:集成供水公共设施系统
涡轮机,尤其是蒸汽轮机的一个显着缺点是没有可靠的方法来回收通过涡轮机的流体的汽化能量。这是由于在两相区域运行涡轮机(或泵)时的空化效应(cavitationeffect)。这种能量是巨大的,远远大于热容量贡献的能量。如果能够回收汽化能量将显着提高系统热效率。
图1的检查显示2n mol/s液态水(14)的新鲜进料以571.1n kW的能量需求供应到气化。需要一部分能量来蒸发水。然而,离开最终蒸汽轮机的是相同量的水,2n mol/s(66),但这些水不是液相,而是环境压力下的干饱和蒸汽。如果将此饱和蒸汽供入气化,则气化的能量需求将变为:
ΔHgasification=494.8nkW
图2、图3、图4所示的数字保持不变,变化的是整体功输出和系统整体的热效率。
图9和图10显示了系统净功输出的增加和整体热效率两倍增加。这些增加是由于不必将进料汽化以进行气化的结果。虽然蒸汽轮机的功贡献仍然很小,但供水设施的存在允许回收汽化能量。如果没有供水系统本身,这种恢复是不可能的。
用于气化的可再生能源
迄今为止,气化所需的能量已由IGCC系统本身内的涡轮机提供。另一种方法是从其他来源供应这种能量,例如风能或太阳能。
在“闭环”程序化的IGCC系统的情况下,一个标准的2.5MW工业风力涡轮机,以35%的效率运行可以为气化提供足够的能量,以处理1mol/s的(C2H4)n。对于“集成”供水公共设施IGCC系统,使用标准的1.5MW涡轮机可以实现相同的处理速率。这将需要3-4百万美元的资本投资用于风力涡轮机。
对于太阳能,假设太阳能塔设施的成本为6300美元/千瓦[12],360万美元的资本用于“闭环”可以处理1摩尔/秒的(C2H4)n和310万美元用于“集成”系统。
虽然对于相对较小的处理率来说,这似乎是一笔可观的投资,但值得注意的是,通过以某种方式使用可再生能源,可以避免不得不从IGCC系统本身转移一些电能。通过从可再生能源中吸收571.1n kW(封闭公共设施)或494.8n kW(集成公共设施),该系统将产生如图3和图4所示的功。IGCC系统产生的能量显然大于气化所需的能量。
许多非洲国家在电力供应和处理大量废塑料方面存在严重的基础设施问题。这些国家几乎全年都有稳定的阳光。在这个IGCC系统中使用太阳能可以将废物转化为急需的电能,其数量大于太阳能自身产生的能量。
废聚乙烯IGCC的设计
所有之前的分析都是以这样的方式进行的,即所有数字都可以用1mol/s的(C2H4)n和单体数量本身进行缩放。聚乙烯单体数量可能有很大差异,在两到两万之间。在此演示中,将选择n的单个值,n=4000,使用“集成”供水公用设施IGCC系统。
因此,
(-C2H4-)4000+8000H2O→8000CO+16000H2
ΔHgasification=4000(494.8)kW=1979200kW
使用图2,选择50的压力比,并将燃烧温度保持在1300K左右,需要大约105n mol/s的气流速率。对于n=4000,气流速率应为420000mol/s。净功输出然后可以从图9中读取为490kW/n,或1960000kW。从图10中可以看出该系统的热效率约为51%。图1中的过程可以缩放和完成,
参考图8,使用IGCC和集成供水公用设施系统将废塑料,特别是聚乙烯废物转化为能量的工艺流程图,比例为n=4000(68),1mol/s(C2H4)4000(70)在气化炉(74)中用干饱和蒸汽(72)在1000K和1bar压力下气化。为了实现完全气化,气化(74)的温度和压力是在热力学基础上选择的。由于许多原因,例如动力学,不同的条件可能是优选的。
离开气化炉(74)的合成气(76),例如在混合器(82)中与空气(84)混合之前,例如在热交换器(78)中与水(110)冷却。选择空气(84)的流速主要是为了确保合成气(80)的完全燃烧。空气和合成气混合物(86)被供给到压缩机(88)。这种燃烧(92)释放大量能量。本发明通常试图将燃烧温度保持在1300K以下,这对于镍合金来说是高的,但不需要超级合金。
布雷顿循环(88-96)的压缩机(88)和涡轮机(96)被假定为等熵运行。
离开涡轮机(96)的热排气(98)被水(104)冷却,例如在热交换器(100)中,产生热排气(102),然后或者排放到大气中,或进行某种形式的碳隔离装置。
在公用设施方面,图8中的虚线,首先将水(106)泵入(108)至100bar(46),然后用于冷却来自系统的热排气(98),水(110)然后用于冷却离开气化炉(74)的合成气(76)。最终目标是在100bar和770K(112)下产生蒸汽,这些条件通常由商用蒸汽轮机处理。
在“阶段1”中,蒸汽(112)通过等熵涡轮机(114)并作为干饱和蒸汽(116)离开。由于该蒸汽(116)的压力仍然升高(10-12bar),因此包括第二阶段以将蒸汽降至环境压力并同时恢复少量额外功。蒸汽(116)经过绝热减压(118)并且来自绝热减压(118)的蒸汽(120)被送到“阶段2”蒸汽轮机(122)。干饱和蒸汽(72)从最终涡轮机(122)排出。这种干饱和蒸汽(72)作为进料被送至气化炉(74),作为“集成”供水公共设施。
图8中所示的系统将消耗1mol/s(C2H4)4000(70)、112kg/s,并在大约51%的热效率下产生1.96GW的功。这些值可以进一步缩放到任何所需的值。例如,如果需要处理0.5mol/s的(C2H4)4000而不是1mol/s,则所有值都可以除以2。这与处理1mol/s的(C2H4)2000完全类似。
如果从其他来源,例如风能或太阳能,提供1.98GW的气化能量,则可以从图3读取功输出,
Work=990(4000)kW=3.96GW
毫无疑问,112kg/s的(C2H4)4000是相当数量的聚乙烯,但这确实允许每公斤产生的能量。
这个例子也导致了另一个有价值的结果。(C2H4)n的分子量可以根据单体数量确定,如下
mw=0.028nkg/mod
其中:
·mw是分子量
·28是两个碳原子和四个氢原子的总和。
由于根据图1的分析得出的一般解决方案始终使用1mols/s作为聚乙烯流速的基础,并以n为单位提供能量,因此将能量输出除以分子量将得出每质量聚乙烯的IGCC系统能量输出。这意味着单位质量聚乙烯IGCC系统的能量输出实际上与单体数量无关。
现在可以进行修改以显示IGCC系统每吨聚乙烯的净功输出。
传统燃煤IGCC的净功率输出约为每吨煤9.6GJ[14],图11显示使用废聚乙烯具有每吨聚乙烯13至18GJ的净功率输出。这增加了35%到85%之间!即使等熵假设被释放,这仍然是一个显着的增长。图12显示了更大的增益。该聚乙烯系统也不包含煤中常见的任何污染物,例如硫。聚乙烯的灰分含量也非常少(可以忽略,甚至可以忽略不计)。这种特殊设计也不需要空气分离。
结论
第一个系统称为“闭环供水公共设施”系统,它使用与工艺本身隔离的冷却水公共设施系统,该公共设施冷却工艺排气流并尝试恢复蒸汽轮机中的一些额外功。
该系统的净功输出和热效率分别如图5和图6所示,范围在300n到410n kW之间,热效率在21%到29%之间。这种闭环供水公共设施系统运行起来更简单,因为它没有与IGCC本身集成。然而,该系统无法回收蒸发水所需的能量。结果发现,与布雷顿循环相比,蒸汽轮机只能回收非常少量的能量,可能根本不值得增加资本和运营成本。
第二个系统称为“集成供水公共设施”系统,使用供水公共设施产生的蒸汽作为主工艺系统的进料。该系统的净功输出和热效率如图9和图10所示。净功输出范围在370n KW和510n kW之间,而热效率范围在44%和52%之间。虽然做功贡献仍然很小,但它们在使系统作为一个整体回收蒸发水所需的大部分能量方面发挥着至关重要的作用。很明显,该系统是一种更有效的设计,但由于其集成特性,可能会更复杂。
然后通过选择单体数量n的实际值来实施集成供水公共设施系统。在这种情况下,n=4000。该案例研究的一个有趣结果表明,系统每单位质量的净功输出实际上与单体数量本身无关。这意味着可以选择任何大小的分子,只要该分子可以分为规则的单体链,并且存在所选分子大小的良好物理数据。这对寻求处理化学复杂材料的任何系统的设计都有影响。例如,生物质可以近似为葡萄糖,结果不仅是近似值,而且每质量的生物质实际上是准确的。
每吨聚乙烯的净功输出如图11所示,在每吨聚乙烯13到18GJ之间变化。传统目标IGCC的净输出约为每吨煤9.6GJ。除了增加功率输出的潜力外,这种废弃聚乙烯系统还有其他优点:
·该系统不需要空气分离。
·聚乙烯不含煤加工过程中常见的污染物。
·聚乙烯的灰分很小至可以忽略不计。
·煤炭需要从矿山购买。地方和国家政府完全有可能实际支付清除废塑料的费用。
通过利用可再生能源促进聚乙烯的气化,这些优势可以进一步放大。
很明显,聚乙烯和其他塑料实际上含有大量化学能,是一种具有潜在价值的化学原料。似乎认为塑料是“废物”的观点实际上是一种狭隘的观点。现实似乎是,废塑料蕴藏着巨大的潜力和机遇。
参考文献
1.大观研究:塑料市场规模分析、趋势|年全球行业报告,2020。
2.欧洲,P.:2006年-2015年世界塑料产量。
3.透明市场研究:塑料包装市场(产品类型-硬塑料包装和软塑料包装;应用-食品和饮料、工业、家居产品、个人护理、医疗和汽车零部件)-全球行业分析、规模、份额、增长、趋势和预测2014-2020。
4.R.Geyer,J.R.Jambeck,K.L.Law:曾经制造过的所有塑料的生产,使用和命运。
5.路透社:随着洋垃圾禁令遏制回收供应,中国的塑料需求上升,https://www.reuters.com/article/us-china-plastics-demand/chinas-plastic-demand-to-rise-as-foreign-garbage-ban-to-curb-recycled-supply-idUSKCN1BO0J8
6.Jambeck,J.R.,Geyer,R.,Wilcox,C.,Siegler,T.R.,Perryman,M.,Andrady,A.,Narayan,R.,Law,K.L.:海洋污染.塑料垃圾从陆地进入海洋。科学.347,768-71(2015).doi:10.1126/science.1260352
7.Emun,F.,Gadalla,M.,Majozi,T.,Boer,D.:集成气化联合循环(IGCC)过程模拟和优化.计算化学英.34,331–338(2010).doi:10.1016/J.COMPCHEMENG.2009.04.007
8.K.,Neergaard,M.:用于生物质利用的IGCC发电厂,瑞典/>生物质和生物能源.15,205–211(1998)。doi:10.1016/S0961-9534(98)00025-7
9.Descamps,C.,Bouallou,C.,Kanniche,M.:包括去除CO2的集成气化联合循环(IGCC)发电厂的效率.能量.33,874–881(2008).doi:10.1016/J.ENERGY.2007.07.013
10.Khaliq,A.,Kaushik,S.C.:Brayton/Rankine基于第二定律的联合动力循环与再加热的的热力学分析.能量.78,179–197(2004).doi:10.1016/J.APENERGY.2003.08.002
11.Chen,L.,Sun,F.,Wu,C.,Kiang,R.L.:具有内部不可逆性的再生闭合布雷顿循环性能的理论分析.能量转换.管理.38,871–877(1997).doi:10.1016/S0196-8904(96)00090-8
12.可再生能源机构,I.:可再生能源成本分析:聚光太阳能.
(2012)
13.国家能源局:大量风电浪费:能源局-中国网。
14.Emun,F.,Gadalla,M.,Majozi,T.,Boer,D.:集成气化联合循环(IGCC)过程模拟和优化.计算化学英.34,331–338(2010).doi:10.1016/J.COMPCHEMENG.2009.04.007。

Claims (39)

1.一种废塑料转化为电能的工艺,包括以下步骤:
a.在气化炉中将废塑料气化为合成气,其中向所述气化炉供应第一干饱和蒸汽流且气化是在没有空气或氧气的情况下进行;
b.将所述合成气通过第二热交换器产生冷却的合成气,供应给燃气轮机以产生电能,其中在进入所述燃气轮机之前,将空气添加到所述合成气中;
c.向第一热交换器中供水并且用第一热交换器中的水冷却来自所述燃气轮机的废气,并将第一热交换器中的水加到第二热交换器中,以产生第二干饱和蒸汽流;
d.在第一蒸汽轮机中使用第二干饱和蒸汽流,以产生电能和第三干饱和蒸汽流;
e.将第三干饱和蒸汽流送入减压装置,以产生蒸汽流;以及
f.利用蒸汽流在第二蒸汽轮机中产生第一干饱和蒸汽流,
其中,所述气化炉中使用来自燃气轮机或蒸汽轮机的电能或来自可再生能源的电能或其的组合。
2.如权利要求1所述的工艺,其中所述废塑料为聚乙烯或聚对苯二甲酸乙二醇酯。
3.如权利要求1至2中任一项所述的工艺,其中所述气化炉的温度在800K和1200K之间。
4.如权利要求3所述的工艺,其中所述气化炉的温度在900K和1100K之间。
5.如权利要求4所述的工艺,其中所述气化炉的温度为1000K。
6.如权利要求1所述的工艺,其中所述气化炉的压力在0.5至1.5bar之间。
7.如权利要求1所述的工艺,其中所述燃气轮机中的燃烧温度低于1800K。
8.如权利要求7所述的工艺,其中所述燃气轮机中的燃烧温度低于1600K。
9.如权利要求8所述的工艺,其中所述燃气轮机中的燃烧温度低于1300K。
10.如权利要求1所述的工艺,其中所述来自第一蒸汽轮机的蒸汽在被输送至第二蒸汽轮机之前被输送至减压装置。
11.如权利要求10所述的工艺,其中所述减压装置是绝热减压装置。
12.如权利要求1所述的工艺,其中所述第二干饱和蒸汽流的温度在570K和980K之间。
13.如权利要求12所述的工艺,其中所述第二干饱和蒸汽流的温度在650K和800K之间。
14.如权利要求13所述的工艺,其中所述第二干饱和蒸汽流具有770K的温度。
15.如权利要求1所述的工艺,其中所述第二干饱和蒸汽流的压力在120bar和80bar之间。
16.如权利要求15所述的工艺,其中所述第二干饱和蒸汽流的压力在110bar和90bar之间。
17.根据权利要求16所述的工艺,其中所述第二干饱和蒸汽流的压力为100bar。
18.如权利要求1所述的工艺,所述工艺还包括以在被送到所述第一热交换器或第二热交换器之前增加水的压力的泵。
19.如权利要求1所述的工艺,其中所述可再生能源选自风能、太阳能或两者。
20.一种将废塑料转化为电能的系统,包括:
a、气化炉,用于将废塑料气化成合成气,其中第一干饱和蒸汽流供应给所述气化炉且所述气化在没有空气或氧气的情况下进行;
b、燃气轮机,用于从合成气中产生电能,其中在进入所述燃气轮机之前,将空气添加到所述合成气中;
c、第一热交换器,用于用水冷却来自所述燃气轮机的废气并且将所述第一热交换器的水加入到第二热交换器中以产生第二干饱和蒸汽流;和
d、蒸汽轮机,用于使用从步骤c中产生的第二干饱和蒸汽流来产生电能和第一干饱和蒸汽流;
其中来自步骤d的第一干饱和蒸汽流再循环至所述气化炉以便回收汽化能量,并且所述气化炉中使用来自燃气轮机或蒸汽轮机的电能或来自可再生能源的电能或其的组合。
21.如权利要求20所述的系统,其中所述废塑料是聚乙烯或聚对苯二甲酸乙二醇酯。
22.根据权利要求20或21所述的系统,其中所述气化炉在800K至1200K之间的温度下运行。
23.如权利要求22所述的系统,其中所述气化炉可在900K和1100K之间的温度下运行。
24.如权利要求23所述的系统,其中所述气化炉可在1000K的温度下运行。
25.如权利要求20所述的系统,其中所述气化炉在大气压下运行。
26.根据权利要求20所述的系统,其中所述燃气轮机在低于1800K的温度下运行。
27.如权利要求26所述的系统,其中所述燃气轮机在低于1600K的温度下运行。
28.如权利要求27所述的系统,其中所述燃气轮机在低于1300K的温度下运行。
29.如权利要求20至28中任一项所述的系统,其中所述系统包括两个蒸汽轮机。
30.如权利要求29所述的系统,其中来自第一蒸汽轮机的所述蒸汽在被输送至第二蒸汽轮机之前被输送至减压装置。
31.如权利要求30所述的系统,其中所述减压装置是绝热减压装置。
32.如权利要求20所述的系统,其中所述第二干饱和蒸汽流具有在570K和980K之间的温度。
33.如权利要求32所述的系统,其中所述第二干饱和蒸汽流的温度在650K和800K之间。
34.如权利要求33所述的系统,其中所述第二干饱和蒸汽流的温度在770K之间。
35.如权利要求20所述的系统,其中所述第二干饱和蒸汽流的压力在120bar和80bar之间。
36.如权利要求35所述的系统,其中所述第二干饱和蒸汽流的压力在110bar和90bar之间。
37.如权利要求36所述的系统,其中所述第二干饱和蒸汽流的压力为100bar。
38.如权利要求20所述的系统,其中所述可再生能源选自风能、太阳能或两者。
39.如权利要求20所述的系统,所述系统还包括以在被送到所述第一热交换器或第二热交换器之前增加水的压力的泵。
CN201980088282.6A 2018-11-07 2019-11-07 废塑料发电工艺及系统 Active CN113316682B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA2018/07454 2018-11-07
ZA201807454 2018-11-07
PCT/IB2019/059566 WO2020095240A1 (en) 2018-11-07 2019-11-07 Process and system for converting waste plastic into power

Publications (2)

Publication Number Publication Date
CN113316682A CN113316682A (zh) 2021-08-27
CN113316682B true CN113316682B (zh) 2024-05-14

Family

ID=70611461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980088282.6A Active CN113316682B (zh) 2018-11-07 2019-11-07 废塑料发电工艺及系统

Country Status (6)

Country Link
US (1) US20220002626A1 (zh)
EP (1) EP3877638A4 (zh)
CN (1) CN113316682B (zh)
BR (1) BR112021008830A2 (zh)
WO (1) WO2020095240A1 (zh)
ZA (1) ZA202103113B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120403A (ja) * 1998-10-16 2000-04-25 Toshiba Corp ガス化複合発電システム
CN102559269A (zh) * 2010-08-20 2012-07-11 新奥科技发展有限公司 煤气化工艺与蒸汽透平发电工艺的耦合方法
CN206000586U (zh) * 2016-08-05 2017-03-08 江苏河海新能源股份有限公司 循环发电装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134944A (en) * 1991-02-28 1992-08-04 Keller Leonard J Processes and means for waste resources utilization
US7279655B2 (en) * 2003-06-11 2007-10-09 Plasmet Corporation Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
US7547423B2 (en) * 2005-03-16 2009-06-16 Pratt & Whitney Rocketdyne Compact high efficiency gasifier
AP2008004678A0 (en) * 2006-05-05 2008-12-31 Plascoenergy Ip Holdings A control system for the conversion of a carbonaceous feedstock into gas
US8221513B2 (en) * 2008-01-29 2012-07-17 Kellogg Brown & Root Llc Low oxygen carrier fluid with heating value for feed to transport gasification
US9157043B2 (en) * 2008-07-16 2015-10-13 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
US8402762B2 (en) * 2009-06-30 2013-03-26 Hatch Ltd. Power generation plant and method of generating electric energy
US20110036096A1 (en) * 2009-08-13 2011-02-17 General Electric Company Integrated gasification combined cycle (igcc) power plant steam recovery system
DE102009038322A1 (de) * 2009-08-21 2011-02-24 Krones Ag Verfahren und Vorrichtung zur Umwandlung thermischer Energie aus Biomasse in mechanische Arbeit
JP2011047364A (ja) * 2009-08-28 2011-03-10 Toshiba Corp 蒸気タービン発電設備およびその運転方法
KR101255152B1 (ko) * 2010-12-01 2013-04-22 한국기초과학지원연구원 플라즈마 가스화기를 이용한 발전 시스템
DE102011113623A1 (de) * 2011-09-16 2013-03-21 H S Reformer Gmbh Gasturbine
US9874142B2 (en) * 2013-03-07 2018-01-23 General Electric Company Integrated pyrolysis and entrained flow gasification systems and methods for low rank fuels
US9453171B2 (en) * 2013-03-07 2016-09-27 General Electric Company Integrated steam gasification and entrained flow gasification systems and methods for low rank fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120403A (ja) * 1998-10-16 2000-04-25 Toshiba Corp ガス化複合発電システム
CN102559269A (zh) * 2010-08-20 2012-07-11 新奥科技发展有限公司 煤气化工艺与蒸汽透平发电工艺的耦合方法
CN206000586U (zh) * 2016-08-05 2017-03-08 江苏河海新能源股份有限公司 循环发电装置

Also Published As

Publication number Publication date
EP3877638A4 (en) 2022-08-03
EP3877638A1 (en) 2021-09-15
WO2020095240A1 (en) 2020-05-14
CN113316682A (zh) 2021-08-27
BR112021008830A2 (pt) 2021-08-17
US20220002626A1 (en) 2022-01-06
ZA202103113B (en) 2022-10-26

Similar Documents

Publication Publication Date Title
Kim et al. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle
Cao et al. Thermodynamic analysis and optimization of a gas turbine and cascade CO2 combined cycle
Ozcan et al. Thermodynamic analysis of a combined chemical looping-based trigeneration system
Gnanapragasam et al. Hydrogen production from coal gasification for effective downstream CO2 capture
Li et al. Biomass direct chemical looping process: Process simulation
Wang et al. Multi-criteria evaluation and optimization of a new multigeneration cycle based on solid oxide fuel cell and biomass fuel integrated with a thermoelectric generator, gas turbine, and methanation cycle
Xin et al. Thermodynamic analysis of a novel zero carbon emission coal-based polygeneration system incorporating methanol synthesis and Allam power cycle
Zhao et al. Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle
Ishaq et al. Analysis and optimization for energy, cost and carbon emission of a solar driven steam-autothermal hybrid methane reforming for hydrogen, ammonia and power production
Xu et al. A thermodynamic analysis of a solar hybrid coal-based direct-fired supercritical carbon dioxide power cycle
Antonelli et al. Liquid air energy storage: a potential low emissions and efficient storage system
Islam et al. Modern energy conversion technologies
Wang et al. Thermodynamic analysis of a solar-hybrid trigeneration system integrated with methane chemical-looping combustion
US20110132429A1 (en) System and method for the use of waste heat
Burulday et al. Thermodynamic analysis of a parabolic trough solar power plant integrated with a biomass-based hydrogen production system
Luo et al. Energy and exergy analysis of power generation systems with chemical looping combustion of coal
Oner et al. Development and assessment of a hybrid biomass and wind energy-based system for cleaner production of methanol with electricity, heat and freshwater
Tabriz et al. Energy, exergy, exergoeconomic, and exergoenvironmental (4E) analysis of a new bio-waste driven multigeneration system for power, heating, hydrogen, and freshwater production: Modeling and a case study in Izmir
Bai et al. A new biomass-natural gas dual fuel hybrid cooling and power process integrated with waste heat recovery process: exergoenvironmental and exergoeconomic assessments
Yang et al. Multi-aspect comparative analyses of two innovative methanol and power cogeneration systems from two different sources
Tian et al. Multi-variable assessment/optimization of a new two-source multigeneration system integrated with a solid oxide fuel cell
Liu et al. A new cleaner power generation system based on self-sustaining supercritical water gasification of coal
Fu et al. Thermodynamic analysis of the biomass gasification Allam cycle
CN113316682B (zh) 废塑料发电工艺及系统
Zare et al. Comprehensive examination and analysis of thermodynamics in a multi-generation hydrogen, heat, and power system based on plastic waste gasification integrated biogas-fueled chemical looping combustion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant