CN113310933A - 原料水牛奶保存天数的光谱鉴定方法 - Google Patents

原料水牛奶保存天数的光谱鉴定方法 Download PDF

Info

Publication number
CN113310933A
CN113310933A CN202110503812.8A CN202110503812A CN113310933A CN 113310933 A CN113310933 A CN 113310933A CN 202110503812 A CN202110503812 A CN 202110503812A CN 113310933 A CN113310933 A CN 113310933A
Authority
CN
China
Prior art keywords
milk
model
samples
mid
buffalo milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110503812.8A
Other languages
English (en)
Inventor
张淑君
苏俊东
王贵强
马亚宾
张震
温万
蔡亚非
刘林
李建斌
安朋朋
孙伟
颜远义
何开兵
李春芳
任小丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110503812.8A priority Critical patent/CN113310933A/zh
Publication of CN113310933A publication Critical patent/CN113310933A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于奶品分析技术领域,具体涉及原料水牛奶保存天数的光谱鉴定方法。本发明的领域与中红外光谱分析领域相关。本发明的主要步骤为:获得不同保存时间的原料水牛奶样品中红外光谱数据,对原始中红外光谱进行预处理,去除异常值,将预处理后的数据集分为训练集和测试集,对训练集进行光谱波段选择,在训练集上构建预测模型,使用测试集和验证集对模型进行评估。所述的检测应用:用模型预测原料水牛奶保存时间是否超过1天。本发明具有测试速度快、对样品无损、可同时大批量检测等突出优点。

Description

原料水牛奶保存天数的光谱鉴定方法
技术领域
本发明属于奶品分析技术领域,具体涉及一种原料水牛奶保存天数的光谱鉴定方法。本发明的领域与中红外光谱分析领域相关。
背景技术
水牛奶是世界上仅次于牛奶的第二大人类乳与乳制品来源[1]。水牛奶营养价值高,被称为“乳中精品”,干物质、乳脂、乳蛋白、矿物质、维生素等营养成分含量高,特别是不饱和脂肪酸以及必须氨基酸含量高[2]。我国是第三大奶水牛存栏国,水牛奶生产潜力巨大,奶水牛业基础良好,有望发展成我国第二大奶业支柱[3]。由于水牛奶等小众奶普遍存在的牛场规模限制、生产环境偏僻、交通运输不方便等问题,牛场的挤奶厅和加工厂不在同一个地方,水牛生奶在进行加工制作前,需要在冷藏条件下储存一段时间,而储存时间是影响水牛生奶品质的一个重要因素,保存不当或保存时间过长,都可能导致水牛奶腐败或变质。针对目前水牛生奶保鲜周期短而检验周期长导致的奶制品标准不一、产品质量参差不齐等问题,需要快速方便的检测手段来对市场行为进行约束,同时为其它动物奶的品质监控提供参考手段。
目前中红外技术已经普遍应用在水牛奶的品质检测中[4],而结合中红外建模对水牛奶保存时间的研究较少。由中红外光谱仪输出的数据为n×1060的矩阵(n为样本量),数据庞大,且难以避免数据不完整、不一致、极易受到噪声(错误或异常值)侵扰,低质量的数据将导致效果较差的数据挖掘结果,因此需要一些方法对输出的数据进行预处理,这些方法通常包括数据标准化、处理缺失值、去除噪声及异常值、特征选择等。因此需要建立原料水牛奶保存天数的光谱鉴定技术。
发明内容
本发明的目的在于克服现有技术存在的缺陷,提供一种基于中红外光谱分析的原料水牛奶保存天数的快速鉴定方法。为了确定最佳的预处理和建模算法组合,本发明对光谱数据使用了包括不处理在内的5种预处理方法,结合2种建模方法,共建立了10个原料水牛奶保存时间鉴定模型。并且通过对光谱数据进行Pearson相关性检验和相关性的显著性分析筛选出建模使用的特征光谱。所建立的模型在测试集上的准确率为1.00,在验证集上的准确率为0.90。
本发明的技术方案如下所述:
一种基于中红外光谱分析的原料水牛奶保存天数的光谱鉴定方法,所述的方法包括以下步骤:
1)选取奶样:采集不同保存天数的原料水牛奶作为检测样本。
2)采集中红外光谱:利用乳成分检测仪对步骤1)的检测样本进行扫描,通过与其相连的计算机输出样本对应的透光率,得到样本光谱图;
3)对采集的原始中红外光谱数据进行预处理,将光谱数据由透射率(T)转换成吸光度(A),去除异常值;
4)数据集的划分:将数据集分为训练集和测试集;
5)建模波段的选择:筛选两种牛奶样本的显著差异波段,并去除水的吸收区域;
6)模型的建立与筛选:以训练集奶样的中红外光谱作为输入值,以不同保存天数的原料水牛奶的类别作为输出值,使用不同光谱预处理方法和不同建模算法在训练集上构建模型,遵循准确性、特异性、灵敏度和AUC等指标较高的原则对模型进行评估及筛选,选择最优的数据预处理和建模算法组合构建模型;
7)最优模型的验证与应用:另取不同保存天数的原料水牛奶样本,使用筛选出的最优模型对样本进行鉴别,评估其应用性能;
其中:
步骤2)中采集中红外光谱时,将不同保存天数的原料水牛奶样本分别倒入直径3.5cm,高9cm的圆柱形采样管中,保证液面高度大于6cm,然后将其在42℃水浴锅中水浴15-20min,再将固体光纤探头伸到液体中吸样检测;
步骤3)中根据A=log10(1/T)将透射率(T)转换为吸光度(A),使用马氏距离和乳脂乳蛋白的百分含量去除异常值,其中,保留光谱马氏距离≤3、乳脂和乳蛋白百分含量在平均值±3.5个标准差范围内的数据;
步骤5)中使用的筛选差异波段的方法为Pearson相关性检验和相关性的显著性检验,去除的水吸收区域为3587.94-2970.66cm-1和1716.81-1543.2cm-1,选择的建模波段为925.66-1010.433cm-1、1141.445-1195.391cm-1、1291.724-1576.868cm-1、1781.093-2282.022cm-1和2836.897-2964.056cm-1 5个波段;
步骤6)中使用的光谱预处理方法为一阶微分(Diff)、标准正态变量变换(SNV)、多元散射校正(MSC)和Savitzky-Golag卷积平滑(简称SG卷积平滑),使用的建模算法为随机森林(RF)和支持向量机(SVM)。
与现有技术相比,本发明具有的有益效果如下所述:
本发明的发明点在于选择的建模波段是925.66-1010.433cm-1、1141.445-1195.391cm-1、1291.724-1576.868cm-1、1781.093-2282.022cm-1和2836.897-2964.056cm-1等5个波段,建模方法为支持向量机。
目前原料水牛奶保存天数检测手段尚未报道,本发明提供了一种检测原料水牛奶保存天数的方法;为水牛奶生产标准研究提供参考检测方法;本发明检测方便、快捷,可以同时大批量进行,符合了实际生产上对生鲜水牛奶要及时得到检测结果的需求。
附图说明
图1本发明建模波段的平均光谱。即二类原料水牛奶在建模波段的平均吸光度图。附图标记说明:图1中横坐标为光谱波数,纵坐标为吸光度;图标实线0类表示在保存时间在一天内的原料水牛奶,虚线1类表示过保存时间超过一天的原料水牛奶;图1(a)为建模波段的全部平均光谱图,图1(b)、图1(c)、图1(d)分别为放大的局部光谱图,其中图1(b)的波段范围是925.66-1010.433cm-1、1141.445-1195.391cm-1和1291.724-1576.868cm-1,图1(c)的波段范围是1781.093-2282.022cm-1,图1(d)的波段范围是2836.897-2964.056cm-1
图2:本发明测试集的混淆矩阵。附图标记说明:ROC曲线可以衡量模型在测试集的性能,横坐标为假阳性率,纵坐标为真阳性率,AUC为ROC曲线下与坐标轴围成的面积,取值范围在0.5和1之间,若AUC越接近1.0,表明本发明的方法的真实性越高。
图3:本发明测试集分类概率。附图标记说明:横坐标为预测概率,纵坐标为预测的类别,例如图中左下方圆点表示此样本被分为0类的概率为0.267,即判定为正确分类。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明的实施方式中未注明具体条件的试验方法,按照常规方法和条件进行,或按照制造厂商设备或仪器使用说明书操作。
实施例1:模型的建立
仪器与设备:FOSS公司生产的MilkoScanTM7RM乳成分检测仪(按产品使用说明书进行)。
操作步骤如下:
(1)采集奶样和测定中红外光谱
从水牛场采集原料水牛奶样本30个,共获得120个样本,所有原料水牛奶储存在4℃条件下,连续4天测定对所有原料水牛奶的中红外光谱(MIR)。将奶样分别倒入直径3.5cm,高9cm的圆柱形样本管中,保证液面高度大于6cm,然后将其在42℃水浴锅中水浴15-20min,再将固体光纤探头伸到液体中吸样检测,通过其软件得到样本的透光率。
(2)数据预处理
对所有原料水牛奶样本的中红外光谱计算出马氏距离,保留光谱马氏距离≤3,乳脂和乳蛋白百分含量在3.5个标准差范围内的数据,表1为此过程的样本量变化统计,无异常样本,得到保存时间1天原料水牛奶样本30个和保存时间2-4天原料水牛奶样本90个,将其按分层抽样法分为训练集(n=88:保存时间1天原料水牛奶21个、保存时间2-4天原料水牛奶67个)和测试集(n=22:保存时间1天原料水牛奶5个、保存时间2-4天原料水牛奶17个)。
在建模过程中,0代表保存时间1天原料水牛奶类,1代表保存时间2-4天原料水牛奶类。表2为两类原料水牛奶常规乳成分的描述性统计,由表中可得,保存时间1天的原料水牛奶的脂肪、非脂乳固体和总固形物含量均高与保存时间2-4天的原料水牛奶(P<0.05),其余常规乳成分没有显著差异。结果见表1和表2。
表1剔除异常值时的样本量变化
Figure BDA0003057501840000041
表2两类原料水牛奶常规乳成分的描述性统计
Figure BDA0003057501840000042
说明:每个参数数值皆用平均值±平均值的标准差表示。a,b:在不同的原料水牛奶类型中,相同的乳成分中具有不同上标的均值存在显著差异(P<0.05)。
(3)建模波段的筛选
将光谱数据由透光率(T)转化为吸光度(A),并去除水的吸收区域,对光谱数据进行Pearson相关性检验[5],并对相关性进行显著性分析,最终选择925.66-1010.433cm-1、1141.445-1195.391cm-1、1291.724-1576.868cm-1、1781.093-2282.022cm-1和2836.897-2964.056cm-1等5个波段的光谱数据进行建模。图1为建模波段的光谱。
(4)鉴定模型的建立
将数据集分为训练集(n=88)、测试集(n=22)和验证集(n=10)。
分别采用一阶微分(Diff)[6]、标准正态变量变换(SNV)[7]、多元散射校正(MSC)[8]和SG卷积平滑[9]对光谱数据进行预处理,同时也与不使用预处理的数据进行比较。
使用随机森林(RF)[10]和支持向量机(SVM)[11]算法利用训练集数据建立分类模型,并对测试集中的样本进行预测。在不同预处理下,RF和SVM算法的建模结果如表3所示。
表3不同预处理下RF和SVM的建模结果
Figure BDA0003057501840000051
(5)最优模型的筛选和确定
在该鉴别模型中,准确率为正确判断占所有判断的概率,其值越接近1越好;灵敏度表示二分类中某一类被正确分类的比例,其值越接近1越好;特异性表示二分类中另一类被正确分类的概率,其值越接近1越好;AUC是ROC曲线下的面积,其直观地反映了ROC曲线表达的分类能力,AUC=1代表此分类器为完美分类器,0.5<AUC<1代表此分类器优于随即分类器,0<AUC<0.5则代表此分类器差于随即分类器。由表3可知,只有不使用预处理和用支持向量机建模的方法的各项指标达到最优,因此选择卷积平滑与支持向量机的组合建立的模型为最优模型。
利用选择的最优分类模型,预测测试集的22个样本。以ROC曲线衡量模型在测试集的性能,以假阳性率为横坐标,真阳性率为纵坐标,得到的ROC曲线如图2所示。AUC为ROC曲线下与坐标轴围成的面积,其取值范围在0.5和1之间,AUC越接近1.0,表明方法的真实性越高。由图2可知,本实施例中测试集的AUC为1.0,说明模型在测试集上的分类效果很好。
图3为测试集中类别分类的概率,例如图3中左下方的圆点标记表示供试奶样样本被分为0类的概率为0.267,且为正确分类,测试集中的所有样本都被正确分类。
实施例2:本发明模型的应用(1)
采用实施例1的测定光谱、数据预处理等技术,对10个不同保存天数原料水牛奶样本进行测定MIR和处理,结果如表4所示。
表4本发明模型的应用结果
Figure BDA0003057501840000061
本发明利用筛选出的最优模型对供试奶样进行鉴定,结果为判定9个样本分类正确,准确率为0.90。
实施例3:本发明模型的应用(2)
采用实施例1的测定光谱、数据预处理等技术,对10个保存时间超过1天的原料水牛奶样本进行测定MIR和处理,结果如表5所示。
表5本发明模型的应用结果
Figure BDA0003057501840000062
Figure BDA0003057501840000071
本发明利用筛选出的最优模型对供试奶样进行鉴定,结果为判定9个样本分类正确,准确率为0.90。
本发明检测时间短(只需两分钟),所需样本量少(20mL),并且可以同时大批量检测原料水牛奶,判断出原料水牛奶是否保存时间超过一天。
参考文献
[1]郭明若等,水牛奶及其制品[J].中国乳品工业,1992(02):88-94+96;
[2]潘斌.湖北杂交水牛乳中脂肪酸和氨基酸成分分析及其营养价值评价[D].华中农业大学,2014;
[3]简保权等,世界水牛奶业发展现状和典型模式分析[J].世界农业,2015(03):115-118;
[4]Manuelian C L,Visentin G,Boselli C,et al.Short communication:Prediction of milk coagulation and acidity traits in Mediterranean buffalomilk using Fourier-transform mid-infrared spectroscopy[J].Journal of DairyScience,2017:S0022030217306276;
[5]Pearson K.Determination of the coefficient of correlation[J].Science,1909,30(757):23-25.
[6]张浩等,红外光谱结合机器学习算法检测食用明胶品种溯源的研究[J/OL].河南农业大学学报:1-10[2021-04-29];
[7]吕美蓉等,光谱数据预处理对潮间带沉积物氮LSSVM模型的影响研究[J].光谱学与光谱分析,2020,40(08):2409-2414.
[8]张浩等,基于近红外光谱结合机器学习算法检测食用明胶品种溯源的研究[J/OL].河南农业大学学报:1-10[2021-04-29];
[9]马云强等,基于高光谱成像的不同花期薇甘菊特征分析及监测模型研究[J].云南大学学报(自然科学版),2021,43(02):290-298;
[10]韩兆迎等,基于SVM与RF的苹果树冠LAI高光谱估测[J].光谱学与光谱分析,2016,36(03):800-805;
[11]陈书媛等,基于高光谱成像技术的白茶储藏年份判别[J/OL].食品工业科技:1-13[2021-04-29]。

Claims (1)

1.一种原料水牛奶保存天数的光谱鉴定方法,其特征包括以下步骤:
1)选取奶样:采集不同保存天数的原料水牛奶作为检测样本;
2)采集中红外光谱:利用乳成分检测仪对步骤1)的检测样本进行扫描,通过与其相连的计算机输出样本对应的透光率,得到样本光谱图;
3)对采集的原始中红外光谱数据进行预处理,将光谱数据由透射率转换成吸光度,去除异常值;
4)数据集的划分:将数据集分为训练集和测试集;
5)建模波段的选择:筛选两种牛奶样本的显著差异波段,并去除水的吸收区域;
6)模型的建立与筛选:以训练集奶样的中红外光谱作为输入值,以不同保存天数的原料水牛奶的类别作为输出值,使用不同光谱预处理方法和不同建模算法在训练集上构建模型,以准确性、特异性、灵敏度和AUC指标对模型进行评估和筛选,以最优的数据预处理和建模算法组合构建模型;
7)最优模型的验证与应用:另取不同保存天数的原料水牛奶样本,以最优模型对样本进行鉴别,评估其应用性能;
其中:
步骤2)中采集中红外光谱时,将不同保存天数的原料水牛奶样本分别倒入直径3.5cm,高9cm的圆柱形采样管中,保证液面高度大于6cm,然后将其在42℃水浴锅中水浴15-20min,再将固体光纤探头伸到液体中吸样检测;
步骤3)中根据A=log10(1/T)将透射率(T)转换为吸光度(A),使用马氏距离和乳脂乳蛋白的百分含量去除异常值,其中,保留光谱马氏距离≤3、乳脂和乳蛋白百分含量在平均值±3.5个标准差范围内的数据;
步骤5)中使用的筛选差异波段的方法为Pearson相关性检验和相关性的显著性检验,去除的水吸收区域为3587.94-2970.66cm-1和1716.81-1543.2cm-1,选择的建模波段为925.66-1010.433cm-1、1141.445-1195.391cm-1、1291.724-1576.868cm-1、1781.093-2282.022cm-1和2836.897-2964.056cm-15个波段;
步骤6)中使用的光谱预处理方法为一阶微分、标准正态变量变换、多元散射校正和Savitzky-Golag卷积平滑,使用的建模算法为随机森林和支持向量机,以不预处理和支持向量机构建预测模型。
CN202110503812.8A 2021-05-10 2021-05-10 原料水牛奶保存天数的光谱鉴定方法 Withdrawn CN113310933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110503812.8A CN113310933A (zh) 2021-05-10 2021-05-10 原料水牛奶保存天数的光谱鉴定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110503812.8A CN113310933A (zh) 2021-05-10 2021-05-10 原料水牛奶保存天数的光谱鉴定方法

Publications (1)

Publication Number Publication Date
CN113310933A true CN113310933A (zh) 2021-08-27

Family

ID=77371852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110503812.8A Withdrawn CN113310933A (zh) 2021-05-10 2021-05-10 原料水牛奶保存天数的光谱鉴定方法

Country Status (1)

Country Link
CN (1) CN113310933A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166785A (zh) * 2021-11-16 2022-03-11 华中农业大学 水牛奶中脂肪含量的中红外快速批量检测方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142269A (zh) * 2018-07-26 2019-01-04 江苏大学 一种冰鲜牛肉不同储存时间的快速鉴别方法
CN112525850A (zh) * 2020-10-01 2021-03-19 华中农业大学 奶牛奶、马奶、骆驼奶、山羊奶和水牛奶的光谱指纹识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142269A (zh) * 2018-07-26 2019-01-04 江苏大学 一种冰鲜牛肉不同储存时间的快速鉴别方法
CN112525850A (zh) * 2020-10-01 2021-03-19 华中农业大学 奶牛奶、马奶、骆驼奶、山羊奶和水牛奶的光谱指纹识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAO DU 等: "Genetic Analysis of Milk Production Traits and Mid-Infrared Spectra in Chinese Holstein Population", 《ANIMALS》 *
张爱武 等: "p值统计量建模独立性的高光谱波段选择方法", 《红外与激光工程》 *
徐良骥等: "《煤矸石充填 复垦机理探析与实践》", 31 October 2016, 中国矿业大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166785A (zh) * 2021-11-16 2022-03-11 华中农业大学 水牛奶中脂肪含量的中红外快速批量检测方法及应用
CN114166785B (zh) * 2021-11-16 2024-02-13 华中农业大学 水牛奶中脂肪含量的中红外快速批量检测方法及应用

Similar Documents

Publication Publication Date Title
Huang et al. Review of seed quality and safety tests using optical sensing technologies
JP6339244B2 (ja) Ft−irスペクトルデータの多変量統計分析を用いた果実の糖度及び酸度の予測方法
Yue et al. A smart data-driven rapid method to recognize the strawberry maturity
CN107024450A (zh) 一种基于近红外光谱技术鉴别不同品牌和段数奶粉的方法
CN103543123A (zh) 一种掺假牛奶的红外光谱识别方法
CN113310936A (zh) 四种高温灭菌商品牛奶的快速鉴定方法
Fadock et al. Visible-near infrared reflectance spectroscopy for nondestructive analysis of red wine grapes
CN109211829A (zh) 一种基于SiPLS的近红外光谱法测定大米中水分含量的方法
Chen et al. New approach of simultaneous, multi‐perspective imaging for quantitative assessment of the compactness of grape bunches
CN113310930A (zh) 高温灭菌奶、巴氏杀菌奶和掺加高温灭菌奶的巴氏杀菌奶的光谱鉴定方法
Li et al. Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology
Sun et al. Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy
CN112213281A (zh) 一种基于透射近红外光谱快速测定淡水鱼新鲜度综合评价的方法
US20230089466A1 (en) Establishment of Identification and Screening Method of Cows with A2 Beta-Casein Genotype of Producing A2 Milk and Applications Thereof
CN108169168A (zh) 检测分析水稻籽粒蛋白质含量数学模型及构建方法和应用
CN113310937A (zh) 高温灭菌牛奶、巴氏杀菌奶牛鲜奶及奶粉复原牛奶的快速鉴定方法
CN110609011A (zh) 单籽粒玉米种子淀粉含量近红外高光谱检测方法及系统
Gao et al. Differentiation of storage time of wheat seed based on near infrared hyperspectral imaging
CN113310933A (zh) 原料水牛奶保存天数的光谱鉴定方法
CN110231306A (zh) 一种无损、快速测定奇亚籽蛋白质含量的方法
CN113324943A (zh) 牦牛奶及其掺加奶牛奶的快速鉴别模型
CN113310929A (zh) 高温灭菌奶中掺加豆粉及其掺加比例的光谱鉴定方法
Wang et al. Monitoring model for predicting maize grain moisture at the filling stage using NIRS and a small sample size
CN113310934A (zh) 骆驼奶中掺加奶牛奶及其掺加比例的快速鉴定方法
CN113324940A (zh) 特优优质奶、高蛋白特色奶、高乳脂特色奶和普通奶的光谱分级方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210827