CN113313712B - 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质 - Google Patents

一种电池涂胶缺陷检测方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
CN113313712B
CN113313712B CN202110867754.7A CN202110867754A CN113313712B CN 113313712 B CN113313712 B CN 113313712B CN 202110867754 A CN202110867754 A CN 202110867754A CN 113313712 B CN113313712 B CN 113313712B
Authority
CN
China
Prior art keywords
gluing
cross
section
defect
point cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110867754.7A
Other languages
English (en)
Other versions
CN113313712A (zh
Inventor
张校志
林才纺
杨远达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110867754.7A priority Critical patent/CN113313712B/zh
Publication of CN113313712A publication Critical patent/CN113313712A/zh
Application granted granted Critical
Publication of CN113313712B publication Critical patent/CN113313712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本发明公开了一种电池涂胶缺陷检测方法、装置、电子设备及存储介质,其中,方法包括以下步骤:获取一待测涂胶横截面的采样点云,构成采样点集;获取邻近于待测涂胶横截面的若干涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板;基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;根据相似度信息判断待测涂胶横截面是否存在涂胶缺陷;该方法利用动态时间规整算法计算获取待测涂胶横截面的采集点云和邻近涂胶横截面的参考点云的相似度信息,根据相似度信息快速筛选确定涂胶缺陷的存在,该检测方法效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。

Description

一种电池涂胶缺陷检测方法、装置、电子设备及存储介质
技术领域
本申请涉及电池检测技术领域,具体而言,涉及一种电池涂胶缺陷检测方法、装置、电子设备及存储介质。
背景技术
在手机等电池涂胶及检测工艺中,电池涂胶是电池生产中极其重要的一环,确保胶粘剂和密封胶精确、均匀分布,有助于延长电池的使用寿命。
电池涂胶常见的缺陷有:溢胶、胶洞和胶的填充不饱和,通过涂胶缺陷检测技术进行及时的反馈,能够有效改善涂胶缺陷检测的准确率,提高检测质量的效率。
现有涂胶缺陷检测技术一般采用图像处理配合人工判读的方式进行,人工判读较为主观不稳定、误检率高,且图像处理的方案容易受到环境光线强弱、颜色和胶本体颜色等外部影响,导致检测效果不稳定。
因而,市面上产生利用激光点云从横截面进行处理的方案,但现有基于激光点云从横截面进行判断的方案,其判断过程冗余判断和计算较多,需要通过计算获取高度、面积、密度等数据,运算过程繁琐。
针对上述问题,目前尚未有有效的技术解决方案。
发明内容
本申请的目的在于提供一种电池涂胶缺陷检测方法、装置、电子设备及存储介质,以提高电池涂胶缺陷检测的效率、精度,简化缺陷获取过程。
第一方面,本申请提供一种电池涂胶缺陷检测方法,用于检测电池涂胶缺陷,所述方法包括以下步骤:
S1、获取一待测涂胶横截面的采样点云,构成采样点集;
S2、获取邻近于所述待测涂胶横截面的若干涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板;
S3、基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
S4、根据所述相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
本申请的一种电池涂胶缺陷检测方法,基于待测涂胶横截面的采集点云和邻近涂胶横截面的参考点云利用动态时间规整算法进行计算比较,可简单、快捷、精确地获取待测涂胶横截面与邻近涂胶横截面的相似度,进而快速筛选确定涂胶缺陷的存在,该检测方法效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
所述的一种电池涂胶缺陷检测方法,其中,步骤S2中,涂胶横截面的数量基于重复拍照的精度进行调整。
所述的一种电池涂胶缺陷检测方法,其中,步骤S3包括以下子步骤:
S31、运用动态时间规整算法分别计算采样点集邻近的若干标准点集中每个参考点云与采样点集之间的最小距离信息;
S32、对所有最小距离信息进行加权平均,获得所述相似度信息。
所述的一种电池涂胶缺陷检测方法,其中,所述采样点云和所述参考点云均为激光点云。
所述的一种电池涂胶缺陷检测方法,其中,步骤S2中,邻近于所述待测涂胶横截面的若干涂胶横截面为沿涂胶方向等距确定。
所述的一种电池涂胶缺陷检测方法,其中,步骤S4基于SVM分类器判断待测涂胶横截面是否存在缺陷或基于设置相似度阈值判断待测涂胶横截面是否存在缺陷。
所述的一种电池涂胶缺陷检测方法,其中,获取的采样点云和参考点云均要进行去噪处理。
第二方面,本申请还提供了一种电池涂胶缺陷检测装置,用于检测电池涂胶缺陷,包括:
采样模块,用于获取一待测涂胶横截面的采样点云,构成采样点集;
参考模块,用于获取邻近于所述待测涂胶横截面的若干涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板;
计算比较模块,用于基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
判断模块,用于根据所述相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
本申请的一种电池涂胶缺陷检测装置,利用采样模块获取基于待测涂胶横截面的采集点云和利用参考模块获取邻近涂胶横截面的参考点云,结合计算比较模块通过动态时间规整算法对两种点集进行计算比较,可简单、快捷、精确地获取待测涂胶横截面与邻近涂胶横截面的相似度,进而利用判断模块快速筛选确定涂胶缺陷的存在,该检测装置效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
第三方面,本申请还提供了一种电子设备,包括处理器以及存储器,所述存储器存储有计算机可读取指令,当所述计算机可读取指令由所述处理器执行时,运行如上述第一方面提供的所述方法中的步骤。
第四方面,本申请还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时运行如上述第一方面提供的所述方法中的步骤。
由上可知,本申请提供了一种电池涂胶缺陷检测方法、装置、电子设备及存储介质,其中,方法利用动态时间规整算法计算获取待测涂胶横截面的采集点云和邻近涂胶横截面的参考点云的相似度信息,进而根据相似度信息快速筛选确定涂胶缺陷的存在,该检测方法效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
附图说明
图1为本申请实施例提供的一种电池涂胶缺陷检测方法的流程图。
图2为本申请实施例提供的一种电池涂胶缺陷检测装置的结构示意图。
图3为本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
第一方面,请参照图1,图1是本申请一些实施例中的一种电池涂胶缺陷检测方法,用于检测电池涂胶缺陷,方法包括以下步骤:
S1、获取一待测涂胶横截面的采样点云,构成采样点集;
具体地,采样点云的间隔一般要远远小于常见的涂胶缺陷的半径,目的是确保采样点云能反映出涂胶缺陷,避免采样间隔过大导致点云跳过具有缺陷的区域而导致未能检测出涂胶缺陷。
S2、获取邻近于待测涂胶横截面的若干涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板;
具体地,获取一待测涂胶横截面的采样点云时,需采集邻近于待测涂胶横截面的若干涂胶横截面中的参考点云作为比对基础,采样点集合标准点集在待测涂胶横截面改变时可相互切换,由此,步骤S1、S2获取的采样点集、标准点集可重复使用,节省检测资源。
更具体地,在本申请实施例中,优选采用一次性按照预定位置获取所有横截面中的点云数据,然后根据检测目标调用对应的点云数据作为采样点集、标准点集。
S3、基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
具体地,动态时间规整算法即DTW算法(Dynamic Time Warping),该算法的核心思想是在一个距离矩阵中从两个序列的起点找到通往两个序列终点(即对角线的一端到另一端)的最小距离路径,由此可获取采样点集与标准点集之间点云的距离关系,基于采样点集与多个标准点集的距离关系可获知该测涂胶横截面与关于多个邻近涂胶横截面的标准模板的点云距离情况,这些点云距离情况作为相似度信息反映了涂胶横截面与标准模板中涂胶横截面的形态相似度。
具体地,若待测涂胶横截面中存在缺陷,则标准点集中参考点云利用动态时间规整算法运算时会适配到缺陷附近的采样点云获取最小距离路径,从而导致最小距离增大,从而影响相似度信息。
S4、根据相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
具体地,由于基于点云距离的相似度信息反映了待测涂胶横截面与邻近涂胶横截面的形态相似度,因此,相似度信息超出预期情况时即表面待测涂胶横截与邻近横截面之间存在形态差异,根据这些形态差异可判断待测涂胶横截面是否存在涂胶缺陷。
更具体地,可对所有涂胶横截面进行步骤S1-S3的检测,然后再基于步骤S4判断哪些待测涂胶横截面的相似度信息超出预期情况确定涂胶缺陷存在的位置;由于涂胶缺陷可能存在于一小段涂胶上,这段涂胶中的待测涂胶横截面测取的相似度信息不一定超出预期情况,因此,可对所有涂胶横截面进行步骤S1-S3的检测,再综合所有相似度信息变化情况进行涂胶缺陷判断,以更精确地确认是否存在涂胶缺陷和确认涂胶缺陷的位置。
本申请实施例的一种电池涂胶缺陷检测方法,基于待测涂胶横截面的采集点云和邻近涂胶横截面的参考点云利用动态时间规整算法进行计算比较,可简单、快捷、精确地获取待测涂胶横截面与邻近涂胶横截面的相似度,进而快速筛选确定涂胶缺陷的存在,该检测方法效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
具体地,采样点云和参考点云均为点云数据,在逆向工程中通过测量仪器得到的产品的点数据集合也称之为点云数据,这些点云数据需要采用激光扫描仪或其他拍摄工具进行获取。
在一些优选的实施方式中,步骤S2中,涂胶横截面的数量基于重复拍照的精度进行调整。
具体地,根据扫描拍摄精度可适当调节获取的涂胶横截面的间隔距离、数量,如重复拍照精度低,则间隔距离则增大、数量减少,反之间隔距离减小、数量增多,从而确保获得的点云数据足够清晰反映检测效果。
在一些优选的实施方式中,步骤S3中,可以是计算待测涂胶横截面与标准模板中多个邻近横截面之间的相似度信息,还可以是计算待测涂胶横截面与标准模板中一个邻近横截面之间的相似度信息。
在本实施例中,优选为计算待测涂胶横截面与标准模板中多个邻近涂胶横截面之间的相似度信息,由此可基于待测涂胶横截面与多个邻近涂胶横截面的相似度,从而能更综合该待测涂胶横截面邻近结构变化情况反映涂胶是否存在缺陷。
在一些优选的实施方式中,步骤S3包括以下子步骤:
S31、运用动态时间规整算法分别计算采样点集邻近的若干标准点集中每个参考点云与采样点集之间的最小距离信息;
具体地,获取步骤S2中的标准模板中的若干标准点集,以该若干标准点集与采样点集进行比较计算。
具体地,设采样点集为P=(p1,p2,…,pm),设标准模板为集合{T1,T2,…Ti,…,Tk},对应一个标准点集为Ti=(t1,t2,…,tn ),假定采样点集P与标准点集T1进行计算分析,使用动态规划计算序列P到T1的序列最小距离信息的步骤如下:
(1)计算P到T1距离矩阵,分别计算pi与tj点间的欧式距离,记录为矩阵D,获得下表:
表1 序列P到Ti各点的欧氏距离D
p<sub>1</sub> p<sub>m</sub>
t<sub>1</sub> d(1,1) d(1,m)
t<sub>n</sub> d(n,1) d(n,m)
(2)从左上角开始在矩阵D中搜寻最小路径,可以向右、向下或者向右下前进, 对进行到这三个方向后的距离累加和进行比较,如果用dp(i,j)表示二维矩阵中位置(i,j)的最小距离, 那么状态转移方程可以表示为:
dp(i,j)=min(dp(i-1,j-1),dp(i-1,j),dp(i,j-1))+d(i,j),
其中,d(i,j)为pi点与tj点之间的欧氏距离,可得到P到Ti距离累积和矩阵DP最初状态如下:
表2 初始计算的序列P到Ti距离累积和矩阵DP
p<sub>1</sub> p<sub>m</sub>
t<sub>1</sub> dp(1,1) dp(1,m)
t<sub>n</sub> dp(n,1)
(3)用动态规划的方法,最终构建完整的距离累积和矩阵DP,由此可确定采样点云与参考点云之间的最小距离为dp(n,m):
表3 完整的序列P到Ti距离累积和矩阵DP
p<sub>1</sub> p<sub>m</sub>
t<sub>1</sub> dp(1,1) dp(1,m)
t<sub>n</sub> dp(n,1) dp(n,m)
以此dp(n,m) 为P到Ti之间的最小距离信息。由此,可获取采样点云与每个邻近参考点云之间的最小距离信息。
基于上述计算过程获取若干与待测涂胶横截面邻近的涂胶横截面的标准点集与采样点集中点云之间的最小距离信息。
S32、对所有最小距离信息进行加权平均,获得相似度信息。
具体地,将标准点集与采样点集的最小距离信息进行加权平均,权重分配按照中间大、两边小的原则,可获得该采样点集中采样点云到该标准点集的参考点云之间的平均距离,该距离可反映两个横截面之间的平均距离特性,即可反映两者之间的相似度,故可以加权平均后的最小距离信息作为相似度信息。
更具体地,由步骤S32可获取多个标准点集与采样点集之间的相似度信息,可分别对这些相似度信息进行分析判断缺陷,也可将这些相似度信息进行叠加再进行分析判断缺陷。
在一些优选的实施方式中,采样点云和参考点云均为激光点云。
具体地,采样点云和参考点云采用3D激光检测设备获取,使得点云数据的数据源精度高,另外,采用激光点云级别进行缺陷检测,能够应对高精度的缺陷检测。
在一些优选的实施方式中,步骤S2中,邻近于待测涂胶横截面的若干涂胶横截面为沿涂胶方向等距确定,即获取了多个等距设置的且相互平行的横截面中的点云数据;由于标准点集的涂胶横截面与为等距确定的,即提供了一个设定的标准距离,可供步骤S3获取的相似度信息作为参考对象,便于步骤S4判断缺陷。
在一些优选的实施方式中,步骤S4基于SVM分类器判断待测涂胶横截面是否存在缺陷或基于设置相似度阈值判断待测涂胶横截面是否存在缺陷。
具体地,采用SVM分类器判断待测涂胶横截面是否存在缺陷时,SVM是一种二类分类模型,其求解目标在于确定一个分类的超平面,以最大化特征空间上的间隔;SVM分类器的使用过程包括训练阶段和使用阶段。其中,训练阶段需均匀采集有缺陷和无缺陷的涂胶横截面与模板数据库在该处的标准横截面集以一对多的形式利用动态时间规整算法计算一组序列最小距离(D1,D2,…,Dn), 将(D1,D2,…,Dn)作为特征输入,构建特征空间,以有无缺陷为标签,训练SVM分类器;然后,在使用阶段使用待测涂胶横截面与标准模板在该处的邻近的标注点集以一对多的形式利用DTW算法计算一组序列最小距离(D1,D2,…,Dn),将(D1,D2,…,Dn)作为特征输入SVM分类器,得到结果(有缺陷/无缺陷),使得SVM可基于数据特征区分涂胶横截面有无缺陷。
具体地,实际采用SVM分类器进行判断时,仅需对训练好的SVM分类器输入采样点集的采样点云和若干邻近标准点集的参考点云之间的序列最小距离即可自动分析获取判断结果。
具体地,采用设置相似度阈值判断待测涂胶横截面是否存在缺陷时,基于标准点集对应的涂胶横截面与待测涂胶横截面之间的间距设定一个相似度阈值,该相似度阈值为包括距离阈值范围,然后判断以最小距离信息加权平均获取的相似度信息是否超出相似度阈值以判断是否存在去缺陷,这种判断方式具有逻辑简单、判断反应迅速的特点。
在一些优选的实施方式中,获取的采样点云和参考点云均要进行去噪处理。
具体地,采用点云滤波的方式对采样点云和参考点云进行去噪处理,确保点云数据清晰可用,从而提高缺陷检测精度。
第二方面,请参照图2,图2是本申请一些实施例中提供的一种电池涂胶缺陷检测装置,用于检测电池涂胶缺陷,包括:
采样模块,用于获取一待测涂胶横截面的采样点云,构成采样点集;
参考模块,用于获取邻近于待测涂胶横截面的若干涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板;
计算比较模块,用于基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
判断模块,用于根据相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
本申请实施例的一种电池涂胶缺陷检测装置,利用采样模块获取基于待测涂胶横截面的采集点云和利用参考模块获取邻近涂胶横截面的参考点云,结合计算比较模块通过动态时间规整算法对两种点集进行计算比较,可简单、快捷、精确地获取待测涂胶横截面与邻近涂胶横截面的相似度,进而利用判断模块快速筛选确定涂胶缺陷的存在,该检测装置效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
第三方面,请参照图3,图3为本申请实施例提供的一种电子设备的结构示意图,本申请提供一种电子设备3,包括:处理器301和存储器302,处理器301和存储器302通过通信总线303和/或其他形式的连接机构(未标出)互连并相互通讯,存储器302存储有处理器301可执行的计算机程序,当计算设备运行时,处理器301执行该计算机程序,以执行时执行上述实施例的任一可选的实现方式中的方法。
第四方面,本申请实施例提供一种存储介质,所述计算机程序被处理器执行时,执行上述实施例的任一可选的实现方式中的方法。其中,存储介质可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static RandomAccess Memory, 简称SRAM),电可擦除可编程只读存储器(Electrically ErasableProgrammable Read-Only Memory, 简称EEPROM),可擦除可编程只读存储器(ErasableProgrammable Read Only Memory, 简称EPROM),可编程只读存储器(Programmable Red-Only Memory, 简称PROM),只读存储器(Read-Only Memory, 简称ROM),磁存储器,快闪存储器,磁盘或光盘。
综上,本申请实施例提供了一种电池涂胶缺陷检测方法、装置、电子设备及存储介质,其中,方法利用动态时间规整算法计算获取待测涂胶横截面的采集点云和邻近涂胶横截面的参考点云的相似度信息,进而根据相似度信息快速筛选确定涂胶缺陷的存在,该检测方法效率高、精度高,且不依赖于特定的形态、数值、材质、环境、样板进行分析,具有适用性范围广的特点。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

1.一种电池涂胶缺陷检测方法,用于检测电池涂胶缺陷,其特征在于,所述方法包括以下步骤:
S1、获取一待测涂胶横截面的采样点云,构成采样点集;
S2、获取邻近于所述待测涂胶横截面的多个涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板,邻近于所述待测涂胶横截面的多个涂胶横截面为沿涂胶方向等距确定,所述参考点云为邻近于所述待测涂胶横截面的多个等距设置的且相互平行的涂胶横截面中的点云数据;
S3、基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
S4、根据所述相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
2.根据权利要求1所述的一种电池涂胶缺陷检测方法,其特征在于,步骤S2中,涂胶横截面的数量基于重复拍照的精度进行调整。
3.根据权利要求1所述的一种电池涂胶缺陷检测方法,其特征在于,步骤S3包括以下子步骤:
S31、运用动态时间规整算法分别计算采样点集邻近的若干标准点集中每个参考点云与采样点集之间的最小距离信息;
S32、对所有最小距离信息进行加权平均,权重分配按照中间大,两边小的原则设置,获得所述相似度信息。
4.根据权利要求1所述的一种电池涂胶缺陷检测方法,其特征在于,所述采样点云和所述参考点云均为激光点云。
5.根据权利要求1所述的一种电池涂胶缺陷检测方法,其特征在于,步骤S4基于SVM分类器判断待测涂胶横截面是否存在缺陷或基于设置相似度阈值判断待测涂胶横截面是否存在缺陷。
6.根据权利要求1所述的一种电池涂胶缺陷检测方法,其特征在于,获取的采样点云和参考点云均要进行去噪处理。
7.一种电池涂胶缺陷检测装置,用于检测电池涂胶缺陷,其特征在于,包括:
采样模块,用于获取一待测涂胶横截面的采样点云,构成采样点集;
参考模块,用于获取邻近于所述待测涂胶横截面的多个涂胶横截面中的参考点云,构成若干标准点集,并以若干标准点集构成标准模板,邻近于所述待测涂胶横截面的多个涂胶横截面为沿涂胶方向等距确定,所述参考点云为邻近于所述待测涂胶横截面的多个等距设置的且相互平行的涂胶横截面中的点云数据;
计算比较模块,用于基于动态时间规整算法计算待测涂胶横截面与标准模板之间的相似度信息;
判断模块,用于根据所述相似度信息判断待测涂胶横截面是否存在涂胶缺陷。
8.一种电子设备,其特征在于,包括处理器以及存储器,所述存储器存储有计算机可读取指令,当所述计算机可读取指令由所述处理器执行时,运行如权利要求1-6任一所述方法中的步骤。
9.一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时运行如权利要求1-6任一所述方法中的步骤。
CN202110867754.7A 2021-07-30 2021-07-30 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质 Active CN113313712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110867754.7A CN113313712B (zh) 2021-07-30 2021-07-30 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110867754.7A CN113313712B (zh) 2021-07-30 2021-07-30 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质

Publications (2)

Publication Number Publication Date
CN113313712A CN113313712A (zh) 2021-08-27
CN113313712B true CN113313712B (zh) 2021-11-09

Family

ID=77382419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110867754.7A Active CN113313712B (zh) 2021-07-30 2021-07-30 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质

Country Status (1)

Country Link
CN (1) CN113313712B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354639B (zh) * 2022-03-21 2022-06-10 苏芯物联技术(南京)有限公司 一种基于3d点云的焊缝缺陷实时检测方法及系统
CN115338091B (zh) * 2022-08-04 2024-01-19 杭州杰牌传动科技有限公司 一种5g应用下的高速图像传输与分析系统
CN115579574B (zh) * 2022-09-09 2023-11-24 江苏正力新能电池技术有限公司 一种电芯外壳的防爆阀处内平层灌封方法、装置和电芯
CN116879222A (zh) * 2023-06-09 2023-10-13 钛玛科(北京)工业科技有限公司 一种不干胶检测方法及装置
CN117433586A (zh) * 2023-11-30 2024-01-23 思睿观通科技(江苏)有限公司 一种动力电池绝缘组件的质量监测系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477619A (zh) * 2008-12-26 2009-07-08 北京航空航天大学 基于dtw曲线的运动数据动作分类方法
CN111311576A (zh) * 2020-02-14 2020-06-19 易思维(杭州)科技有限公司 基于点云信息的缺陷检测方法
CN111695420A (zh) * 2020-04-30 2020-09-22 华为技术有限公司 一种手势识别方法以及相关装置
CN111709934A (zh) * 2020-06-17 2020-09-25 浙江大学 一种基于点云特征对比的注塑叶轮翘曲缺陷检测方法
CN111783650A (zh) * 2020-06-30 2020-10-16 北京百度网讯科技有限公司 模型训练方法、动作识别方法、装置、设备以及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233248B (zh) * 2020-10-19 2023-11-07 广东省计量科学研究院(华南国家计量测试中心) 基于三维点云的表面平整度的检测方法、系统及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477619A (zh) * 2008-12-26 2009-07-08 北京航空航天大学 基于dtw曲线的运动数据动作分类方法
CN111311576A (zh) * 2020-02-14 2020-06-19 易思维(杭州)科技有限公司 基于点云信息的缺陷检测方法
CN111695420A (zh) * 2020-04-30 2020-09-22 华为技术有限公司 一种手势识别方法以及相关装置
CN111709934A (zh) * 2020-06-17 2020-09-25 浙江大学 一种基于点云特征对比的注塑叶轮翘曲缺陷检测方法
CN111783650A (zh) * 2020-06-30 2020-10-16 北京百度网讯科技有限公司 模型训练方法、动作识别方法、装置、设备以及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于DTW内核的三维空间步态识别方法与应用研究;柳文强;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20210715(第07期);第I138-260页 *
工业零件的表面质量高效检测方法研究;曹辉;《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》;20210515(第05期);第A005-218页 *

Also Published As

Publication number Publication date
CN113313712A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN113313712B (zh) 一种电池涂胶缺陷检测方法、装置、电子设备及存储介质
US10818000B2 (en) Iterative defect filtering process
CN110349145B (zh) 缺陷检测方法、装置、电子设备以及存储介质
KR102058427B1 (ko) 검사 장치 및 방법
JP6285640B2 (ja) 自動及び手動欠陥分類の統合
US20210090238A1 (en) System and method for performing automated analysis of air samples
CN115351598A (zh) 一种数控机床轴承检测方法
CN116188475B (zh) 一种外观缺陷自动光学检测的智慧控制方法、系统及介质
JP2013224942A (ja) 自動欠陥分類のための未知欠陥除去の最適化
CN111369523B (zh) 显微图像中细胞堆叠的检测方法、系统、设备及介质
CN111242899B (zh) 基于图像的瑕疵检测方法及计算机可读存储介质
CN111398176A (zh) 基于像元尺度特征的水体水色异常遥感识别方法和装置
CN114495098B (zh) 一种基于显微镜图像的盘星藻类细胞统计方法及系统
CN110991437B (zh) 字符识别方法及其装置、字符识别模型的训练方法及其装置
CN111767908A (zh) 字符检测方法、装置、检测设备及存储介质
CN114254146A (zh) 图像数据的分类方法、装置和系统
CN117392042A (zh) 缺陷检测方法、缺陷检测设备及存储介质
CN114881996A (zh) 缺陷检测方法及装置
KR101782364B1 (ko) 케이평균군집화를 통한 학습기반의 비전검사 방법
WO2021233058A1 (zh) 监控货架上的物品的方法、计算机和系统
CN116563841B (zh) 配电网设备标识牌的检测方法、检测装置和电子设备
CN111027601B (zh) 一种基于激光传感器的平面检测方法、装置
CN114240928B (zh) 板卡质量的分区检测方法、装置、设备及可读存储介质
CN115719326A (zh) Pcb板缺陷检测方法及装置
CN113267506A (zh) 木板ai视觉缺陷检测装置、方法、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant