CN113310719A - Gas-liquid separation pry separation performance test system and experiment method thereof - Google Patents

Gas-liquid separation pry separation performance test system and experiment method thereof Download PDF

Info

Publication number
CN113310719A
CN113310719A CN202110756364.2A CN202110756364A CN113310719A CN 113310719 A CN113310719 A CN 113310719A CN 202110756364 A CN202110756364 A CN 202110756364A CN 113310719 A CN113310719 A CN 113310719A
Authority
CN
China
Prior art keywords
gas
liquid
separation
outlet
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110756364.2A
Other languages
Chinese (zh)
Inventor
韩喜莲
王丽
麻宏强
贾继伟
张春娥
段祥杰
李绍勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Publication of CN113310719A publication Critical patent/CN113310719A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests

Abstract

A separation performance testing system for a gas-liquid separation pry and an experimental method thereof are disclosed, wherein the system comprises a water tank, a booster water pump, an ultrasonic atomizing nozzle, a buffer tank, an air compressor and a gas-liquid separator, wherein the water tank is connected with an inlet of the booster water pump, and an outlet of the air compressor is connected with the buffer tank; the outlet of the booster water pump and the outlet of the buffer tank are connected with the gas-liquid separator through an ultrasonic atomizing nozzle. The invention uses internal components such as a multilayer coalescence plate, a guide plate, a mist catcher and the like, can increase the collision probability of molecules and improve the separation efficiency of gas-liquid two-phase mixed fluid with high liquid-gas ratio; the gas-liquid two-phase outlet is basically pure gas and pure liquid. When separating the gas-liquid mixture, the gas flow rate at the gas-phase outlet is within a limited range.

Description

Gas-liquid separation pry separation performance test system and experiment method thereof
Technical Field
The invention belongs to the technical field of gas-liquid two-phase separators, particularly relates to a separation performance testing system for a gas-liquid separation lever and an experimental method thereof, and particularly relates to a gas-liquid mixture separation system suitable for large variation range of liquid-gas ratio and an experimental method thereof.
Background
At present, the separation mechanism of the gas-liquid separation technology in the petrochemical industry mainly relates to the following separation technologies, such as a gravity settling type, a filtration separation type, an inertia collision type, a centrifugal separation type, diffusion and the like, and each separation technology has an application range.
1) Gravity settling. The gravity separation of two phases is realized by utilizing the density difference of the gas phase and the liquid phase. Such separation devices require that the gas-liquid mixture stream be retained in the settling device for a relatively long time, and gravity settling devices can only separate relatively large droplets.
2) Filtering and separating. The gas-liquid mixture passes through a filter medium to separate liquid drops in the gas. Such separation device cartridges are therefore core components. The filter separation device has high operation cost because part of the filter elements are difficult to clean.
3) Inertial collision type. The liquid drop separation device uses the air flow to rapidly turn or to rush to the baffle and then rapidly turn, so that the movement track of the liquid drop is different from the air flow to achieve separation. The separator mainly refers to a corrugated (folded) plate type demister (foam) which has larger suction at a gas outlet to cause secondary entrainment and is only suitable for gas-liquid separation occasions with not very high requirements at present.
4) And (4) centrifugal separation. Mainly refers to a cyclone separator which generates centrifugal force which is tens times higher than gravity to separate gas and liquid. In practical engineering application, how to select the gas-liquid separation device mainly depends on the specific application environment of the separation device and the target to be realized.
So far, no gas-liquid separation device can be efficiently and stably applied to occasions with large gas-liquid ratio variation range.
Disclosure of Invention
The invention aims to overcome the problems in the prior art and provide a gas-liquid separation pry separation performance test system suitable for high liquid-gas ratio and an experimental method thereof, which can effectively separate gas-liquid mixtures with large gas-liquid ratio variation range and overcome the defects of large occupied area and slow separation rate of the existing horizontal separator.
The invention discloses a separation performance testing system for a gas-liquid separation lever, which comprises a water tank, a booster water pump, an ultrasonic atomizing nozzle, a buffer tank, an air compressor and a gas-liquid separator, wherein the water tank is connected with an inlet of the booster water pump, and an outlet of the air compressor is connected with the buffer tank; the outlet of the booster water pump and the outlet of the buffer tank are connected with the gas-liquid separator through an ultrasonic atomizing nozzle.
A gas-liquid mixture inlet is formed above the gas-liquid separator, a guide plate is arranged at the lower end of the gas-liquid mixture inlet and positioned in the separator body, a plurality of layers of coalescence plates are arranged in the middle of the gas-liquid separator, a viewing mirror is arranged on the left side of the gas-liquid separator, a mist catcher and a gas outlet are arranged on the upper side of the right end of the gas-liquid separator, the mist catcher is fixedly connected with the gas outlet through bolts, and a safety valve is arranged below the mist catcher and the gas outlet; and a liquid collecting barrel is arranged below the gas-liquid separator, a liquid outlet is arranged on the liquid collecting barrel, and a communicating pipe is arranged between the gas-liquid separator and the liquid collecting barrel.
The experimental method for the gas-liquid separation pry separation performance test system comprises the following steps:
A. the liquid in the water tank flows to the ultrasonic atomizing nozzle under the driving of the booster water pump, the flow parameters of the liquid are accurately measured by using a flowmeter and a pressure gauge, the gas is pressurized by an air compressor, flows to the ultrasonic atomizing nozzle after passing through the buffer tank 4, and the gas-liquid two-phase fluid in the atomizing nozzle is fully mixed;
B. metering the mixed fluid treated by the atomizing nozzle, and then feeding the metered mixed fluid into a gas-liquid separator in the form of atomized small droplets;
C. the two-phase mixed fluid entering the gas-liquid separator firstly collides with the guide plate, the flow direction is changed, the flow speed is reduced, the residence time in the separation cavity is increased, and the primary separation is completed; through the multilayer coalescence plates, the fluid speed is further reduced, meanwhile, the coalescence element has a regular fluid state, and liquid drops are gathered and fall off on the coalescence element, so that the gravity settling zone separation is completed; the fluid carrying small droplets can capture smaller droplets to realize final separation after passing through a wire mesh mist catcher at a gas phase outlet, the whole separation process is observed through a sight glass 7, and the parameters of a separation system can be adjusted in time;
D. after the separated fluid is completed, the liquid finally flows out of the bottom of the separation chamber to the liquid collecting barrel, the gas carrying a small amount of liquid drops is finally separated through the wire mesh mist catcher of the gas outlet, and after the tripping pressure of the safety valve is reached, the valve is opened to enable the gas to be discharged into the atmosphere.
Compared with the prior art, the invention has the following advantages:
1. the invention uses internal components such as a multilayer coalescence plate, a guide plate, a mist catcher and the like, can increase the molecular collision probability and improve the separation efficiency of gas-liquid two-phase mixed fluid with high liquid-gas ratio.
2. The gas-liquid two-phase outlet of the invention is basically pure gas and liquid. When separating the gas-liquid mixture, the gas flow rate at the gas-phase outlet is within a limited range.
Drawings
The following describes embodiments of the present invention in further detail with reference to the accompanying drawings.
FIG. 1 is a flow chart of the present invention.
FIG. 2 is a schematic view of a gas-liquid separator according to the present invention.
In the figure: the device comprises a water tank 1, a water tank 2, a booster water pump 3, an ultrasonic atomizing nozzle 4, a buffer tank 5, an air compressor 6, a gas-liquid separator 7, a sight glass 8, a gas-liquid mixture inlet 9, a guide plate 10, a multilayer coalescence plate 11, a safety valve 12, a mist catcher 13, a gas outlet 14, a communicating pipe 15, a liquid collecting barrel 16 and a liquid discharging port.
Detailed Description
As shown in fig. 1, the system for testing the separation performance of the gas-liquid separation lever comprises a water tank 1, a booster water pump 2, an ultrasonic atomizing nozzle 3, a buffer tank 4, an air compressor 5 and a gas-liquid separator 6, wherein the water tank 1 is connected with an inlet of the booster water pump 2, and an outlet of the air compressor 5 is connected with the buffer tank 4; the outlet of the booster water pump 2 and the outlet of the buffer tank 4 are connected with a gas-liquid separator 6 through an ultrasonic atomizing nozzle 3. The buffer tank 4 is used for buffering and stabilizing the pressure of the pressurized gas; the ultrasonic atomizing nozzle 3 can sufficiently mix the fluids in the gas pipeline and the liquid pipeline, and can adjust the flow rate and the size of liquid drops of the mixed fluid.
As shown in fig. 2, a gas-liquid mixture inlet 8 is arranged above the gas-liquid separator 6, a guide plate 9 is arranged at the lower end of the gas-liquid mixture inlet 8 and positioned inside the separator body, a plurality of coalescence plates 10 are arranged in the middle inside the gas-liquid separator 6, a viewing mirror 7 is arranged on the left side of the gas-liquid separator 6, a mist catcher 12 and a gas outlet 13 are arranged on the upper side of the right end of the gas-liquid separator 6, the mist catcher 12 is fixedly connected with the gas outlet 13 through bolts, and a safety valve 11 is arranged below the mist catcher 12 and the gas outlet 13; a liquid collecting barrel 15 is arranged below the gas-liquid separator 6, a liquid outlet 16 is arranged on the liquid collecting barrel 15, and a communicating pipe 14 is arranged between the gas-liquid separator 6 and the liquid collecting barrel 15. The multi-layer coalescence plate 10 is used for multi-layer coalescence of mixed gas, and the atomized liquid in the gas is coalesced into liquid drops.
An experimental method for a gas-liquid separation prying separation performance test system comprises the following steps:
A. liquid in a water tank 1 flows to an ultrasonic atomizing nozzle 3 under the driving of a pressurizing water pump 2, flow parameters of the liquid are accurately measured by using a flowmeter and a pressure gauge, air is pressurized by an air compressor 5 and flows to the ultrasonic atomizing nozzle 3 after passing through a buffer tank 4, and gas-liquid two-phase fluid in the atomizing nozzle is fully mixed;
B. the mixed fluid treated by the atomizing nozzle enters a gas-liquid separator 6 in the form of atomized small droplets after being metered;
C. the two-phase mixed fluid entering the gas-liquid separator 6 firstly collides with the guide plate 9, the flow direction is changed, the flow speed is reduced, the residence time in the separation cavity is increased, and the primary separation is completed; through the multilayer coalescence plates 10, the fluid speed is further reduced, meanwhile, the coalescence elements have a regular fluid state, and liquid drops are gathered and fall off on the coalescence elements, so that the gravity settling zone separation is completed; the fluid carrying small droplets can capture smaller droplets to realize final separation after passing through the wire mesh mist catcher 12 at the gas phase outlet, the whole separation process is observed through the sight glass 7, and the parameters of the separation system can be adjusted in time;
D. after the separated fluid is completed, the liquid finally flows out from the bottom of the separation chamber to a liquid collecting barrel 15, the gas carrying a small amount of liquid drops is finally separated through a wire mesh mist catcher 12 of a gas outlet 13, and after the starting pressure of the safety valve 11 is reached, the valve is opened so that the gas is discharged into the atmosphere.
In order to accurately obtain the inlet flow velocity, a hot wire anemometer with small interference on a flow field and fast response is selected to measure the air flow velocity. The specific method for measuring the air flow speed is as follows: before the atomization system is turned on, the probe is extended vertically into the separation chamber 1/2 at the level of the sensor element facing the direction of the air flow, and a reading is recorded when the flow rate value displayed on the meter no longer fluctuates. Different air flow rates are achieved by adjusting the air flow regulating valve.
When the pressure difference between the two sides of the coalescence plate is measured, the rubber hose is used as an air guide channel to connect the high-pressure end and the low-pressure end to the two pipe orifices of the U-shaped pipe respectively, the airflow at the installation position of the pressure measuring orifice does not fluctuate violently, the pressure gauge is hung on the support vertically when the pressure gauge is used, and then working liquid is injected into the pipe according to the measured pressure.
The gas phase pipeline and the liquid phase pipeline are both provided with flow meters for measuring the flow of the two pipelines, so that the flow of the inlet of the separator can be obtained by the mass conservation principle.
The mass of the separated water and the settled water in the mixing chamber was measured using an electronic scale.
The separation time was tested using a tracer method. At room temperature, after the apparatus had operated steadily, red ink was dropped into the inlet of the separator, and the time required for complete diffusion was observed and recorded with a stopwatch.
The separation efficiency of the separator is measured by a weighing method, the specific measurement method is that the total amount of liquid entering the separator within 5min is accurately measured by a turbine flowmeter and a stopwatch, and the average value of 5 groups of parallel samples is taken as the total amount of liquid entering an atomizing nozzle. The separated liquid enters the liquid collecting barrel and is collected by the lower end liquid collector, and the total amount of the liquid collected in 5min is G2. The ratio of the two is the separation efficiency of the separator.
The above embodiments are preferred embodiments of the present invention, and those skilled in the art can make variations and modifications to the above embodiments, therefore, the present invention is not limited to the above embodiments, and any obvious improvements, substitutions or modifications made by those skilled in the art based on the present invention are within the protection scope of the present invention.

Claims (3)

1. The utility model provides a be used for gas-liquid separation sled separation capability test system, includes water tank (1), booster pump (2), ultrasonic atomization nozzle (3), buffer tank (4), air compressor (5) and vapour and liquid separator (6), its characterized in that: the water tank (1) is connected with an inlet of the booster water pump (2), and an outlet of the air compressor (5) is connected with the buffer tank (4); the outlet of the booster water pump (2) is connected with the outlet of the buffer tank (4) through the ultrasonic atomizing nozzle (3) and the gas-liquid separator (6).
2. The system for testing the separation performance of the gas-liquid separation lever according to claim 1, wherein: a gas-liquid mixture inlet (8) is formed above the gas-liquid separator (6), a guide plate (9) is arranged at the lower end of the gas-liquid mixture inlet (8) and positioned inside the separator body, a plurality of layers of coalescence plates (10) are arranged in the middle of the inside of the gas-liquid separator (6), a viewing mirror (7) is arranged on the left side of the gas-liquid separator (6), a mist catcher (12) and a gas outlet (13) are arranged on the upper side of the right end of the gas-liquid separator (6), the mist catcher (12) is fixedly connected with the gas outlet (13) through bolts, and a safety valve (11) is arranged below the mist catcher (12) and the gas outlet (13); a liquid collecting barrel (15) is arranged below the gas-liquid separator (6), a liquid discharging port (16) is arranged on the liquid collecting barrel (15), and a communicating pipe (14) is arranged between the gas-liquid separator (6) and the liquid collecting barrel (15).
3. The experimental method for the gas-liquid separation pry separation performance test system according to claim 1, characterized in that: the experimental method comprises the following steps:
A. liquid in a water tank (1) flows to an ultrasonic atomizing nozzle (3) under the driving of a booster water pump (2), flow parameters of the liquid are accurately measured by using a flowmeter and a pressure gauge, air is pressurized by an air compressor (5) and flows to the ultrasonic atomizing nozzle (3) after passing through a buffer tank (4), and gas-liquid two-phase fluid in the atomizing nozzle is fully mixed;
B. the mixed fluid treated by the atomizing nozzle enters a gas-liquid separator (6) in the form of atomized small droplets after being metered;
C. the two-phase mixed fluid entering the gas-liquid separator (6) firstly collides with the guide plate (9), the flow direction is changed, the flow speed is reduced, the detention time in the separation cavity is increased, and the primary separation is completed; through the multilayer coalescence plates (10), the fluid speed is further reduced, meanwhile, the coalescence element has a regular fluid state, and liquid drops are gathered and fall off on the coalescence element, so that the gravity settling zone separation is completed; the fluid carrying small droplets can capture smaller droplets to realize final separation after passing through a wire mesh mist catcher (12) at a gas phase outlet, the whole separation process is observed through a sight glass (7), and the parameters of a separation system can be adjusted in time;
D. and after the separated fluid is finished, the liquid finally flows out from the bottom of the separation chamber to a liquid collecting barrel (15), the gas carrying a small amount of liquid drops is finally separated through a wire mesh mist catcher (12) of a gas outlet (13), and after the tripping pressure of a safety valve (11) is reached, the valve is opened to discharge the gas into the atmosphere.
CN202110756364.2A 2021-02-03 2021-07-05 Gas-liquid separation pry separation performance test system and experiment method thereof Pending CN113310719A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110146139.7A CN112857851A (en) 2021-02-03 2021-02-03 Gas-liquid separation pry separation performance test system and experiment method thereof
CN2021101461397 2021-02-03

Publications (1)

Publication Number Publication Date
CN113310719A true CN113310719A (en) 2021-08-27

Family

ID=75987627

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110146139.7A Pending CN112857851A (en) 2021-02-03 2021-02-03 Gas-liquid separation pry separation performance test system and experiment method thereof
CN202110756364.2A Pending CN113310719A (en) 2021-02-03 2021-07-05 Gas-liquid separation pry separation performance test system and experiment method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110146139.7A Pending CN112857851A (en) 2021-02-03 2021-02-03 Gas-liquid separation pry separation performance test system and experiment method thereof

Country Status (1)

Country Link
CN (2) CN112857851A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046972A (en) * 2021-11-04 2022-02-15 中汽创智科技有限公司 Gas-liquid separator testing device and testing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617031A (en) * 1985-02-26 1986-10-14 Chevron Research Company Hybrid double hydrocyclone-gravity gas/liquid separator
WO2004058380A1 (en) * 2002-12-26 2004-07-15 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
CN104849036A (en) * 2015-05-21 2015-08-19 中国海洋石油总公司 Demisting cyclone separator performance test experiment apparatus
CN111729408A (en) * 2020-04-16 2020-10-02 中国石油工程建设有限公司华北分公司 Geothermal two-phase flow dryness control and phase state stabilization process equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617031A (en) * 1985-02-26 1986-10-14 Chevron Research Company Hybrid double hydrocyclone-gravity gas/liquid separator
WO2004058380A1 (en) * 2002-12-26 2004-07-15 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
CN104849036A (en) * 2015-05-21 2015-08-19 中国海洋石油总公司 Demisting cyclone separator performance test experiment apparatus
CN111729408A (en) * 2020-04-16 2020-10-02 中国石油工程建设有限公司华北分公司 Geothermal two-phase flow dryness control and phase state stabilization process equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘彩玉等: "气液分离方法及试验台的搭建", 《机械设计与制造工程》 *
韩强辉等: "双筒卧式重力分离器强制旋流吸收吸附分离器对比分析", 《石油化工应用》 *

Also Published As

Publication number Publication date
CN112857851A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
JP4137153B2 (en) Multiphase flow meter
CN104849036B (en) Demisting cyclone separator performance test experiment apparatus
US8549908B2 (en) Thermal anemometer flow meter for the measurement of wet gas flow
CN207964243U (en) A kind of air and liquid twophase flow experiment platform
CN110031046A (en) A kind of gas-liquid two-phase flow measuring system
CN113310719A (en) Gas-liquid separation pry separation performance test system and experiment method thereof
CN104897404A (en) Experimental device and method for measuring performance of centrifugal ventilator
CN105181384B (en) A kind of biphase gas and liquid flow proportional sampler
CN106979808A (en) A kind of ultrasound and target type meter combined type wet gas flow-measuring method
Lehner Aerosol separation efficiency of a venturi scrubber working in self-priming mode
CN108896453A (en) A kind of adjustable mist flow experimental system of multi-parameter
CN108225729A (en) A kind of fine adjustment air and liquid twophase flow experiment platform
CN102539284B (en) Method and device for testing distribution characteristics of gas-liquid two-phase flow of plate-fin heat exchanger
CN101430221A (en) Particle imaging device in gas pipeline
CN106123976B (en) Measuring device and measuring method for measuring respective volume flow of oil, gas and water in multiphase flow
CN105890720A (en) Testing and experimental method of supersonic gas-liquid separators
CN205879262U (en) Measurement device for measure heterogeneous class of petroleum company of people's republic of china, gas, water three -phase volume flow rate separately
CN111912500A (en) Mobile wellhead flow calibration device and calibration method thereof
CN202794130U (en) Wet steam dryness monitoring device
CN2704825Y (en) Meter regulator for oil, vapour and water output
CN212228187U (en) Remove well head flow calibration device
RU2307249C1 (en) Device for well oil production rate measurement
Wines et al. Liquid-Gas Coalescers: Demystifying Performance Ratings
CN220729936U (en) Gaseous moisture content detection device
RU2085761C1 (en) Ejector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210827

RJ01 Rejection of invention patent application after publication