CN113315422B - Commutation error compensation system and commutation error compensation method of brushless DC motor - Google Patents
Commutation error compensation system and commutation error compensation method of brushless DC motor Download PDFInfo
- Publication number
- CN113315422B CN113315422B CN202110578352.5A CN202110578352A CN113315422B CN 113315422 B CN113315422 B CN 113315422B CN 202110578352 A CN202110578352 A CN 202110578352A CN 113315422 B CN113315422 B CN 113315422B
- Authority
- CN
- China
- Prior art keywords
- signal
- acquisition circuit
- commutation error
- electrically connected
- commutation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000007935 neutral effect Effects 0.000 claims abstract description 25
- 238000004804 winding Methods 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 31
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000003313 weakening effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/12—Monitoring commutation; Providing indication of commutation failure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明电机技术领域,尤其涉及一种无刷直流电机的换相误差补偿系统及换相误差补偿方法。The present invention relates to the technical field of electric motors, in particular to a commutation error compensation system and a commutation error compensation method of a brushless DC motor.
背景技术Background technique
无刷直流电机换相方法可采用三路霍尔信号或者编码器,通过电平高低组合,形成六路换相信号,但是位置传感器的安装不仅增加了制造工艺、容易引入换相误差,还降低了系统的可靠性,因此出现了无位置传感器的换相方法。这种无位置传感器换相技术已经广泛用于换相位置的检测,在具体实现时由于滤波器的相移以及软件、硬件的延迟会导致换相误差。The brushless DC motor commutation method can use three-way Hall signals or encoders, and form six-way commutation signals through the combination of high and low levels. However, the installation of the position sensor not only increases the manufacturing process, it is easy to introduce commutation errors, but also reduces the cost of commutation. The reliability of the system, so there is a commutation method without position sensors. This position sensorless commutation technology has been widely used in the detection of the commutation position. During the specific implementation, the commutation error will be caused due to the phase shift of the filter and the delay of software and hardware.
现有技术中,基于电机的相电压、相电流等电机的信号的对称性,当换相误差存在时信号变为非对称,将这种非对称性用数学变量来描述,作为反馈量引入控制器,输出的控制量作为换相误差补偿量,从而实现换相误差的闭环补偿。In the prior art, based on the symmetry of the motor's signal such as the phase voltage and phase current of the motor, when the commutation error exists, the signal becomes asymmetrical. This asymmetry is described by mathematical variables and introduced into control as a feedback quantity The output control amount is used as the commutation error compensation amount, so as to realize the closed-loop compensation of the commutation error.
然而,实现上述换相误差的闭环补偿时,需要利用模数转换器(Analog-to-Digital Converter)采样电压、电流信号,以构造返回量,对于高度集成的磁悬浮控制力矩陀螺(Magnetically Suspended Control Moment Gyroscope,MSCMG),主动磁悬浮轴承控制与电机的双闭环控制在一个数字处理器运行,占用数字处理器中的所有ADC通道,因此没有多余的ADC通道用于采集换相误差控制的反馈量。However, when realizing the closed-loop compensation of the above-mentioned commutation error, it is necessary to use an analog-to-digital converter (Analog-to-Digital Converter) to sample the voltage and current signals to construct the return value. Gyroscope, MSCMG), the active magnetic bearing control and the double closed-loop control of the motor run in a digital processor, occupying all ADC channels in the digital processor, so there is no redundant ADC channel for collecting the feedback amount of the commutation error control.
发明内容SUMMARY OF THE INVENTION
本公开提供了一种无刷直流电机的换相误差补偿系统及换相误差补偿方法,能够利用数字处理器的通用输入输出接口实现换相误差补偿。The present disclosure provides a commutation error compensation system and a commutation error compensation method of a brushless DC motor, which can realize the commutation error compensation by using a universal input and output interface of a digital processor.
第一方面,本发明实施例提供了一种无刷直流电机的换相误差补偿系统,包括:目标电压获取电路、直流电压获取电路、换相误差类型获取电路和数字处理器;In a first aspect, an embodiment of the present invention provides a commutation error compensation system for a brushless DC motor, including: a target voltage acquisition circuit, a DC voltage acquisition circuit, a commutation error type acquisition circuit, and a digital processor;
所述目标电压获取电路的第一输入端与所述无刷直流电机的定子绕组的虚拟中性点电连接,所述目标电压获取电路的第二输入端和所述无刷直流电机的母线中点电连接;所述目标电压获取电路,用于根据所述虚拟中性点与所述母线中点之间的电压信号,确定目标电压信号;The first input terminal of the target voltage acquisition circuit is electrically connected to the virtual neutral point of the stator winding of the brushless DC motor, and the second input terminal of the target voltage acquisition circuit is connected to the busbar of the brushless DC motor. point electrical connection; the target voltage acquisition circuit is configured to determine a target voltage signal according to the voltage signal between the virtual neutral point and the bus midpoint;
所述直流电压获取电路的输入端与所述目标电压获取电路的输出端电连接;所述直流电压获取电路,用于根据所述目标电压信号,确定所述目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值;The input terminal of the DC voltage acquisition circuit is electrically connected to the output terminal of the target voltage acquisition circuit; the DC voltage acquisition circuit is used for determining the first voltage corresponding to the positive voltage signal in the target voltage signal according to the target voltage signal. the DC voltage value and the second DC voltage value corresponding to the negative voltage signal;
所述换相误差类型获取电路的第一输入端与所述直流电压获取电路的第一输出端电连接,所述换相误差类型获取电路的第二输入端与所述直流电压获取电路的第二输出端电连接;所述换相误差类型获取电路,用于根据所述第二直流电压值的绝对值和所述第一直流电压值,确定换相误差的类型信号;所述类型信号包括高电平信号或者低电平信号,所述类型信号用于表示换相误差的类型为相位超前或者相位滞后;The first input terminal of the commutation error type acquisition circuit is electrically connected to the first output terminal of the DC voltage acquisition circuit, and the second input terminal of the commutation error type acquisition circuit is electrically connected to the first output terminal of the DC voltage acquisition circuit. The two output terminals are electrically connected; the commutation error type acquisition circuit is configured to determine the type signal of the commutation error according to the absolute value of the second DC voltage value and the first DC voltage value; the type signal includes A high-level signal or a low-level signal, the type signal is used to indicate that the type of the commutation error is phase lead or phase lag;
所述数字处理器的通用输入输出接口与所述换相误差类型获取电路的输出端电连接;所述数字处理器,用于根据所述类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量。The universal input and output interface of the digital processor is electrically connected to the output end of the commutation error type acquisition circuit; the digital processor is used for determining the commutation error according to the type signal, the initial compensation amount of the commutation error and the convergence factor. Phase error compensation amount.
可选地,所述数字处理器包括:标志位信息获取单元和补偿单元;Optionally, the digital processor includes: a flag bit information acquisition unit and a compensation unit;
所述标志位信息获取单元的输入端与所述通用输入输出接口电连接,所述标志位信息获取电路用于根据所述类型信号确定对应的标志位信息;The input end of the flag bit information acquisition unit is electrically connected to the universal input and output interface, and the flag bit information acquisition circuit is used to determine the corresponding flag bit information according to the type signal;
所述补偿单元的输入端与所述标志位信息获取单元的输出端电连接,所述补偿单元用于根据如下公式确定所述换相误差补偿量:The input end of the compensation unit is electrically connected to the output end of the flag bit information acquisition unit, and the compensation unit is used for determining the commutation error compensation amount according to the following formula:
其中,n为补偿次数,为第n次补偿时的换相误差补偿量,为换相误差初始补偿量,ki为第i次补偿时获取到的类型信号对应的标志位信息,λ为收敛因子,N为预设阈值。where n is the number of compensations, is the commutation error compensation amount in the nth compensation, is the initial compensation amount of the commutation error, ki is the flag bit information corresponding to the type signal obtained during the ith compensation, λ is the convergence factor, and N is the preset threshold.
可选地,所述换相误差类型获取电路包括:第一反相器和比较器;Optionally, the commutation error type acquisition circuit includes: a first inverter and a comparator;
所述第一反相器的输入端与所述换相误差类型获取电路的第二输入端电连接,所述第一反相器用于获取所述第二直流电压值的绝对值;The input terminal of the first inverter is electrically connected to the second input terminal of the commutation error type acquisition circuit, and the first inverter is used for acquiring the absolute value of the second DC voltage value;
所述比较器的第一输入端与所述第一反相器的输出端电连接,所述比较器的第二输入端与所述换相误差类型获取电路的第一输入端电连接;所述比较器用于若所述第二直流电压值的绝对值大于所述第一直流电压值,输出低电平信号;若所述第二直流电压值的绝对值小于所述第一直流电压值,输出高电平信号;The first input terminal of the comparator is electrically connected to the output terminal of the first inverter, and the second input terminal of the comparator is electrically connected to the first input terminal of the commutation error type acquisition circuit; the The comparator is configured to output a low level signal if the absolute value of the second DC voltage value is greater than the first DC voltage value; if the absolute value of the second DC voltage value is smaller than the first DC voltage value, output high level signal;
所述补偿单元还用于根据如下公式确定所述类型信号对应的标志位信息:The compensation unit is further configured to determine the flag bit information corresponding to the type signal according to the following formula:
k=(Sc-0.5)×2;k=(S c -0.5)×2;
其中,Sc为低电平信号或高电平信号,k为所述类型信号对应的标志位信息。Wherein, S c is a low-level signal or a high-level signal, and k is the flag bit information corresponding to the type of signal.
可选地,所述直流电压获取电路包括:正电压直流电压获取电路和负电压直流电压获取电路;Optionally, the DC voltage acquisition circuit includes: a positive voltage DC voltage acquisition circuit and a negative voltage DC voltage acquisition circuit;
所述正电压直流电压获取电路包括第一半波整流器和第一电容,所述第一半波整流器的输入端分别与所述第一电容的第一端和所述直流电压获取电路的输入端电连接,所述第一半波整流器的输出端分别与所述第一电容的第二端和所述直流电压获取电路的第一输出端电连接;所述第一半波整流器用于获取所述目标电压信号中的正电压信号,所述第一电容用于获取所述正电压信号对应的第一直流电压值;The positive voltage DC voltage acquisition circuit includes a first half-wave rectifier and a first capacitor, the input end of the first half-wave rectifier is respectively connected with the first end of the first capacitor and the input end of the DC voltage acquisition circuit electrically connected, the output end of the first half-wave rectifier is respectively electrically connected to the second end of the first capacitor and the first output end of the DC voltage acquisition circuit; the first half-wave rectifier is used to obtain the a positive voltage signal in the target voltage signal, and the first capacitor is used to obtain a first DC voltage value corresponding to the positive voltage signal;
所述负电压直流电压获取电路包括第二半波整流器和第二电容,所述第二半波整流器的输入端分别与所述第二电容的第一端和所述直流电压获取电路的输入端电连接,所述第二半波整流器的输出端分别与所述第二电容的第二端和所述直流电压获取电路的第二输出端电连接;所述第二半波整流器用于获取所述目标电压信号中的负电压信号,所述第二电容用于获取所述负电压信号对应的第二直流电压值。The negative voltage DC voltage acquisition circuit includes a second half-wave rectifier and a second capacitor, the input end of the second half-wave rectifier is respectively connected with the first end of the second capacitor and the input end of the DC voltage acquisition circuit electrically connected, the output end of the second half-wave rectifier is respectively electrically connected to the second end of the second capacitor and the second output end of the DC voltage obtaining circuit; the second half-wave rectifier is used to obtain the a negative voltage signal in the target voltage signal, and the second capacitor is used to obtain a second DC voltage value corresponding to the negative voltage signal.
可选地,所述目标电压获取电路包括:减法器、第二反相器和选通器;Optionally, the target voltage obtaining circuit includes: a subtractor, a second inverter and a gate;
所述减法器的第一输入端与所述目标电压获取电路的第一输入端电连接,所述减法器的第二输入端和所述目标电压获取电路的第二输入端电连接;所述减法器用于获取所述虚拟中性点与所述母线中点之间的电压信号;The first input terminal of the subtractor is electrically connected to the first input terminal of the target voltage acquisition circuit, and the second input terminal of the subtractor is electrically connected to the second input terminal of the target voltage acquisition circuit; the a subtractor is used to obtain the voltage signal between the virtual neutral point and the bus midpoint;
所述第二反相器的输入端与所述减法器的输出端电连接,所述第二反相器用于获取所述电压信号的反相电压信号;The input end of the second inverter is electrically connected to the output end of the subtractor, and the second inverter is used to obtain the inverted voltage signal of the voltage signal;
所述选通器的第一输入端与所述第二反相器的输出端电连接,所述选通器的第二输入端分别与所述减法器的输出端电连接,所述选通器用于根据所述电压信号、所述反相电压信号和选通信号产生所述目标电压信号。The first input end of the gate is electrically connected to the output end of the second inverter, the second input end of the gate is electrically connected to the output end of the subtractor, and the gate The controller is used for generating the target voltage signal according to the voltage signal, the inverted voltage signal and the gate signal.
第二方面,本发明实施例提供了一种无刷直流电机的换相误差补偿方法,适用于无刷直流电机的换相误差补偿系统,所述换相误差补偿系统包括:目标电压获取电路、直流电压获取电路、换相误差类型获取电路和数字处理器;In a second aspect, an embodiment of the present invention provides a commutation error compensation method for a brushless DC motor, which is suitable for a commutation error compensation system for a brushless DC motor. The commutation error compensation system includes: a target voltage acquisition circuit, DC voltage acquisition circuit, commutation error type acquisition circuit and digital processor;
所述目标电压获取电路的第一输入端与所述无刷直流电机的定子绕组的虚拟中性点电连接,所述目标电压获取电路的第二输入端和所述无刷直流电机的母线中点电连接;所述直流电压获取电路的输入端与所述目标电压获取电路的输出端电连接;所述换相误差类型获取电路的第一输入端与所述直流电压获取电路的第一输出端电连接,所述换相误差类型获取电路的第二输入端与所述直流电压获取电路的第二输出端电连接;所述数字处理器的通用输入输出接口与所述类型信号获取电路的输出端电连接;The first input terminal of the target voltage acquisition circuit is electrically connected to the virtual neutral point of the stator winding of the brushless DC motor, and the second input terminal of the target voltage acquisition circuit is connected to the busbar of the brushless DC motor. point electrical connection; the input terminal of the DC voltage acquisition circuit is electrically connected to the output terminal of the target voltage acquisition circuit; the first input terminal of the commutation error type acquisition circuit is electrically connected to the first output of the DC voltage acquisition circuit The second input terminal of the commutation error type acquisition circuit is electrically connected to the second output terminal of the DC voltage acquisition circuit; the universal input and output interface of the digital processor is electrically connected to the type signal acquisition circuit. The output terminal is electrically connected;
所述换相误差补偿方法包括:The commutation error compensation method includes:
根据所述无刷直流电机中虚拟中性点与母线中点之间的电压信号,确定目标电压信号;Determine the target voltage signal according to the voltage signal between the virtual neutral point in the brushless DC motor and the bus midpoint;
根据所述目标电压信号,确定所述目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值;According to the target voltage signal, determine the first DC voltage value corresponding to the positive voltage signal and the second DC voltage value corresponding to the negative voltage signal in the target voltage signal;
根据所述第二直流电压值的绝对值和所述第一直流电压值,确定换相误差的类型信号,所述类型信号包括高电平信号或者低电平信号,所述类型信号用于表示换相误差的类型为相位超前或者相位滞后;A type signal of the commutation error is determined according to the absolute value of the second DC voltage value and the first DC voltage value, where the type signal includes a high-level signal or a low-level signal, and the type signal is used to represent The type of commutation error is phase lead or phase lag;
根据所述类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量。The commutation error compensation amount is determined according to the type signal, the commutation error initial compensation amount and the convergence factor.
可选地,所述根据所述类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量包括:Optionally, the determining the commutation error compensation amount according to the type signal, the commutation error initial compensation amount and the convergence factor includes:
根据所述类型信号确定所述类型信号对应的标志位信息;Determine the flag bit information corresponding to the type signal according to the type signal;
根据如下公式确定所述换相误差补偿量:The commutation error compensation amount is determined according to the following formula:
其中,n为补偿次数,为第n次补偿时的换相误差补偿量,为换相误差初始补偿量,ki为第i次补偿时获取到的类型信号对应的标志位信息,λ为收敛因子,N为预设阈值。where n is the number of compensations, is the commutation error compensation amount in the nth compensation, is the initial compensation amount of the commutation error, ki is the flag bit information corresponding to the type signal obtained during the ith compensation, λ is the convergence factor, and N is the preset threshold.
可选地,所述确定所述相位误差补偿量之前,还包括:Optionally, before the determining the phase error compensation amount, the method further includes:
根据如下公式确定所述预设阈值:The preset threshold is determined according to the following formula:
其中,δ为误差补偿收敛至稳态时的换相误差补偿增量。Among them, δ is the commutation error compensation increment when the error compensation converges to the steady state.
可选地,所述根据所述第二直流电压值的绝对值和所述第一直流电压值,确定换相误差的类型信号,包括:Optionally, the determining the type signal of the commutation error according to the absolute value of the second DC voltage value and the first DC voltage value includes:
若所述第二直流电压值的绝对值大于所述第一直流电压值,输出低电平信号;若所述第二直流电压值的绝对值小于所述第一直流电压值,输出高电平信号;If the absolute value of the second DC voltage value is greater than the first DC voltage value, a low level signal is output; if the absolute value of the second DC voltage value is less than the first DC voltage value, a high level signal is output Signal;
所述确定所述类型信号对应的标志位信息包括:The determining the flag bit information corresponding to the type signal includes:
根据如下公式确定所述类型信号对应的标志位信息:Determine the flag bit information corresponding to the type of signal according to the following formula:
k=(Sc-0.5)×2;k=(S c -0.5)×2;
其中,Sc为低电平信号或高电平信号,k为所述类型信号对应的标志位信息。Wherein, S c is a low-level signal or a high-level signal, and k is the flag bit information corresponding to the type of signal.
可选地,所述根据所述无刷直流电机中虚拟中性点与母线中点之间的电压信号,确定目标电压信号,包括:Optionally, the determining the target voltage signal according to the voltage signal between the virtual neutral point and the bus midpoint in the brushless DC motor includes:
获取所述电压信号的反相电压信号;obtaining an inverse voltage signal of the voltage signal;
根据所述电压信号、所述反相信号和选通信号,获取所述目标电压信号,所述目标电压信号在换相周期内单调递增或者单调递减。The target voltage signal is acquired according to the voltage signal, the inversion signal and the gate signal, and the target voltage signal monotonically increases or decreases monotonically within a commutation period.
本发明实施例提供的技术方案中,通过目标电压获取电路的第一输入端与无刷直流电机的定子绕组的虚拟中性点电连接,目标电压获取电路的第二输入端和无刷直流电机的母线中点电连接,目标电压获取电路能够根据虚拟中性点与母线中点之间的电压信号,确定目标电压信号;通过直流电压获取电路的输入端与目标电压获取电路的输出端电连接,直流电压获取电路能够根据目标电压信号,确定目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值;通过换相误差类型获取电路的第一输入端与直流电压获取电路的第一输出端电连接,换相误差类型获取电路的第二输入端与直流电压获取电路的第二输出端电连接,换相误差类型获取电路能够根据第二直流电压值的绝对值和第一直流电压值,确定换相误差的类型信号,其中,类型信号包括高电平信号或者低电平信号,也就是说类型信号为数字信号,用于表示换相误差的类型为相位超前或者相位滞后;通过数字处理器的通用输入输出接口与换相误差类型获取电路的输出端电连接,数字处理器能够接收到数字信号,根据类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量。因此,本发明实施例提供的技术方案能够通过数字处理器的通用输入输出接口实现换相误差补偿。In the technical solution provided by the embodiment of the present invention, the first input terminal of the target voltage acquisition circuit is electrically connected to the virtual neutral point of the stator winding of the brushless DC motor, and the second input terminal of the target voltage acquisition circuit is connected to the brushless DC motor. The midpoint of the busbar is electrically connected, and the target voltage acquisition circuit can determine the target voltage signal according to the voltage signal between the virtual neutral point and the midpoint of the busbar; the input terminal of the DC voltage acquisition circuit is electrically connected to the output terminal of the target voltage acquisition circuit , the DC voltage acquisition circuit can determine, according to the target voltage signal, the first DC voltage value corresponding to the positive voltage signal and the second DC voltage value corresponding to the negative voltage signal in the target voltage signal; The first output terminal of the DC voltage acquisition circuit is electrically connected, the second input terminal of the commutation error type acquisition circuit is electrically connected with the second output terminal of the DC voltage acquisition circuit, and the commutation error type acquisition circuit can be based on the second DC voltage value. The absolute value and the first DC voltage value determine the type signal of the commutation error, wherein the type signal includes a high-level signal or a low-level signal, that is to say, the type signal is a digital signal, and the type used to represent the commutation error is Phase lead or phase lag; the digital processor is electrically connected to the output end of the commutation error type acquisition circuit through the universal input and output interface of the digital processor, and the digital processor can receive the digital signal, according to the type signal, the initial compensation amount of the commutation error and the convergence factor Determines the amount of commutation error compensation. Therefore, the technical solutions provided by the embodiments of the present invention can realize commutation error compensation through the universal input and output interface of the digital processor.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. In other words, on the premise of no creative labor, other drawings can also be obtained from these drawings.
图1为本发明实施例提供的一种无刷直流电机的换相误差补偿系统的结构示意图;FIG. 1 is a schematic structural diagram of a commutation error compensation system for a brushless DC motor according to an embodiment of the present invention;
图2为本发明实施例提供的一种无刷直流电机的结构示意图;FIG. 2 is a schematic structural diagram of a brushless DC motor according to an embodiment of the present invention;
图3为本发明实施例提供的一种电机换相点检测原理图;FIG. 3 is a schematic diagram of a motor commutation point detection principle provided by an embodiment of the present invention;
图4为本发明实施例提供的无换相误差时电压信号UMN’的波形示意图;FIG. 4 is a schematic waveform diagram of the voltage signal U MN ′ when there is no commutation error provided by an embodiment of the present invention;
图5为本发明实施例提供的换相误差滞后时电压信号UMN’的波形示意图;FIG. 5 is a schematic waveform diagram of the voltage signal U MN ′ when the commutation error lags provided by an embodiment of the present invention;
图6为本发明实施例提供的换相误差超前时电压信号UMN’的波形示意图;FIG. 6 is a schematic waveform diagram of the voltage signal U MN ′ when the commutation error is advanced according to an embodiment of the present invention;
图7为本发明实施例提供的一种目标电压Umult的示意图;7 is a schematic diagram of a target voltage U mult provided by an embodiment of the present invention;
图8为本发明实施例提供的一种无刷直流电机的换相误差补偿方法的流程示意图;8 is a schematic flowchart of a commutation error compensation method for a brushless DC motor according to an embodiment of the present invention;
图9为本发明实施例提供的另一种无刷直流电机的换相误差补偿方法的流程示意图;9 is a schematic flowchart of another commutation error compensation method for a brushless DC motor provided by an embodiment of the present invention;
图10为本发明实施例提供的又一种无刷直流电机的换相误差补偿方法的流程示意图;FIG. 10 is a schematic flowchart of yet another commutation error compensation method for a brushless DC motor according to an embodiment of the present invention;
图11为本发明实施例提供的又一种无刷直流电机的换相误差补偿方法的流程示意图。FIG. 11 is a schematic flowchart of yet another commutation error compensation method for a brushless DC motor according to an embodiment of the present invention.
具体实施方式Detailed ways
为了能够更清楚地理解本发明的上述目的、特征和优点,下面将对本发明的方案进行进一步描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。In order to more clearly understand the above objects, features and advantages of the present invention, the solution of the present invention will be further described below. It should be noted that the embodiments of the present invention and the features in the embodiments may be combined with each other under the condition of no conflict.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但本发明还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本发明的一部分实施例,而不是全部的实施例。Many specific details are set forth in the following description to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein; obviously, the embodiments in the description are only a part of the embodiments of the present invention, and Not all examples.
图1为本发明实施例提供的一种无刷直流电机的换相误差补偿系统的结构示意图,图2为本发明实施例提供的一种无刷直流电机的结构示意图,结合图1和图2所示,无刷直流电机的换相误差补偿系统100包括目标电压获取电路110、直流电压获取电路120、换相误差类型获取电路130和数字处理器140。FIG. 1 is a schematic structural diagram of a commutation error compensation system of a brushless DC motor provided by an embodiment of the present invention, and FIG. 2 is a schematic structural diagram of a brushless DC motor provided by an embodiment of the present invention, combined with FIG. 1 and FIG. 2 As shown, the commutation
其中,目标电压获取电路110的第一输入端与无刷直流电机210的定子绕组的虚拟中性点N’电连接,目标电压获取电路110的第二输入端和无刷直流电机210的母线中点M电连接。目标电压获取电路110用于根据虚拟中性点N’与母线中点M之间的电压信号UMN’,确定目标电压信号Umult。The first input terminal of the target
直流电压获取电路120的输入端与目标电压获取电路110的输出端电连接,直流电压获取电路120用于根据目标电压信号Umult,确定目标电压信号Umult中正电压信号Umult+对应的第一直流电压值Umult+_dc和负电压信号Umult-对应的第二直流电压值Umult-_dc。The input terminal of the DC
换相误差类型获取电路130的第一输入端与直流电压获取电路120的第一输出端电连接,换相误差类型获取电路130的第二输入端与直流电压获取电路120的第二输出端电连接。换相误差类型获取电路130用于根据第二直流电压值Umult-_dc的绝对值|Umult-_dc|和第一直流电压值Umult+_dc,确定换相误差的类型信号Sc。类型信号Sc包括高电平信号1或者低电平信号0,类型信号Sc用于表示换相误差的类型为相位超前或者相位滞后。The first input terminal of the commutation error
数字处理器140的通用输入输出接口G与换相误差类型获取电路130的输出端电连接,数字处理器140用于根据类型信号Sc、换相误差初始补偿量和收敛因子λ确定换相误差补偿量 The universal input and output interface G of the
示例性地,如图2所示,无刷直流电机210包括A相定子绕组、B相定子绕组和C相定子绕组。Illustratively, as shown in FIG. 2 , the
无刷直流电机210的平衡方程如下:The balance equation for the
其中,L为无刷直流电机的相电感,R为无刷直流电机的相电阻,eA为A相反电动势、eB为B相反电动势、eC为C相反电动势,N为无刷直流电机中定子绕组的中性点,iA为A相电流、iB为B相电流、iC为C相电流,t为时间。Among them, L is the phase inductance of the brushless DC motor, R is the phase resistance of the brushless DC motor, e A is the opposite electromotive force of A, e B is the opposite electromotive force of B, e C is the opposite electromotive force of C, and N is the opposite electromotive force of the brushless DC motor. The neutral point of the stator winding, i A is the A-phase current, i B is the B-phase current, i C is the C-phase current, and t is the time.
在BC导通时,A相悬空时,此时iA=0,A相相电压uAN等于A相反电动势eA,在AC导通时,B相悬空,此时iB=0,B相相电压uBN等于B相反电动势eB,在AB导通时,C相悬空时,此时iC=0,C相相电压uCN等于C相反电动势eC。When BC is turned on, when phase A is suspended, i A = 0, the phase voltage u AN of phase A is equal to the opposite electromotive force e A of A, when AC is turned on, phase B is suspended, at this time i B = 0, phase B The phase voltage u BN is equal to the B opposite electromotive force e B . When AB is turned on and the C phase is suspended, i C = 0, and the C phase phase voltage u CN is equal to the C opposite electromotive force e C .
图3为本发明实施例提供的一种电机换相点检测原理图,如图3所示,相电压过零点延迟30°,即为换相点。但是换相误差补偿系统100中滤波器的延迟以及软、硬件的延迟会导致换相误差此时换相点为相电压过零点延迟 FIG. 3 is a schematic diagram of a motor commutation point detection principle provided by an embodiment of the present invention. As shown in FIG. 3 , the phase voltage zero-crossing point is delayed by 30°, which is the commutation point. However, the delay of the filter and the delay of software and hardware in the commutation
图4为本发明实施例提供的无换相误差时电压信号UMN’的波形示意图,图5为本发明实施例提供的换相误差滞后时电压信号UMN’的波形示意图,图6为本发明实施例提供的换相误差超前时电压信号UMN’的波形示意图。结合图4-图6所示,SA、SB、SC中的任一个信号发生跳变时,电压信号UMN’进行换相,SA、SB、SC未产生跳变时,UMN’保持不变,目标电压获取电路110可以在SA+SB+SC=1时,将电压信号UMN’进行翻转,从而形成在换相周期内单调递减的目标电压信号Umult,如图4-6所示。FIG. 4 is a schematic waveform diagram of the voltage signal U MN' when there is no commutation error provided by an embodiment of the present invention, FIG. 5 is a schematic waveform diagram of the voltage signal U MN' provided by an embodiment of the present invention when the commutation error is delayed, and FIG. 6 is a schematic diagram of the waveform of the voltage signal U MN' provided by the embodiment of the present invention A schematic diagram of the waveform of the voltage signal U MN' when the commutation error is advanced according to the embodiment of the invention. As shown in Figure 4-Figure 6, when any signal in SA, SB, SC jumps, the voltage signal U MN' is commutated, and when SA, SB, SC does not jump, U MN' remains unchanged , the target
在其他实施方式中,目标电压获取电路110还可以是在SA+SB+SC=2时,将电压信号UMN’进行翻转,从而形成在换相周期内单调递增的目标电压信号Umult。In other embodiments, the target
直流电压获取电路120接收目标电压信号Umult,并将目标电压信号Umult拆分为正电压信号Umult+和负电压信号Umult-,将正电压信号Umult+根据傅里叶级数分解,正电压信号Umult+的直流部分,即第一直流电压值Umult+_dc为:The DC
其中,S+为目标电压信号Umult正值部分的面积。Among them, S + is the area of the positive part of the target voltage signal U mult .
类似的,负电压信号Umult-的直流部分,即第二直流电压值Umult-_dc为:其中,S-为目标电压信号Umult负值部分的面积。Similarly, the DC part of the negative voltage signal U mult- , that is, the second DC voltage value U mult-_dc is: Wherein, S- is the area of the negative part of the target voltage signal U mult .
换相误差类型获取电路130能够接收第一直流电压值Umult+_dc和第二直流电压值Umult-_dc,根据第二直流电压值Umult-_dc获取其对应的绝对值|Umult-_dc|,并根据绝对值|Umult-_dc|和第一直流电压值Umult+_dc确定换相误差的类型。The commutation error
示例性地,结合图4-图6所示,若无换相误差,则S+=S-,|Umult-_dc|=Umult+_dc,如图4所示。若相位滞后,S+<S-,Umult+_dc<|Umult-_dc|,如图5所示,此时换相误差补偿量应该满足小于0,换相误差类型获取电路130产生的类型信号Sc为低电平信号0。若相位超前,S+>S-,Umult+_dc>|Umult-_dc|,如图6所示,此时换相误差补偿量应该满足大于0,换相误差类型获取电路130产生的类型信号Sc为高电平信号1。Exemplarily, with reference to Figures 4-6, if there is no commutation error, Then S + =S-, |U mult - _dc |=U mult+_dc , as shown in FIG. 4 . like Phase lag, S + < S-, U mult+_dc <|U mult - _dc |, as shown in Figure 5, the compensation amount of commutation error at this time Should be less than 0, the type signal S c generated by the commutation error
类型信号Sc为数字信号,数字处理器140的通用输入输出接口G可接收类型信号Sc,根据类型信号Sc可获取到换相误差的类型,从而能够确定换相误差补偿量的方向,并根据换相误差初始补偿量和收敛因子λ能够确定换相误差补偿量的大小,由此可知数字处理器140可以根据类型信号Sc、换相误差初始补偿量和收敛因子λ确定换相误差补偿量的大小和方向,因此,换相点为相电压过零点延迟从而实现换相误差的补偿。The type signal S c is a digital signal, the general input and output interface G of the
本发明实施例提供的技术方案中,通过目标电压获取电路的第一输入端与无刷直流电机的定子绕组的虚拟中性点电连接,目标电压获取电路的第二输入端和无刷直流电机的母线中点电连接,目标电压获取电路能够根据虚拟中性点与母线中点之间的电压信号,确定目标电压信号;通过直流电压获取电路的输入端与目标电压获取电路的输出端电连接,直流电压获取电路能够根据目标电压信号,确定目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值;通过换相误差类型获取电路的第一输入端与直流电压获取电路的第一输出端电连接,换相误差类型获取电路的第二输入端与直流电压获取电路的第二输出端电连接,换相误差类型获取电路能够根据第二直流电压值的绝对值和第一直流电压值,确定换相误差的类型信号,其中,类型信号包括高电平信号或者低电平信号,也就是说类型信号为数字信号,用于表示换相误差的类型为相位超前或者相位滞后;通过数字处理器的通用输入输出接口与换相误差类型获取电路的输出端电连接,数字处理器能够接收到数字信号,根据类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量。因此,本发明实施例提供的技术方案能够通过数字处理器的通用输入输出接口实现换相误差补偿。In the technical solution provided by the embodiment of the present invention, the first input terminal of the target voltage acquisition circuit is electrically connected to the virtual neutral point of the stator winding of the brushless DC motor, and the second input terminal of the target voltage acquisition circuit is connected to the brushless DC motor. The midpoint of the busbar is electrically connected, and the target voltage acquisition circuit can determine the target voltage signal according to the voltage signal between the virtual neutral point and the midpoint of the busbar; the input terminal of the DC voltage acquisition circuit is electrically connected to the output terminal of the target voltage acquisition circuit , the DC voltage acquisition circuit can determine, according to the target voltage signal, the first DC voltage value corresponding to the positive voltage signal and the second DC voltage value corresponding to the negative voltage signal in the target voltage signal; The first output terminal of the DC voltage acquisition circuit is electrically connected, the second input terminal of the commutation error type acquisition circuit is electrically connected with the second output terminal of the DC voltage acquisition circuit, and the commutation error type acquisition circuit can be based on the second DC voltage value. The absolute value and the first DC voltage value determine the type signal of the commutation error, wherein the type signal includes a high-level signal or a low-level signal, that is to say, the type signal is a digital signal, and the type used to represent the commutation error is Phase lead or phase lag; the digital processor is electrically connected to the output end of the commutation error type acquisition circuit through the universal input and output interface of the digital processor, and the digital processor can receive the digital signal, according to the type signal, the initial compensation amount of the commutation error and the convergence factor Determines the amount of commutation error compensation. Therefore, the technical solutions provided by the embodiments of the present invention can realize commutation error compensation through the universal input and output interface of the digital processor.
可选地,继续参见图1,数字处理器140包括:标志位信息获取单元141和补偿单元142。Optionally, continuing to refer to FIG. 1 , the
其中,标志位信息获取单元141的输入端与通用输入输出接口G电连接,标志位信息获取电路141用于根据类型信号Sc确定对应的标志位信息k。The input terminal of the flag
补偿单元的输入端142与标志位信息获取单元141的输出端电连接,补偿单元142用于根据公式(3)确定换相误差补偿量 The
其中,n为补偿次数,为第n次补偿时的换相误差补偿量,为换相误差初始补偿量,ki为第i次补偿时获取到的类型信号对应的标志位信息,λ为收敛因子,N为预设阈值。where n is the number of compensations, is the commutation error compensation amount in the nth compensation, is the initial compensation amount of the commutation error, ki is the flag bit information corresponding to the type signal obtained during the ith compensation, λ is the convergence factor, and N is the preset threshold.
具体地,标志位信息获取单元141根据类型信号Sc确定对应的标志位信息k,若Sc为低电平信号0,对应的标志位信息k为1,若Sc为高电平信号1,对应的标志位信息k为-1,由此可知标志位信息k能够表示换相误差补偿量的符号。Specifically, the flag bit
补偿单元142的工作状态分为两个阶段:The working state of the
第一阶段为,当n≤N时,补偿开始后首次补偿量为换相误差初始补偿量在此基础上,每一次补偿增加量都衰减为上一次补偿增加量的λ倍,补偿增加量逐渐减小,有效减弱了超调和振荡。加之k确定了换相误差补偿量是滞后补偿量还是超前补偿量,通过上述方式的不断累加,使得换相误差逐渐减小收敛。The first stage is, when n≤N, the first compensation amount after the compensation starts is the initial compensation amount of the commutation error On this basis, each compensation increase Both attenuate to λ times of the last compensation increase, and the compensation increase gradually decreases, effectively weakening the overshoot and oscillation. Plus k determines the commutation error compensation amount Whether it is the lag compensation amount or the advance compensation amount, the commutation error is gradually reduced and converged through the continuous accumulation of the above methods.
第二阶段为,为了避免误差补偿增加量最终衰减为零,当补偿次数满足n>N时,补偿增加量随着补偿次数增加而保持不变,如此保证了换相误差补偿收敛至稳态时,仍具有闭环补偿能力,以应对电路漂移、器件老化导致的缓慢误差变化。In the second stage, in order to avoid the final attenuation of the error compensation increase to zero, when the compensation times satisfy n>N, the compensation increase is maintained with the increase of the compensation times This ensures that when the commutation error compensation converges to a steady state, it still has a closed-loop compensation capability to cope with the slow error changes caused by circuit drift and device aging.
本发明实施例中,通过将换相误差的补偿过程分为两个阶段,第一阶段为换相误差补偿收敛阶段,补偿增加量逐渐减小,有效减弱了超调和振荡,第二阶段为换相误差补偿稳定阶段,避免换相误差补偿量衰减为零,使得换相误差补偿系统仍具有闭环补偿能力,从而能够应对电路漂移、器件老化导致的缓慢误差变化。In the embodiment of the present invention, the compensation process of the commutation error is divided into two stages. The first stage is the commutation error compensation convergence stage, and the compensation increment gradually decreases, effectively weakening the overshoot and oscillation. The second stage is the commutation error compensation convergence stage. In the stable phase of the phase error compensation, the commutation error compensation amount is prevented from decaying to zero, so that the commutation error compensation system still has the closed-loop compensation capability, so that it can cope with the slow error changes caused by circuit drift and device aging.
可选地,继续参见图1,换相误差类型获取电路130包括:第一反相器131和比较器132。Optionally, continue to refer to FIG. 1 , the commutation error
第一反相器131的输入端与换相误差类型获取电路130的第二输入端电连接,第一反相器131用于获取第二直流电压值Umult-_dc的绝对值|Umult-_dc|。The input terminal of the
比较器132的第一输入端与第一反相器131的输出端电连接,比较器132的第二输入端与换相误差类型获取电路130的第一输入端电连接。比较器132用于若第二直流电压值Umult-_dc的绝对值|Umult-_dc|大于第一直流电压值Umult+_dc,输出低电平信号0,若第二直流电压值Umult-_dc的绝对值|Umult-_dc|小于第一直流电压值Umult+_dc,输出高电平信号1。The first input terminal of the
补偿单元142还用于根据公式(4)确定类型信号Sc对应的标志位信息k:The
k=(Sc-0.5)×2 (4)k=(S c -0.5)×2 (4)
其中,Sc为低电平信号或高电平信号,k为类型信号Sc对应的标志位信息。Wherein, S c is a low-level signal or a high-level signal, and k is the flag bit information corresponding to the type signal S c .
具体地,如图5所示,即相位滞后时,比较器132输出的Sc为低电平信号0,补偿单元142根据公式(4)确定标志位信息k为-1,换相误差补偿量从而能够降低换相误差。如图6所示,即相位超前时,比较器132输出的Sc为高电平信号1,补偿单元142根据公式确定标志位信息k为1,换相误差补偿量从而能够降低换相误差。Specifically, as shown in Figure 5, That is, when the phase lags, the S c output by the
本发明实施例中,通过第一反相器和比较器能够根据换相误差是超前还是滞后而输出相应的高电平信号或者低电平信号,即输出数字信号,因此,数字处理器可通过通用输入输出端直接获取数字信号,从而确定换相误差是相位超前还是滞后,无需在换相误差补偿系统中设置模数转换器,节省硬件资源和软件资源。In the embodiment of the present invention, the first inverter and the comparator can output a corresponding high-level signal or a low-level signal according to whether the commutation error leads or lags, that is, outputs a digital signal. Therefore, the digital processor can pass The universal input and output terminal directly obtains the digital signal, so as to determine whether the commutation error is leading or lagging in phase, without setting an analog-to-digital converter in the commutation error compensation system, saving hardware resources and software resources.
可选地,继续参见图1,直流电压获取电路120包括:正电压直流电压获取电路121和负电压直流电压获取电路122。Optionally, continuing to refer to FIG. 1 , the DC
其中,正电压直流电压获取电路121包括第一半波整流器1211和第一电容C1,第一半波整流器1211的输入端分别与第一电容C1的第一端和直流电压获取电路120的输入端电连接,第一半波整流器1211的输出端分别与第一电容C1的第二端和直流电压获取电路120的第一输出端电连接。第一半波整流器1211用于获取目标电压信号Umult中的正电压信号Umult+,第一电容C1用于获取正电压信号Umult+对应的第一直流电压值Umult+_dc。The positive voltage DC
负电压直流电压获取电路122包括负电压半波整流电路1221和第二电容C2,第二半波整流器1221的输入端分别与第二电容C2的第一端和直流电压获取电路120的输入端电连接,第二半波整流器1221的输出端分别与第二电容C2的第二端和直流电压获取电路120的第二输出端电连接。第二半波整流器1221用于获取目标电压信号Umult中的负电压信号Umult-,第二电容C2用于获取负电压信号对应的第二直流电压值Umult-_dc。The negative voltage DC
具体地,如图1所示,第一半波整流器1211包括一个运放、一个电阻和两个二极管,其中一个二极管的正极分别与电阻的第一端、运放的输入端和第一半波整流器1211的输入端电连接,该二极管的负极分别与电阻的第二端、另一个二极管的负极和第一半波整流器1211的输出端电连接,另一个二极管的正极与运放的输出端电连接。目标电压信号Umult经第一半波整流器1211的整流作用,生成正电压信号Umult+。第一半波整流器1211是一种精密的半波整流器,得益于运放的高增益特性,使得运放的输入端即便有微弱电压变化,也会使得二极管导通,构成反馈回路,避免了二极管导通阈值的限制。在运放的反馈回路增加第一电容C1,当两个二极管截止时,第一电容C1充电,当两个二极管导通时,第一电容C1向电阻放电,实现了正电压信号Umult+的滤波平滑功能,故而可以得到第一直流电压值Umult+_dc。Specifically, as shown in FIG. 1 , the first half-
第二半波整流器1221包括一个运放、一个电阻和两个二极管,其中一个二极管的负极分别与电阻的第一端、运放的输入端和第二半波整流器1221的输入端电连接,该二极管的正极分别与电阻的第二端、另一个二极管的正极和第二半波整流器1221的输出端电连接,另一个二极管的负极与运放的输出端电连接。目标电压信号Umult经第二半波整流器1221的整流作用,生成负电压信号Umult-。第二半波整流器1221是一种精密的半波整流器,得益于运放的高增益特性,使得运放的输入端即便有微弱电压变化,也会使得二极管导通,构成反馈回路,避免了二极管导通阈值的限制。在运放的反馈回路增加第二电容C2,当两个二极管截止时,第二电容C2充电,当两个二极管导通时,第二电容C2向电阻放电,实现了负电压信号Umult-的滤波平滑功能,故而可以得到第二直流电压值Umult-_dc。The second half-
本发明实施例中,通过半波整流器对目标电压信号进行整流,从而获取到正电压信号和负电压信号,通过电容对正电压信号和负电压信号进行平滑滤波,从而获取到正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值,如此,通过硬件电路即可获取到第一直流电压值和第二直流电压值,能够节省无刷直流电机的换相误差补偿系统100的中断资源和计算资源。In the embodiment of the present invention, the target voltage signal is rectified by the half-wave rectifier, thereby obtaining the positive voltage signal and the negative voltage signal, and the positive voltage signal and the negative voltage signal are smoothed and filtered by the capacitor, so as to obtain the corresponding voltage signal of the positive voltage signal. The first DC voltage value and the second DC voltage value corresponding to the negative voltage signal, in this way, the first DC voltage value and the second DC voltage value can be obtained through the hardware circuit, which can save the commutation error compensation system of the
可选地,继续参见图1,目标电压获取电路110包括:减法器111、第二反相器112和选通器113。Optionally, continue to refer to FIG. 1 , the target
其中,减法器111的第一输入端与目标电压获取电路110的第一输入端电连接,减法器的111第二输入端和目标电压获取电路110的第二输入端电连接。减法器111用于获取虚拟中性点与母线中点之间的电压信号UMN’。The first input terminal of the
第二反相器112的输入端与减法器111的输出端电连接,第二反相器112用于获取电压信号UMN’的反相电压信号-UMN’;The input end of the
选通器113的第一输入端与第二反相器112的输出端电连接,选通器113的第二输入端分别与减法器111的输出端电连接,选通器113用于根据电压信号UMN’、反相电压信号-UMN’和选通信号S产生目标电压信号Umult。The first input terminal of the
示例性地,图7为本发明实施例提供的一种目标电压Umult的示意图,如图7所示,选通信号S为高电平时,选通器113选通第二反相器112的输出端,即选通-UMN’,选通信号S为低电平时,选通器113选通减法器111的输出端,即选通UMN’,从而产生目标电压信号Umult,目标电压信号Umult在换相周期内单调递减。在其他实施方式中,还可以是选通信号S为高电平时,选通UMN’,选通信号S为低电平时选通-UMN’,从而产生目标电压信号Umult,目标电压信号Umult在换相周期内单调递增。Exemplarily, FIG. 7 is a schematic diagram of a target voltage U mult provided by an embodiment of the present invention. As shown in FIG. 7 , when the gate signal S is at a high level, the
本发明实施例中,通过减法器获取到虚拟中性点与母线中点之间的电压信号,通过第二反相器获取电压信号的反相电压信号,通过选通器获取目标电压信号,如此,通过硬件电路即可获取到目标电压信号,能够节省无刷直流电机的换相误差补偿系统100的中断资源和计算资源。In the embodiment of the present invention, the voltage signal between the virtual neutral point and the midpoint of the bus is obtained through the subtractor, the inverted voltage signal of the voltage signal is obtained through the second inverter, and the target voltage signal is obtained through the gate, so , the target voltage signal can be obtained through the hardware circuit, which can save the interruption resources and computing resources of the commutation
本发明实施例还提供了一种无刷直流电机的换相误差补偿方法,应用于上述实施例提供的无刷直流电机的换相误差补偿系统100,具备无刷直流电机的换相误差补偿100的有益效果。The embodiment of the present invention also provides a commutation error compensation method for a brushless DC motor, which is applied to the commutation
图8为本发明实施例提供的一种无刷直流电机的换相误差补偿方法的流程示意图,该换相误差补偿方法适用于如图1所示的无刷直流电机的换相误差补偿系统100。如图8所示,换相误差补偿方法的具体步骤包括:FIG. 8 is a schematic flowchart of a commutation error compensation method for a brushless DC motor according to an embodiment of the present invention. The commutation error compensation method is applicable to the commutation
S101,根据所述无刷直流电机中虚拟中性点与母线中点之间的电压信号,确定目标电压信号。S101: Determine a target voltage signal according to a voltage signal between a virtual neutral point and a bus midpoint in the brushless DC motor.
具体地,目标电压获取电路110能够获取虚拟中性点N’与母线中点M之间的电压信号UMN’,并根据电压信号UMN’确定目标电压信号Umult。Specifically, the target
S102,根据所述目标电压信号,确定所述目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值。S102: Determine, according to the target voltage signal, a first DC voltage value corresponding to a positive voltage signal and a second DC voltage value corresponding to a negative voltage signal in the target voltage signal.
具体地,直流电压获取电路120能够接收目标电压获取电路110输出的目标电压信号Umult,根据接收到的目标电压信号Umult确定目标电压信号Umult中的正电压信号Umult+和负电压信号Umult-,并分别确定正电压信号Umult+对应的第一直流电压值Umult+_dc和负电压信号Umult-对应的第二直流电压值Umult-_dc。Specifically, the DC
S103,根据所述第二直流电压值的绝对值和所述第一直流电压值,确定换相误差的类型信号。S103: Determine a type signal of a commutation error according to the absolute value of the second DC voltage value and the first DC voltage value.
类型信号包括高电平信号或者低电平信号,类型信号用于表示换相误差的类型为相位超前或者相位滞后。The type signal includes a high-level signal or a low-level signal, and the type signal is used to indicate that the type of the commutation error is phase lead or phase lag.
具体地,换相误差类型获取电路130能够接收直流电压获取电路120输出的第二直流电压值Umult-_dc,并确定其绝对值|Umult-_dc|。换相误差类型获取电路130还能够接收直流电压获取电路120输出的第一直流电压值Umult+_dc,并根据第二直流电压值Umult-_dc的绝对值|Umult-_dc|和第一直流电压值Umult+_dc,确定换相误差的类型为相位超前或者相位滞后,并输出表示换相误差的类型信号Sc,这里的类型信号Sc为数字信号,即为高电平信号1或者低电平信号0。Specifically, the commutation error
S104,根据所述类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量。S104: Determine the commutation error compensation amount according to the type signal, the commutation error initial compensation amount, and the convergence factor.
具体地,数字处理器140通过通用输入输出接口G能够直接获取到类型信号Sc,由于类型信号Sc为数字信号,因此,无需ADC。数字处理器140能够根据类型信号Sc确定换相误差补偿量的方向,还能够根据换相误差初始补偿量和收敛因子λ能够确定换相误差补偿量的大小。Specifically, the
本发明实施例提供的技术方案中,通过根据虚拟中性点与母线中点之间的电压信号,确定目标电压信号;根据目标电压信号,确定目标电压信号中正电压信号对应的第一直流电压值和负电压信号对应的第二直流电压值;根据第二直流电压值的绝对值和第一直流电压值,确定换相误差的类型信号,其中,类型信号包括高电平信号或者低电平信号,也就是说类型信号为数字信号,用于表示换相误差的类型为相位超前或者相位滞后;根据类型信号、换相误差初始补偿量和收敛因子确定换相误差补偿量,数字处理器通过通用输入输出接口即可直接获取类型信号,并根据类型信号、初始补偿量和收敛因子能够确定相误差补偿量,故而无需设置ADC,通过数字处理器的通用输入输出接口即可实现换相误差补偿。In the technical solution provided by the embodiment of the present invention, the target voltage signal is determined according to the voltage signal between the virtual neutral point and the bus midpoint; according to the target voltage signal, the first DC voltage value corresponding to the positive voltage signal in the target voltage signal is determined The second DC voltage value corresponding to the negative voltage signal; according to the absolute value of the second DC voltage value and the first DC voltage value, the type signal of the commutation error is determined, wherein the type signal includes a high-level signal or a low-level signal , that is to say, the type signal is a digital signal, which is used to indicate that the type of commutation error is phase lead or phase lag; the commutation error compensation amount is determined according to the type signal, the initial compensation amount of the commutation error and the convergence factor. The type signal can be directly obtained through the input and output interface, and the phase error compensation amount can be determined according to the type signal, the initial compensation amount and the convergence factor, so there is no need to set the ADC, and the commutation error compensation can be realized through the general input and output interface of the digital processor.
图9为本发明实施例提供的另一种无刷直流电机的换相误差补偿方法的流程示意图,图9为图8所示实施例的基础上,执行S104时的一种可能的实现方式的具体描述,包括:FIG. 9 is a schematic flowchart of another commutation error compensation method for a brushless DC motor provided by an embodiment of the present invention, and FIG. 9 is a possible implementation manner of executing S104 on the basis of the embodiment shown in FIG. 8 A detailed description, including:
S1041,根据所述类型信号确定所述类型信号对应的标志位信息。S1041. Determine the flag bit information corresponding to the type signal according to the type signal.
具体地,如图1所示,数字处理器140包括标志位信息获取单元141和补偿单元142,标志位信息获取单元141能够根据类型信号Sc,确定类型信号Sc对应的标志位信息k,标志位信息k为1或者-1,标志位信息k用于表示换相误差补偿量的符号,即换相误差补偿量的方向。Specifically, as shown in FIG. 1 , the
S1043,根据公式(3)确定所述换相误差补偿量。S1043: Determine the commutation error compensation amount according to formula (3).
具体地,补偿单元142将预设的相误差初始补偿量和收敛因子λ代入公式(3)可以确定相误差补偿量的大小。Specifically, the
根据公式(3)可知,换相误差补偿的过程分为两个阶段:According to formula (3), the process of commutation error compensation is divided into two stages:
第一阶段为,当n≤N时,补偿开始后首次补偿量为换相误差初始补偿量在此基础上,每一次补偿增加量都衰减为上一次补偿增加量的λ倍,补偿增加量逐渐减小,有效减弱了超调和振荡。加之k确定了换相误差补偿量是滞后补偿量还是超前补偿量,通过上述方式的不断累加,使得换相误差逐渐减小收敛。The first stage is, when n≤N, the first compensation amount after the compensation starts is the initial compensation amount of the commutation error On this basis, each compensation increase Both attenuate to λ times of the last compensation increase, and the compensation increase gradually decreases, effectively weakening the overshoot and oscillation. Plus k determines the commutation error compensation amount Whether it is the lag compensation amount or the advance compensation amount, the commutation error is gradually reduced and converged through the continuous accumulation of the above methods.
第二阶段为,为了避免误差补偿增加量最终衰减为零,当补偿次数满足n>N时,补偿增加量随着补偿次数增加而保持不变,如此保证了换相误差补偿收敛至稳态时,仍具有闭环补偿能力,以应对电路漂移、器件老化导致的缓慢误差变化。In the second stage, in order to avoid the final attenuation of the error compensation increase to zero, when the compensation times satisfy n>N, the compensation increase is maintained with the increase of the compensation times This ensures that when the commutation error compensation converges to a steady state, it still has a closed-loop compensation capability to cope with the slow error changes caused by circuit drift and device aging.
本发明实施例中,通过将换相误差的补偿过程分为两个阶段,第一阶段为换相误差补偿收敛阶段,补偿增加量逐渐减小,有效减弱了超调和振荡,第二阶段为换相误差补偿稳定阶段,避免换相误差补偿量衰减为零,使得换相误差补偿系统仍具有闭环补偿能力,从而能够应对电路漂移、器件老化导致的缓慢误差变化。In the embodiment of the present invention, the compensation process of the commutation error is divided into two stages. The first stage is the commutation error compensation convergence stage, and the compensation increment gradually decreases, effectively weakening the overshoot and oscillation. The second stage is the commutation error compensation convergence stage. In the stable phase of the phase error compensation, the commutation error compensation amount is prevented from decaying to zero, so that the commutation error compensation system still has the closed-loop compensation capability, so that it can cope with the slow error changes caused by circuit drift and device aging.
可选地,继续参见图9,执行S1043之前,还包括:Optionally, continue to refer to FIG. 9, before executing S1043, further include:
S1042,根据公式(5)确定所述预设阈值:S1042, determine the preset threshold according to formula (5):
其中,δ为误差补偿收敛至稳态时的换相误差补偿增量。Among them, δ is the commutation error compensation increment when the error compensation converges to the steady state.
具体的,补偿单元142将预设的δ、相误差初始补偿量和收敛因子λ代入公式(5),可确定预设阈值N,当补偿次数达到预设阈值N时,表示换相误差补偿进入稳态。δ越小,换相误差补偿收敛的过程越慢,稳态的周期性振荡越微弱,换相误差补偿的精度越高。Specifically, the
图10为本发明实施例提供的另一种无刷直流电机的换相误差补偿方法的流程示意图,图10为图9所示实施例的基础上,执行S103时的一种可能的实现方式的具体描述,包括:FIG. 10 is a schematic flowchart of another commutation error compensation method for a brushless DC motor according to an embodiment of the present invention. FIG. 10 is a possible implementation of S103 based on the embodiment shown in FIG. 9 . Specific description, including:
S103’,若所述第二直流电压值的绝对值大于所述第一直流电压值,输出低电平信号;若所述第二直流电压值的绝对值小于所述第一直流电压值,输出高电平信号。S103', if the absolute value of the second DC voltage value is greater than the first DC voltage value, output a low-level signal; if the absolute value of the second DC voltage value is smaller than the first DC voltage value, output high level signal.
具体地,如图1所示,换相误差类型获取电路130包括第二反相器131和比较器132,第二反相器131能够接收直流电压获取电路120输出的第二直流电压值Umult-_dc,并确定其绝对值|Umult-_dc|,比较器132能够接收第二直流电压值Umult-_dc的绝对值|Umult-_dc|和第一直流电压值Umult+_dc,并在第二直流电压值Umult-_dc的绝对值|Umult-_dc|大于第一直流电压值Umult+_dc时,输出低电平信号0,在第二直流电压值Umult-_dc的绝对值|Umult-_dc|小于第一直流电压值Umult+_dc时,输出高电平信号1。Specifically, as shown in FIG. 1 , the commutation error
执行S1041时的一种可能的实现方式的具体描述,如图10所示:A specific description of a possible implementation when S1041 is executed, as shown in Figure 10:
S1041’,根据公式(4)确定所述类型信号对应的标志位信息。S1041', determine the flag bit information corresponding to the type signal according to formula (4).
示例性地,如图5所示,即相位滞后时,Sc为低电平信号0,根据公式(4)确定标志位信息k为-1,换相误差补偿量从而能够降低换相误差。如图6所示,即相位超前时,Sc为高电平信号1,根据公式(4)确定标志位信息k为1,换相误差补偿量从而能够降低换相误差。Exemplarily, as shown in Figure 5, That is, when the phase lags, S c is a low-
本发明实施例中,根据类型信号可获取换相误差补偿量的符号,使得在相位误差补偿量的作用下能够有效减小换相误差,提升换相精度。In the embodiment of the present invention, the sign of the commutation error compensation amount can be obtained according to the type signal, so that the commutation error can be effectively reduced and the commutation accuracy can be improved under the action of the phase error compensation amount.
图11为本发明实施例提供的另一种无刷直流电机的换相误差补偿方法的流程示意图,图11为图8所示实施例的基础上,执行S101时的一种可能的实现方式的具体描述,包括:FIG. 11 is a schematic flowchart of another commutation error compensation method for a brushless DC motor according to an embodiment of the present invention, and FIG. 11 is a possible implementation of S101 based on the embodiment shown in FIG. 8 . A detailed description, including:
S1011,获取所述电压信号的反相电压信号。S1011, acquiring an inverse voltage signal of the voltage signal.
具体的,第二反相器112接收减法器111输出的电压信号UMN’,并根据电压信号UMN’,获取其对应的反相电压信号-UMN’。Specifically, the
S1012,根据所述电压信号、所述反相信号和选通信号,获取所述目标电压信号。S1012: Acquire the target voltage signal according to the voltage signal, the inversion signal and the gating signal.
目标电压信号在换相周期内单调递增或者单调递减。The target voltage signal monotonically increases or decreases monotonically within the commutation period.
示例性地,如图7所示,选通信号S为高电平时,选通器113选通第二反相器112的输出端,即选通-UMN’,选通信号S为低电平时,选通器113选通减法器111的输出端,即选通UMN’,从而能够获取到在换相周期内单调递减的目标电压信号Umult。Exemplarily, as shown in FIG. 7 , when the gate signal S is at a high level, the
在其他实施方式中,还可以是选通信号S为高电平时,选通UMN’,选通信号S为低电平时选通-UMN’,从而能够获取到在换相周期内单调递增的目标电压信号Umult。In other embodiments, U MN' may also be gated when the gate signal S is at a high level, and -UMN' may be gated when the gate signal S is at a low level, so that the monotonically increasing phase within the commutation period can be obtained. The target voltage signal U mult .
基于电压信号UMN’,无论换相准确、相位超前还是相位滞后,电压信号UMN’在一个周期内的正电压电信号的直流分量和负电压电信号的直流分量的绝对值均相等。本发明实施例根据电压信号获取目标电压信号,目标电压信号能够打破这种规律,使得相位超前或者相位滞后时,一个周期内的正电压电信号的直流分量和负电压电信号的直流分量的绝对值均不等,从而能够准确反映出换相误差。Based on the voltage signal U MN' , no matter the commutation is accurate, the phase leads or the phase lags, the absolute values of the DC component of the positive voltage electrical signal and the DC component of the negative voltage electrical signal of the voltage signal U MN' in one cycle are equal. In this embodiment of the present invention, the target voltage signal is acquired according to the voltage signal, and the target voltage signal can break this rule, so that when the phase leads or the phase lags, the absolute difference between the DC component of the positive voltage electrical signal and the DC component of the negative voltage electrical signal in one cycle is The values are not equal, so that the commutation error can be accurately reflected.
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as "first" and "second" etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these There is no such actual relationship or sequence between entities or operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific embodiments of the present disclosure, so that those skilled in the art can understand or implement the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure is not intended to be limited to the embodiments described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110578352.5A CN113315422B (en) | 2021-05-26 | 2021-05-26 | Commutation error compensation system and commutation error compensation method of brushless DC motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110578352.5A CN113315422B (en) | 2021-05-26 | 2021-05-26 | Commutation error compensation system and commutation error compensation method of brushless DC motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113315422A CN113315422A (en) | 2021-08-27 |
CN113315422B true CN113315422B (en) | 2022-06-17 |
Family
ID=77375039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110578352.5A Active CN113315422B (en) | 2021-05-26 | 2021-05-26 | Commutation error compensation system and commutation error compensation method of brushless DC motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113315422B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113630047B (en) * | 2021-09-13 | 2024-05-10 | 北京航空航天大学 | Commutation error compensation system and commutation error compensation method for brushless direct current motor |
CN113809957B (en) * | 2021-09-28 | 2024-01-12 | 北京航空航天大学 | Commutation error compensation method and commutation error compensation system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4495450A (en) * | 1982-12-29 | 1985-01-22 | Sanyo Electric Co., Ltd. | Control device for brushless motor |
JPH07163179A (en) * | 1993-12-07 | 1995-06-23 | Zexel Corp | Drive control circuit for brushless motor |
CN105763109B (en) * | 2016-04-06 | 2018-02-06 | 深圳拓邦股份有限公司 | A kind of phase change control method of DC brushless motor, the control system for non-brush direct currunt electromotors |
DE102016115056B3 (en) * | 2016-08-12 | 2017-10-05 | Elmos Semiconductor Aktiengesellschaft | Method and device for preventing faulty commutations for a brushless motor |
CN112737430B (en) * | 2020-12-22 | 2022-08-19 | 北京航空航天大学宁波创新研究院 | Phase commutation system and method of high-speed brushless direct current motor |
-
2021
- 2021-05-26 CN CN202110578352.5A patent/CN113315422B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113315422A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113315422B (en) | Commutation error compensation system and commutation error compensation method of brushless DC motor | |
CN107395072B (en) | A method for phase compensation of brushless DC motor without position sensor | |
CN109391199B (en) | Dead zone compensation method, motor driver and computer readable storage medium | |
CN107425781B (en) | A SRM Position Estimation Method Based on Linear Flux Model and Linear Regression Analysis | |
CN108712127B (en) | Method and device for controlling switched reluctance motor without position sensor | |
CN110535378B (en) | High-precision phase change control method and system for brushless direct current motor | |
CN112737430B (en) | Phase commutation system and method of high-speed brushless direct current motor | |
JPS5917892A (en) | Phase detector for commutatorless motor | |
CN110299876B (en) | A control method for improving commutation accuracy of brushless DC motor | |
US12068713B2 (en) | Sensorless commutation error compensation system and method for brushless motor | |
CN114665776A (en) | Control method and system for dynamic decoupling of closed-loop stepping motor and storage medium | |
Tatemarsu et al. | New approaches with sensorless drives | |
CN213633738U (en) | Digital AC servo driver with three-phase motor open-phase detection | |
CN113364367B (en) | Commutation error compensation system and method of high-speed brushless direct current motor | |
CN113224986B (en) | DC brushless motor and control method of DC brushless motor | |
CN108429504B (en) | A Torque Control Method of Switched Reluctance Motor Based on Low-cost Position Sensor | |
CN115811260A (en) | Rotary transformer zero point identification method and device of motor and computer storage medium | |
JP2001078486A (en) | Vector controller of permanent magnet system of synchronous motor | |
KR102547077B1 (en) | Apparatus and method for controlling motor | |
CN115913028A (en) | A current sampling method, device, electronic equipment and storage medium | |
Xu et al. | A cost-effective phase current sensing scheme involving online error correction for switched reluctance motor drive | |
CN115425901A (en) | Switched reluctance motor control system | |
CN113809957B (en) | Commutation error compensation method and commutation error compensation system | |
CN114465535B (en) | Commutation method and device for brushless direct current motor and brushless direct current motor system | |
CN113241984B (en) | Control method and device of switched reluctance motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |