CN113308568B - RNA probe for detecting 2019-nCOV, and preparation method and application thereof - Google Patents

RNA probe for detecting 2019-nCOV, and preparation method and application thereof Download PDF

Info

Publication number
CN113308568B
CN113308568B CN202110476368.5A CN202110476368A CN113308568B CN 113308568 B CN113308568 B CN 113308568B CN 202110476368 A CN202110476368 A CN 202110476368A CN 113308568 B CN113308568 B CN 113308568B
Authority
CN
China
Prior art keywords
sequence
rna probe
seq
rna
hybridization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110476368.5A
Other languages
Chinese (zh)
Other versions
CN113308568A (en
Inventor
谢华平
谢鼎华
付贵芳
王飞英
曾婷
谢缤灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Second Xiangya Hospital of Central South University
Original Assignee
Hunan Normal University
Second Xiangya Hospital of Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University, Second Xiangya Hospital of Central South University filed Critical Hunan Normal University
Publication of CN113308568A publication Critical patent/CN113308568A/en
Application granted granted Critical
Publication of CN113308568B publication Critical patent/CN113308568B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6841In situ hybridisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种检测2019‑nCOV的RNA探针,该探针的序列如SEQ ID NO.1或SEQID NO.21所示;制备过程包括:设计引物、构建重组质粒、PCR扩增、产物纯化、体外转录的过程;将制备得到的探针应用于检测2019‑nCOV中,能够在单细胞水平检测2019‑nCOV病毒核酸,提高了检测的灵敏度。

Figure 202110476368

The invention discloses an RNA probe for detecting 2019-nCOV. The sequence of the probe is shown in SEQ ID NO.1 or SEQ ID NO.21; the preparation process includes: designing primers, constructing recombinant plasmids, PCR amplification, and product The process of purification and in vitro transcription; applying the prepared probe to the detection of 2019-nCOV can detect 2019-nCOV viral nucleic acid at the single-cell level, improving the sensitivity of detection.

Figure 202110476368

Description

一种检测2019-nCOV的RNA探针及其制备方法与应用A kind of RNA probe for detecting 2019-nCOV and its preparation method and application

技术领域technical field

本发明涉及核酸杂交技术领域,更具体地说是涉及一种检测2019-nCOV的RNA探针及其制备方法与应用。The invention relates to the technical field of nucleic acid hybridization, and more specifically relates to an RNA probe for detecting 2019-nCOV and its preparation method and application.

背景技术Background technique

目前鉴定新型冠状病毒的方法有荧光定量PCR法和抗体检测方法,其中用于核酸检测的荧光定量PCR法为检验病毒方法的金标准,但是现有方法中仍存在诸多问题,诸如:(1)荧光定量PCR法虽然能够鉴定疑似患者体内的核酸,但是该方法需要提取细胞中的RNA,随后进行反转录,然后进行PCR鉴定,在这些实验操作中RNA的损失比较多,如果疑似患者处于感染早期或者体内本身含有病毒量比较少,很容易导致RNA在提取过程中丢失,导致假阴性结果出现;(2)由于新型冠状病毒是RNA病毒,RNA病毒变异速度快,并且该变异能够不断进行累积,荧光定量PCR实验对核酸序列要求比较高,尤其是在PCR引物覆盖的区域要求比较苛刻,如果该区域核酸发生突变,导致PCR扩增效率降低甚至不能扩增出来,从而产生假阴性结果;(3)荧光定量PCR实验未经过测序鉴定,有可能扩增出非目的片段,出现假阳性现象,造成了检测结果的不准确。Current methods for identifying novel coronaviruses include fluorescent quantitative PCR and antibody detection methods, among which fluorescent quantitative PCR for nucleic acid detection is the gold standard for virus detection methods, but there are still many problems in the existing methods, such as: (1) Although the fluorescent quantitative PCR method can identify the nucleic acid in the suspected patient, this method needs to extract the RNA in the cell, then perform reverse transcription, and then carry out PCR identification. In these experimental operations, the loss of RNA is relatively large. If the suspected patient is infected In the early stage or the amount of virus contained in the body is relatively small, it is easy to cause RNA loss during the extraction process, resulting in false negative results; (2) Since the new coronavirus is an RNA virus, the RNA virus mutates quickly, and the mutation can continue to accumulate , Fluorescent quantitative PCR experiments have relatively high requirements for nucleic acid sequences, especially in the regions covered by PCR primers. If mutations occur in the nucleic acids in this region, the efficiency of PCR amplification will decrease or even fail to amplify, resulting in false negative results; ( 3) The fluorescent quantitative PCR experiment has not been sequenced and identified, and non-target fragments may be amplified, resulting in false positives, resulting in inaccurate test results.

RNA探针是指带有标记的能与组织内相对应的核苷酸序列互补结合的一段单链cDNA或cRNA分子,其是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高,可以检测到单个细胞中是否含有目的RNA,因此,可以有效检测出待测目的片段。RNA probe refers to a single-stranded cDNA or cRNA molecule with a label that can complementarily bind to the corresponding nucleotide sequence in the tissue. It is a promising nucleic acid probe. Since RNA is a single-stranded molecule, Therefore, its hybridization reaction efficiency with the target sequence is extremely high, and it can detect whether a single cell contains the target RNA, so it can effectively detect the target fragment to be tested.

因此,如何提供一种可以有效检测2019-nCoV的探针,并将其应用于检测2019-nCoV中是本领域技术人员亟需解决的问题。Therefore, how to provide a probe that can effectively detect 2019-nCoV and apply it to the detection of 2019-nCoV is an urgent problem to be solved by those skilled in the art.

发明内容Contents of the invention

有鉴于此,本发明根据新型冠状病毒的碱基序列合成一条带有地高辛标记的反义RNA探针,可用于新型冠状病毒的核酸检测,具有灵敏度高,特异性强,并且消除假阴性结果的优点。In view of this, the present invention synthesizes a digoxin-labeled antisense RNA probe according to the base sequence of the new coronavirus, which can be used for nucleic acid detection of the new coronavirus, has high sensitivity, strong specificity, and eliminates false negatives The merits of the result.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种检测2019-nCOV的RNA探针,所述RNA探针的序列如SEQ ID NO.1所示,或者如SEQ ID NO:1所示的序列经取代、缺失和/或增加碱基和/或末端修饰后得到的具有90%以上同源性的序列;作为本发明的并列技术方案,所述RNA探针的序列如SEQ ID NO.21所示,或者如SEQ ID NO:21所示的序列经取代、缺失和/或增加碱基和/或末端修饰后得到的具有90%以上同源性的序列。An RNA probe for detecting 2019-nCOV, the sequence of the RNA probe is shown in SEQ ID NO.1, or the sequence shown in SEQ ID NO: 1 is substituted, deleted and/or added bases and/or Or a sequence with more than 90% homology obtained after terminal modification; as a side-by-side technical solution of the present invention, the sequence of the RNA probe is shown in SEQ ID NO.21, or as shown in SEQ ID NO:21 A sequence with more than 90% homology obtained after sequence substitution, deletion and/or addition of bases and/or terminal modification.

作为本发明优选的技术方案,所述RNA探针的长度至少有857nt。As a preferred technical solution of the present invention, the length of the RNA probe is at least 857nt.

作为本发明优选的技术方案,所述SEQ ID NO.21所示的序列经取代、缺失和/或增加碱基和/或末端修饰后得到的具有90%以上同源性的序列为SEQ ID NO.22或SEQ IDNO.23所示的序列。As a preferred technical solution of the present invention, the sequence shown in SEQ ID NO.21 is the sequence with more than 90% homology obtained after substitution, deletion and/or addition of bases and/or terminal modification is SEQ ID NO. .22 or the sequence shown in SEQ ID NO.23.

以上技术方案达到的技术效果是:到目前为止,在已有的报道中,2019-nCOV含有149种突变,并且变异还在不停的加速积累中,由于本方案设计的RNA探针有937nt能够与目的核酸序列杂交,即使在目标序列中有1个甚至多个核酸发生突变,也不会影响整体的杂交效果,因此该探针可以有效避免由于RNA病毒快速变异导致荧光定量PCR检测产生假阴性结果越来越多的问题。The technical effect achieved by the above technical scheme is: So far, in the existing reports, 2019-nCOV contains 149 mutations, and the mutations are still accelerating and accumulating. Since the RNA probe designed in this scheme has 937nt, it can Hybridization with the target nucleic acid sequence, even if one or more nucleic acid mutations occur in the target sequence, it will not affect the overall hybridization effect, so this probe can effectively avoid false negatives in fluorescent quantitative PCR detection due to the rapid mutation of RNA viruses The result is more and more problems.

一种RNA探针的制备方法,包括下述步骤:A method for preparing an RNA probe, comprising the steps of:

1)设计引物:根据目标物的部分碱基序列设计引物,得到正向引物和反向引物;1) Design primers: design primers according to the partial base sequence of the target to obtain forward primers and reverse primers;

2)构建重组质粒:将目标物的部分碱基序列进行PCR扩增,利用克隆技术,将目标物的部分碱基序列连接到载体上,得到重组质粒,将得到的重组质粒进行双酶切验证,判断酶切结果是否符合预期;双酶切验证的过程具体为:使用两种酶对重组质粒进行双酶切,通过凝胶电泳来判断所述目标物的部分碱基序列是否连接到该质粒中,如果电泳出现两条带,且两条带的大小分别为外源目的片段和载体的大小,则酶切结果符合预期;若不是上述情况,则酶切结果不符合预期;2) Construction of recombinant plasmid: PCR amplification of part of the nucleotide sequence of the target object, using cloning technology, connecting part of the nucleotide sequence of the target object to the vector to obtain a recombinant plasmid, and performing double enzyme digestion verification on the obtained recombinant plasmid , to determine whether the result of the restriction enzyme digestion is in line with expectations; the process of double enzyme digestion verification is specifically: use two enzymes to perform double enzyme digestion on the recombinant plasmid, and use gel electrophoresis to determine whether the partial base sequence of the target object is connected to the plasmid , if there are two bands in the electrophoresis, and the sizes of the two bands are the size of the exogenous target fragment and the vector respectively, then the digestion result is in line with expectations;

3)PCR扩增:以所述步骤2)酶切结果符合预期的重组质粒为模板,以上述正向引物和反向引物对其进行扩增,回收纯化扩增产物,得到DNA模板;3) PCR amplification: using the recombinant plasmid with the expected digestion result in step 2) as a template, amplifying it with the above-mentioned forward primer and reverse primer, recovering and purifying the amplified product, and obtaining a DNA template;

4)用所述步骤3)后得到的DNA模板进行体外转录,合成带有地高辛标记的反义RNA探针,即为检测目标物的RNA探针。4) Use the DNA template obtained after the step 3) to perform in vitro transcription, and synthesize a digoxigenin-labeled antisense RNA probe, which is an RNA probe for detecting the target.

以上技术方案达到的技术效果是:在传统探针合成过程中,要对重组质粒进行酶切线性化,再纯化回收后进行大量扩增。本发明对构建的重组质粒直接进行PCR扩增,从而得到大量目的片段,与传统技术相比,省去了细菌培养、质粒提取及鉴定、酶切线性化的过程,最大程度的节约了时间成本。并且通过PCR扩增得到目的基因,其技术成熟、不易出错、产量高、快速且高效。The technical effect achieved by the above technical solutions is: in the traditional probe synthesis process, the recombinant plasmid should be digested and linearized, and then purified and recovered for massive amplification. The present invention directly performs PCR amplification on the constructed recombinant plasmid to obtain a large number of target fragments. Compared with the traditional technology, it saves the process of bacterial culture, plasmid extraction and identification, and enzyme digestion linearization, and saves time and cost to the greatest extent. . Moreover, the target gene is obtained through PCR amplification, which is mature, error-prone, high-yield, fast and efficient.

作为本发明优选的技术方案,所述目标物为2019-nCOV。As a preferred technical solution of the present invention, the target object is 2019-nCOV.

作为本发明优选的技术方案,所述2019-nCOV的部分碱基序列如SEQ ID NO.5所示。As a preferred technical solution of the present invention, the partial base sequence of the 2019-nCOV is shown in SEQ ID NO.5.

作为本发明优选的技术方案,所述正向引物和反向引物的引物对为方案一或方案二:As a preferred technical scheme of the present invention, the primer pair of the forward primer and the reverse primer is scheme one or scheme two:

方案一:所述正向引物为COVID-19-F1,其序列如SEQ ID NO.2所示;在反向引物的5'端之前,添加T7 RNA聚合酶启动子,得到的反向引物为COVID-19-R2,其序列如SEQ IDNO.4或SEQ ID NO.24所示;Option 1: The forward primer is COVID-19-F1, its sequence is shown in SEQ ID NO.2; before the 5' end of the reverse primer, a T7 RNA polymerase promoter is added, and the obtained reverse primer is COVID-19-R2, whose sequence is shown in SEQ ID NO.4 or SEQ ID NO.24;

方案二:所述正向引物为COVID-19-F2,其序列如SEQ ID NO.6所示;所述反向引物为COVID-19-R3,其序列如SEQ ID NO.7所示。Scheme 2: The forward primer is COVID-19-F2, whose sequence is shown in SEQ ID NO.6; the reverse primer is COVID-19-R3, whose sequence is shown in SEQ ID NO.7.

作为本发明优选的技术方案,所述正向引物和反向引物的引物对为方案一时,所述载体为pGEM-T Easy,所述双酶切采用的酶为HindⅢ和MluⅠ的组合;所述正向引物和反向引物的引物对为方案二时,所述载体为pCDNA3.1 myc His A,所述双酶切采用的酶为KpnⅠ和ApaⅠ的组合。As a preferred technical scheme of the present invention, the primer pair of the forward primer and the reverse primer is Scheme 1, the vector is pGEM-T Easy, and the enzyme used in the double digestion is a combination of HindIII and MluI; When the primer pair of the forward primer and the reverse primer is Scheme 2, the vector is pCDNA3.1 myc His A, and the enzyme used for the double digestion is a combination of KpnI and ApaI.

作为本发明优选的技术方案,所述PCR扩增的反应体系为:As a preferred technical solution of the present invention, the reaction system of the PCR amplification is:

Figure BDA0003047521340000031
Figure BDA0003047521340000031

作为本发明优选的技术方案,所述PCR扩增的反应程序为:As a preferred technical solution of the present invention, the reaction procedure of the PCR amplification is:

Figure BDA0003047521340000032
Figure BDA0003047521340000032

作为本发明优选的技术方案,所述体外转录的体系为:As a preferred technical solution of the present invention, the system for in vitro transcription is:

Figure BDA0003047521340000033
Figure BDA0003047521340000033

作为本发明优选的技术方案,所述体外转录的过程包括:As a preferred technical solution of the present invention, the process of in vitro transcription includes:

1)将所述体外转录体系加入到1.5mL EP管中,混匀后,于37℃水浴2h;1) Add the in vitro transcription system into a 1.5mL EP tube, mix well, and put it in a water bath at 37°C for 2h;

2)水浴结束后,加入DNase消化15min;2) After the water bath, add DNase to digest for 15 minutes;

3)用RNeasy Mini kit试剂盒纯化转录成功的RNA,最终得到的带有地高辛标记的反义RNA探针,保存于-80℃环境中。3) The successfully transcribed RNA was purified using the RNeasy Mini kit, and the finally obtained antisense RNA probe with digoxin labeling was stored at -80°C.

上述所述的制备方法制备得到的探针在检测RNA病毒中的应用,所述RNA探针的长度至少有857nt。The application of the probe prepared by the above preparation method in the detection of RNA virus, the length of the RNA probe is at least 857nt.

作为本发明优选的技术方案,所述RNA病毒包括新型冠状病毒2019-nCOV、蝙蝠冠状病毒prc31株、蝙蝠冠状病毒RacCS203株、蝙蝠冠状病毒264株、蝙蝠冠状病毒253株、蝙蝠冠状病毒224株或穿山甲冠状病毒MP789株。As a preferred technical solution of the present invention, the RNA virus includes novel coronavirus 2019-nCOV, bat coronavirus prc31 strain, bat coronavirus RacCS203 strain, bat coronavirus 264 strain, bat coronavirus 253 strain, bat coronavirus 224 strain or Pangolin coronavirus MP789 strain.

作为本发明优选的技术方案,所述检测2019-nCOV等RNA病毒的方法包括如下步骤:As a preferred technical solution of the present invention, the method for detecting RNA viruses such as 2019-nCOV comprises the following steps:

(1)杂交预处理:取待测样本进行预处理;(1) hybridization pretreatment: take the sample to be tested for pretreatment;

构建过表达载体(pCMVmyc His3.1A-2019-nCOV质粒):Construction of overexpression vector (pCMVmyc His3.1A-2019-nCOV plasmid):

(2)预杂交:向传代后的Hek293细胞中滴加100μL预杂交液,盖上硅化剂处理后的盖玻片,放入湿盒68℃孵育60min;(2) Pre-hybridization: Add 100 μL of pre-hybridization solution dropwise to the passaged Hek293 cells, cover with a siliconized cover slip, and incubate at 68°C for 60 min in a wet box;

(3)杂交:擦干样本周围液体,向其中滴加50μLRNA探针,并盖上硅化剂处理后的盖玻片,72℃孵育15min,再将载有组织的玻片放入含有HYB+缓冲液的湿盒中,68℃孵育过夜;(3) Hybridization: wipe off the liquid around the sample, add 50 μL of RNA probe dropwise, cover with a siliconized cover slip, incubate at 72°C for 15 min, and then put the tissue-loaded slide into HYB+ buffer Incubate overnight at 68°C in a humid chamber;

(4)杂交后处理:揭去盖玻片,依次以68℃预热的50%甲酰胺/2×SSCT缓冲液、68℃预热的2×SSCT缓冲液和68℃预热的0.2×SSCT缓冲液漂洗样本,为了洗去残留未特异性结合的探针,留下特异性结合的探针,有效的降低背景染色,获得较好的反差效果;再向样本中滴加阻断溶液,37℃孵育30min;最后,加入新用阻断溶液3000倍稀释的地高辛抗体,4℃过夜,得到杂交样本;(4) Post-hybridization treatment: take off the cover slip, and use 50% formamide/2×SSCT buffer preheated at 68°C, 2×SSCT buffer preheated at 68°C, and 0.2×SSCT preheated at 68°C in sequence. Rinse the sample with buffer, in order to wash away the remaining unspecific probes and leave the specifically bound probes, which can effectively reduce the background staining and obtain a better contrast effect; then add the blocking solution to the sample dropwise, 37 Incubate at ℃ for 30 minutes; finally, add Digoxigenin antibody diluted 3000 times with blocking solution, overnight at 4℃, to obtain hybridization samples;

(5)显色、照相:将杂交样本加入到1%热处理羔羊血清的MABT溶液中,室温洗25min;再以MABT洗3次,每次25min,然后以检测缓冲液洗2次,每次5min;最后向其中加入100uLAP底物染色缓冲液,室温温育,金属箔片包裹避光,当目标着色出现后,用PBS洗2次,每次5min,显微镜观察,照相,判断是否出现阳性信号。(5) Color development and photography: add the hybridized sample to the MABT solution of 1% heat-treated lamb serum, wash at room temperature for 25 minutes; then wash 3 times with MABT, 25 minutes each time, and then wash 2 times with detection buffer, 5 minutes each time ;Finally, add 100uLAP substrate staining buffer to it, incubate at room temperature, and wrap it with metal foil to avoid light. When the target coloring appears, wash it twice with PBS for 5 minutes each time, observe under a microscope, and take pictures to judge whether there is a positive signal.

以上技术方案达到的技术效果是:该检测方法可以有效避免荧光定量PCR检测中RNA损失而导致假阴性结果的问题。因为原位杂交技术无需提取细胞中的RNA,可直接对组织、细胞甚至单个细胞进行检测,灵敏度高,所需样本小。The technical effect achieved by the above technical scheme is: the detection method can effectively avoid the problem of false negative results caused by RNA loss in fluorescent quantitative PCR detection. Because in situ hybridization technology does not need to extract RNA from cells, it can directly detect tissues, cells or even single cells, with high sensitivity and small sample required.

作为本发明优选的技术方案,所述预杂交液包括:50%甲酰胺、5*SSC、50ug/mL肝素、5mMEDTA,PH8.0、50ug/mL核糖体RNA、1.84%V/V1M柠檬酸和0.1%Tween。As a preferred technical solution of the present invention, the prehybridization solution includes: 50% formamide, 5*SSC, 50ug/mL heparin, 5mM EDTA, pH8.0, 50ug/mL ribosomal RNA, 1.84%V/V1M citric acid and 0.1% Tween.

作为本发明优选的技术方案,所述漂洗样本的步骤为:依次以68℃预热的50%甲酰胺/2×SSCT缓冲液漂洗2次,每次30min;68℃预热的2×SSCT缓冲液漂洗1次,每次25min;68℃预热的0.2×SSCT缓冲液漂洗2次,每次30min。As a preferred technical solution of the present invention, the steps of rinsing the sample are: sequentially rinse twice with 50% formamide/2×SSCT buffer solution preheated at 68°C, 30 minutes each time; washing solution once, 25min each time; rinse twice with 0.2×SSCT buffer preheated at 68°C, 30min each time.

经由上述的技术方案可知,与现有技术相比,本发明达到的技术效果是:It can be seen through the above-mentioned technical scheme that, compared with the prior art, the technical effect achieved by the present invention is:

本发明开发了可以特异性与2019-nCOV杂交的RNA探针,该探针的长度接近或大于1000bp,因此即便新冠病毒的RNA产生了149个变异位点,也可以与RNA的大部分碱基序列杂交,进而避免了假阴性结果的出现,提高了检测结果的准确性。The present invention has developed an RNA probe that can specifically hybridize with 2019-nCOV. The length of the probe is close to or greater than 1000bp, so even if 149 mutation sites are produced in the RNA of the new coronavirus, it can also hybridize with most of the bases of the RNA. Sequence hybridization avoids the occurrence of false negative results and improves the accuracy of detection results.

而且,本发明利用原位杂交技术对待测样本检测,只需提取患者组织或血液,直接对其进行检测,无需提取细胞中的RNA,避免了RNA的损失,提高了检测结果的准确性。Moreover, the present invention utilizes the in situ hybridization technique to detect the sample to be tested, and only needs to extract the patient's tissue or blood for direct detection without extracting the RNA in the cells, avoiding the loss of RNA, and improving the accuracy of the detection result.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.

图1为pGEMT(easy)-COVID-19重组质粒、pGEMT(easy)载体和病毒基因片段的电泳图,其中,1为重组质粒,2为pGEMT(easy)载体和病毒基因片段,M为marker;Figure 1 is the electrophoresis diagram of the pGEMT(easy)-COVID-19 recombinant plasmid, pGEMT(easy) vector and viral gene fragment, where 1 is the recombinant plasmid, 2 is the pGEMT(easy) vector and viral gene fragment, and M is a marker;

图2为重组质粒pGEMT(easy)-COVID-19酶切位点图Figure 2 is a map of the restriction sites of the recombinant plasmid pGEMT(easy)-COVID-19

图3为重组质粒pGEMT(easy)-COVID-19的酶切结果测序图;Figure 3 is a sequence diagram of the enzyme digestion results of the recombinant plasmid pGEMT(easy)-COVID-19;

图4为以pGEMT(easy)-COVID-19为模板,以COVID-19-F1和COVID-19-R2为引物进行扩增扩增产物的电泳图;Figure 4 is an electropherogram of the amplified product using pGEMT(easy)-COVID-19 as a template and using COVID-19-F1 and COVID-19-R2 as primers;

图5为以pGEMT(easy)-COVID-19为模板,以COVID-19-F1和COVID-19-R2为引物进行PCR扩增后,胶回收纯化后电泳图Figure 5 is the electropherogram after gel recovery and purification after PCR amplification using pGEMT(easy)-COVID-19 as a template and COVID-19-F1 and COVID-19-R2 as primers

图6为反义RNA探针的电泳图。Fig. 6 is an electropherogram of an antisense RNA probe.

图7为重组质粒pCDNA3.1myc HisA-COVID-19酶切位点图;Figure 7 is a restriction site map of the recombinant plasmid pCDNA3.1myc HisA-COVID-19;

图8为重组质粒pCDNA3.1myc His A-COVID-19、pCDNA3.1myc His A载体和病毒基因片段的电泳图,其中,1为重组质粒,2为pCDNA3.1myc His A载体和病毒基因片段,M为marker;Figure 8 is the electrophoresis diagram of recombinant plasmid pCDNA3.1myc His A-COVID-19, pCDNA3.1myc His A vector and viral gene fragment, wherein, 1 is the recombinant plasmid, 2 is the pCDNA3.1myc His A vector and viral gene fragment, M for marker;

图9为重组质粒pCDNA3.1myc HisA-COVID-19的酶切结果测序图;Figure 9 is a sequence diagram of the enzyme digestion results of the recombinant plasmid pCDNA3.1myc HisA-COVID-19;

图10为RNA探针检测结果图;Figure 10 is a graph of RNA probe detection results;

图11为细胞原位杂交实验结果图(A、本发明的RNA探针细胞原位杂交结果;B、本发明的RNA探针荧光原位杂交结果;C、RNA探针片段缩短后细胞原位杂交结果);Figure 11 is the results of cell in situ hybridization experiments (A, RNA probe cell in situ hybridization results of the present invention; B, RNA probe fluorescence in situ hybridization results of the present invention; C, RNA probe fragment shortened cell in situ hybridization result);

图12为病毒突变后qPCR扩增效率图;Figure 12 is a qPCR amplification efficiency figure after virus mutation;

图13为2019-nCOV病毒突变部分位点设计(上面的query为野生型2019-nCOV序列,下面的sbjct为突变后的序列);Figure 13 is the design of the 2019-nCOV virus mutation site (the query above is the wild-type 2019-nCOV sequence, and the sbjct below is the mutated sequence);

图14为目的序列突变后细胞原位杂交实验结果图;Figure 14 is a graph showing the results of in situ hybridization experiments on cells after mutation of the target sequence;

图15为2019-nCOV病毒突变类型序列。Figure 15 is the sequence of 2019-nCOV virus mutation type.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例1:Example 1:

一种检测2019-nCOV的RNA探针的制备方法,包括下述步骤:A method for preparing an RNA probe for detecting 2019-nCOV, comprising the steps of:

1)设计引物:根据2019-COV的部分碱基序列,并利用Premier5.0软件以及NCBI的BLAST分析设计引物,得到引物COVID-19-F1和COVID-19-R1;1) Design primers: design primers according to the partial nucleotide sequence of 2019-COV, and use Premier5.0 software and NCBI BLAST analysis to obtain primers COVID-19-F1 and COVID-19-R1;

COVID-19-F1:5’TGTGCTTGTGAAATTGTCGGT 3’,如SEQ ID NO.2所示;COVID-19-F1: 5'TGTGCTTGTGAAATTGTCGGT 3', as shown in SEQ ID NO.2;

COVID-19-R1:5’CAGAAGTGGCACCAAATTCCA 3’,如SEQ ID NO.3所示;COVID-19-R1: 5'CAGAAGTGGCACCAAATTCCA 3', as shown in SEQ ID NO.3;

2)合成新的引物:在COVID-19-R15’前,添加T7 RNA聚合酶启动子,得到引物COVID-19-R2;2) Synthesize new primers: before COVID-19-R15', add T7 RNA polymerase promoter to get primer COVID-19-R2;

COVID-19-R2:5’GCGTAATACGACTCACTATAGGGCAGAAGTGGCACCAAATTCCA3’,如SEQIDNO.4所示;或5’GCGTAATACGACTCACTATAGGGTGTGCTTGTGAAATTGTCGGT 3’,如SEQ IDNO.24所示;COVID-19-R2: 5'GCGTAATACGACTCACTATAGGGCAGAAGTGGCACCAAATTCCA3', as shown in SEQ ID NO.4; or 5'GCGTAATACGACTCACTATAGGGTGTGCTTGTGAAATTGTCGGT 3', as shown in SEQ ID NO.24;

3)构建重组质粒pGEMT(easy)-COVID-19:将所述2019-COV的部分碱基序列连接到pGEMT(easy)载体上,得到重组质粒pGEMT(easy)-COVID-19,对重组质粒pGEMT(easy)-COVID-19进行酶切,酶切结果如图1所示,泳道1为重组质粒电泳图;泳道2为HindⅢ和MluⅠ双酶切结果图,载体使用pGEM-T Easy,pGEM-T Easy的片段大小在3000bp左右,外源片段大小在900bp左右,重组质粒总长为3954bp(如图2所示);回收酶切产物,对其进行测序,结果如图3所示;3) Construction of recombinant plasmid pGEMT(easy)-COVID-19: link the partial nucleotide sequence of the 2019-COV to the pGEMT(easy) vector to obtain recombinant plasmid pGEMT(easy)-COVID-19, for the recombinant plasmid pGEMT (easy)-COVID-19 was digested, and the digestion results are shown in Figure 1. Lane 1 is the electrophoresis image of the recombinant plasmid; Lane 2 is the result of HindⅢ and MluⅠ double enzyme digestion, and the vector uses pGEM-T Easy, pGEM-T The fragment size of Easy is about 3000bp, the size of the foreign fragment is about 900bp, and the total length of the recombinant plasmid is 3954bp (as shown in Figure 2); the digested product is recovered and sequenced, and the result is shown in Figure 3;

4)PCR扩增:PCR扩增的反应体系为:4) PCR amplification: the reaction system of PCR amplification is:

Figure BDA0003047521340000061
Figure BDA0003047521340000061

Figure BDA0003047521340000071
Figure BDA0003047521340000071

PCR扩增的反应程序为:The reaction procedure of PCR amplification is:

Figure BDA0003047521340000072
Figure BDA0003047521340000072

以pGEMT(easy)-COVID-19为模板,以COVID-19-F1和COVID-19-R2按照上述体系和程序对其进行扩增,并将扩增产物进行2%琼脂糖电泳,结果如图4所示,参照DNA marker切取位置回收纯化扩增产物,参照DNAmarker切取位置在凝胶产物上960bp处的条带,即为所需目的产物条带;将切取的目的产物条带,用胶回收试剂盒进行回收,得到纯化的PCR扩增产物,对其进行琼脂糖凝胶电泳,结果如图5所示,并测量其浓度(30ng/μL),得到DNA模板;Using pGEMT(easy)-COVID-19 as a template, amplify it with COVID-19-F1 and COVID-19-R2 according to the above system and procedure, and perform 2% agarose electrophoresis on the amplified product, the result is shown in the figure As shown in 4, refer to the cutting position of the DNA marker to recover and purify the amplification product, and refer to the band at 960 bp on the gel product at the cutting position of the DNA marker, which is the desired target product band; the cut target product band is recovered with gel The kit is recovered to obtain a purified PCR amplification product, which is subjected to agarose gel electrophoresis, the result is shown in Figure 5, and its concentration (30ng/μL) is measured to obtain a DNA template;

5)利用上述DNA模板进行体外转录,合成带有地高辛标记的反义RNA探针;所述体外转录的体系为:5) Utilizing the above-mentioned DNA template for in vitro transcription, and synthesizing antisense RNA probes with digoxin labeling; the system for in vitro transcription is:

Figure BDA0003047521340000073
Figure BDA0003047521340000073

转录过程为:The transcription process is:

1)将所述体外转录体系加入到1.5mL EP管中,混匀后,于37℃水浴2h;1) Add the in vitro transcription system into a 1.5mL EP tube, mix well, and put it in a water bath at 37°C for 2h;

2)水浴结束后,加入DNase消化15min,然后以琼脂糖电泳检测,如图6所示,由于图中使用的为DNA marker,DNA为双链,由于RNA为单链结构,在部分U碱基中掺入地高辛标记物,所以电泳结果中RNA大小仅为其大小的一半多一点;2) After the water bath is over, add DNase to digest for 15 minutes, and then use agarose electrophoresis to detect, as shown in Figure 6, because the DNA marker used in the figure, DNA is double-stranded, and because RNA is a single-stranded structure, in some U bases Digoxigenin markers are incorporated into the DNA, so the size of the RNA in the electrophoresis results is only a little more than half of its size;

3)用RNeasy Mini kit试剂盒纯化转录成功的RNA,最终得到带有地高辛标记的反义RNA探针,保存于-80℃环境中,如SEQ ID NO.1所示。3) The successfully transcribed RNA was purified with the RNeasy Mini kit to obtain a digoxigenin-labeled antisense RNA probe, which was stored at -80°C, as shown in SEQ ID NO.1.

其中,2019-nCOV的部分碱基序列如SEQ ID NO.5所示。Among them, the partial base sequence of 2019-nCOV is shown in SEQ ID NO.5.

实施列2:过表达载体(pCMV myc His 3.1A-2019-nCOV质粒)的构建Example 2: Construction of overexpression vector (pCMV myc His 3.1A-2019-nCOV plasmid)

1)设计引物:根据2019-nCOV的部分碱基序列设计引物,得到引物COVID-19-F2和COVID-19-R3;1) Design primers: design primers according to the partial base sequence of 2019-nCOV to obtain primers COVID-19-F2 and COVID-19-R3;

COVID-19-F2:5’CCCAAGCTGGCTAGTTAAGCTTGGTACCATGTCAACCTGTGCTTGTGAAATTGTCGGTGGACAA 3’,如SEQ ID NO.6所示;COVID-19-F2: 5'CCCAAGCTGGCTAGTTAAGCTTGGTACCATGTCAACCTGTGCTTGTGAAATTGTCGGTGGACAA 3', as shown in SEQ ID NO.6;

COVID-19-R3:5’CTGAGATGAGTTTTTGTTCGAAGGGCCCAGCAGCAGAAGTGGCACCAAATTCCAAAGGT 3’,如SEQ ID NO.7所示;COVID-19-R3: 5'CTGAGATGAGTTTTTGTTCGAAGGGCCCAGCAGCAGAAGTGGCACCAAATTCCAAAGGT 3', as shown in SEQ ID NO.7;

2)构建重组质粒pCDNA3.1 myc His A-COVID-19:将2019-nCOV的部分碱基序列进行PCR扩增,得到的PCR产物以及原有的pCDNA3.1myc His A载体进行KpnⅠ和ApaⅠ双酶切,利用TA克隆技术,将所述2019-nCOV的部分碱基序列连接到pCDNA3.1 myc His A载体上,得到如图7重组质粒pCDNA3.1 myc His A-COVID-19,其中序列1为DNA模板序列,对重组质粒pCDNA3.1 myc His A-COVID-19进行酶切及测序验证,酶切结果如图8所示,其中泳道1为重组质粒电泳图,泳道2为KpnⅠ和ApaⅠ双酶切结果图,载体使用pCDNA3.1 myc His A,pCDNA3.1 myc His A片段大小为5500bp左右,外源片段大小在900bp左右,重组质粒如图7所示为6371bp,回收酶切产物,对其进行测序,结果如图9所示;2) Construction of recombinant plasmid pCDNA3.1myc His A-COVID-19: Amplify the partial nucleotide sequence of 2019-nCOV by PCR, and perform KpnⅠ and ApaⅠ double enzymes on the obtained PCR product and the original pCDNA3.1myc His A vector Cut, and use TA cloning technology to connect the partial base sequence of 2019-nCOV to the pCDNA3.1 myc His A vector to obtain the recombinant plasmid pCDNA3.1 myc His A-COVID-19 as shown in Figure 7, wherein the sequence 1 is DNA template sequence, enzyme digestion and sequencing verification of the recombinant plasmid pCDNA3.1 myc His A-COVID-19, the digestion results are shown in Figure 8, in which lane 1 is the electrophoresis image of the recombinant plasmid, and lane 2 is KpnI and ApaI double enzymes Cut the result picture, the vector uses pCDNA3.1 myc His A, the size of the pCDNA3.1 myc His A fragment is about 5500bp, the size of the foreign fragment is about 900bp, the recombinant plasmid is 6371bp as shown in Figure 7, and the enzyme-digested product is recovered, and its Sequencing was carried out, and the results are shown in Figure 9;

实施例3:RNA探针在检测2019-nCOV中的应用Example 3: Application of RNA probes in the detection of 2019-nCOV

1、Hek293细胞的复苏和传代1. Recovery and passage of Hek293 cells

1)Hek293细胞的复苏:1) Recovery of Hek293 cells:

从液氮中取出冻存的Hek293细胞,放入37℃恒温水浴锅中解冻1min,并不停摇晃冻存管;将融化的细胞悬液移入预热好的新鲜DMEM完全培养液中,轻轻吹打2次;1000rpm离心3min,弃上清;加入5ml新鲜DMEM完全培养基,并移入新的培养瓶,放入37℃,5%CO2的培养箱中培养;24小时后更换新的培养液,继续传代。Take out the frozen Hek293 cells from liquid nitrogen, thaw in a 37°C constant temperature water bath for 1 min, and keep shaking the cryopreservation tube; transfer the thawed cell suspension into the preheated fresh DMEM complete culture medium, gently Pipette twice; centrifuge at 1000rpm for 3min, discard the supernatant; add 5ml of fresh DMEM complete medium, and transfer it to a new culture bottle, put it in a 37°C, 5% CO2 incubator for culture; replace with a new culture medium after 24 hours , continue to pass on.

2)Hek293细胞的传代2) Subculture of Hek293 cells

当细胞生长汇合度达到95%~100%时,吸去旧的培养基,加入PBS洗一次;加入胰蛋白酶,消化30s,并吸去;加入预热的新鲜DMEM终止消化,反复吹打至其为单细胞悬液;取培养瓶,加入3ml新鲜DMEM培养基,再加入1ml细胞悬液,于37℃,5%CO2的培养箱中培养。When the confluence of cell growth reaches 95%-100%, suck off the old medium, add PBS to wash once; add trypsin, digest for 30 seconds, and suck off; add preheated fresh DMEM to stop digestion, and repeatedly pipette until it is Single-cell suspension: take a culture bottle, add 3ml of fresh DMEM medium, then add 1ml of cell suspension, and culture in an incubator at 37°C and 5% CO2.

2、用pCDNA3.1myc His A-COVID-19质粒转染Hek293细胞2. Transfect Hek293 cells with pCDNA3.1myc His A-COVID-19 plasmid

1)取对数生长期的Hek293细胞,用胰蛋白酶消化后,加入无双抗的DMEM培养基稀释细胞,并移入24孔板中,每孔1ml,培养24h后,更换新的培养基;1) Take Hek293 cells in the logarithmic growth phase, digest with trypsin, add DMEM medium without double antibody to dilute the cells, and transfer to a 24-well plate, 1ml per well, culture for 24 hours, replace with new medium;

2)按照Lipofectamine 2000Reagent试剂盒进行转染,取两支1.5ml的离心管,分别加入250μL Opti-MEM培养基,其中一支再加入pCDNA3.1 myc His A-COVID-19质粒(2~4μg);另一支加入6μL Lipofectamine 2000室温孵育5min;2) Perform transfection according to the Lipofectamine 2000 Reagent kit, take two 1.5ml centrifuge tubes, add 250μL Opti-MEM medium respectively, and add pCDNA3.1 myc His A-COVID-19 plasmid (2~4μg) to one of them ; Add 6 μL Lipofectamine 2000 to the other and incubate at room temperature for 5 minutes;

3)将上述两支离心管进行混合,室温孵育20min,得到质粒-脂质体混合物,再加入1ml无双抗的DMEM培养基;3) Mix the above two centrifuge tubes, incubate at room temperature for 20 minutes to obtain the plasmid-liposome mixture, and then add 1ml of DMEM medium without double antibody;

4)将上述混合液滴入24孔板中,混匀,于37℃,5%CO2的培养箱中培养。4) The above mixed solution was dropped into a 24-well plate, mixed evenly, and cultured in an incubator at 37° C. and 5% CO 2 .

3、本发明的RNA探针在检测2019-nCOV中的应用,检测方法如下:3. The application of the RNA probe of the present invention in the detection of 2019-nCOV, the detection method is as follows:

1)杂交预处理1) hybridization pretreatment

(1)将培养好的Hek293细胞中滴加200ul蛋白酶K(10ng/μL),于37℃孵育30min;(1) Add 200ul proteinase K (10ng/μL) dropwise to the cultured Hek293 cells, and incubate at 37°C for 30min;

(2)用DEPC水配制的PBST溶液漂洗3次,每次5min;(2) Rinse with PBST solution prepared with DEPC water for 3 times, each time for 5 minutes;

(3)用DEPC水配制的4%多聚甲醛固定20min;(3) Fix with 4% paraformaldehyde prepared with DEPC water for 20 min;

(4)用DEPC水配制的PBST溶液漂洗3次,每次5min;(4) Rinse 3 times with PBST solution prepared with DEPC water, 5 min each time;

2)预杂交2) Pre-hybridization

滴加200μL预杂交液(50%甲酰胺;2*SSC;50ug/mL肝素;5mM EDTA,PH8.0;50ug/mL核糖体RNA;1.84%V/V 1M柠檬酸(citric acid;0.1%Tween,将24孔培养皿放入68℃水浴锅中水浴60min。Add 200 μL prehybridization solution (50% formamide; 2*SSC; 50ug/mL heparin; 5mM EDTA, pH8.0; 50ug/mL ribosomal RNA; 1.84% V/V 1M citric acid; 0.1% Tween , put the 24-well petri dish in a 68°C water bath for 60 minutes.

3)杂交3) hybridization

(1)吸掉预杂交液,滴加200μL本发明的杂交液(含有2ng/uL地高辛标记物的反义RNA,其序列如SEQ ID NO.1所示),将24孔培养皿放入68℃水浴锅中孵育过夜。(1) Suck off the pre-hybridization solution, add dropwise 200 μL of the hybridization solution of the present invention (antisense RNA containing 2ng/uL digoxin marker, its sequence is shown in SEQ ID NO.1), put the 24-well culture dish Incubate overnight in a 68°C water bath.

4)杂交后处理4) Post-hybridization treatment

(1)吸出杂交夜,加入200ul 68℃预热的50%甲酰胺/2×SSCT缓冲液中洗2次,每次30min;(1) Aspirate the hybridization night, add 200ul 68°C preheated 50% formamide/2×SSCT buffer and wash twice, 30min each time;

(2)68℃预热的2×SSCT缓冲液中洗1次,30min;(2) Wash once in 68°C preheated 2×SSCT buffer for 30 minutes;

(3)68℃预热的0.2×SSCT缓冲液中洗2次,每次30min;(3) Wash twice in 0.2×SSCT buffer preheated at 68°C, 30 min each time;

(4)吸出液体,滴加阻断溶液,室温℃孵育60min。(4) Aspirate the liquid, add the blocking solution dropwise, and incubate at room temperature for 60 min.

(5)加入新用阻断溶液3000倍稀释的地高辛抗体(Anti-Digoxigenin-AP,Fabfragments),4℃过夜。(5) Digoxigenin antibody (Anti-Digoxigenin-AP, Fabfragments) diluted 3000 times with blocking solution was added, overnight at 4°C.

5)显色、照相5) Color development, photography

(1)加入到1%热处理羔羊血清(heat treated lamb serum)的MABT溶液中,室温洗25min;(1) Add to MABT solution of 1% heat treated lamb serum, wash at room temperature for 25min;

(2)MABT洗3次,每次25min;(2) Wash 3 times with MABT, 25 minutes each time;

(3)检测缓冲液(每50mL溶液:100mM NaCl(1mL 5M);50mM MgCl2(2.5mL 1M);100mM三羟甲基氨基甲烷(Tris)-HCl(5mL 1M,pH9.5);0.1%Tween-20;1mM左旋咪唑(50uL1M))洗2次,每次5min;(3) Detection buffer (per 50mL solution: 100mM NaCl (1mL 5M); 50mM MgCl2 (2.5mL 1M); 100mM Tris-HCl (5mL 1M, pH9.5); 0.1% Tween -20; 1mM levamisole (50uL1M)) washed twice, 5min each time;

(4)加入200uL AP底物染色缓冲液(每1mL检测缓冲液加入:4.5uL NBT,3.5uLBCIP又称X-磷酸盐,加入4uL左旋咪唑),室温温育,金属箔片包裹避光;(4) Add 200uL AP substrate staining buffer (per 1mL detection buffer: 4.5uL NBT, 3.5uL BCIP, also known as X-phosphate, add 4uL levamisole), incubate at room temperature, wrap with metal foil to avoid light;

(5)当目标着色出现后,用PBS洗2次,每次5min,以停止反应;(5) When the target coloration appears, wash it twice with PBS, each time for 5 minutes, to stop the reaction;

(6)显微镜观察、照相。(6) Microscopic observation and photography.

6)结果6) Results

如图10,其中左图为NC(non-specific control)对照,没有信号,只有非常弱的背景;右图为细胞转染4小时后原位杂交结果,其中深蓝紫色(箭头所示)为阳性信号,浅紫色为阴性信号。两张图片均为40×放大。As shown in Figure 10, the left picture is the NC (non-specific control) control, with no signal and only a very weak background; the right picture is the result of in situ hybridization after 4 hours of cell transfection, and the dark blue purple (arrow) is positive Signal, light purple is negative signal. Both images are at 40× magnification.

实施例4:Example 4:

一种检测2019-nCOV的RNA探针,其序列如SEQ ID NO.21所示。该RNA探针的制备方法,包括下述步骤:An RNA probe for detecting 2019-nCOV, the sequence of which is shown in SEQ ID NO.21. The preparation method of this RNA probe comprises the steps:

1)设计引物:根据2019-COV的部分碱基序列,并利用Premier5.0软件以及NCBI的BLAST分析设计引物,得到引物COVID-19-F1和COVID-19-R1;1) Design primers: design primers according to the partial nucleotide sequence of 2019-COV, and use Premier5.0 software and NCBI BLAST analysis to obtain primers COVID-19-F1 and COVID-19-R1;

COVID-19-F1:5’TGTGCTTGTGAAATTGTCGGT 3’,如SEQ ID NO.2所示;COVID-19-F1: 5'TGTGCTTGTGAAATTGTCGGT 3', as shown in SEQ ID NO.2;

COVID-19-R1:5’CAGAAGTGGCACCAAATTCCA 3’,如SEQ ID NO.3所示;COVID-19-R1: 5'CAGAAGTGGCACCAAATTCCA 3', as shown in SEQ ID NO.3;

2)合成新的引物:在COVID-19-R15’前,添加T7 RNA聚合酶启动子,得到引物COVID-19-R2;2) Synthesize new primers: before COVID-19-R15', add T7 RNA polymerase promoter to get primer COVID-19-R2;

COVID-19-R2:5’GCGTAATACGACTCACTATAGGGCAGAAGTGGCACCAAATTCCA3’,如SEQIDNO.4所示;或5’GCGTAATACGACTCACTATAGGGTGTGCTTGTGAAATTGTCGGT 3’,如SEQ IDNO.24所示;COVID-19-R2: 5'GCGTAATACGACTCACTATAGGGCAGAAGTGGCACCAAATTCCA3', as shown in SEQ ID NO.4; or 5'GCGTAATACGACTCACTATAGGGTGTGCTTGTGAAATTGTCGGT 3', as shown in SEQ ID NO.24;

3)构建重组质粒pGEMT(easy)-COVID-19:将所述2019-COV的部分碱基序列连接到pGEMT(easy)载体上,得到重组质粒pGEMT(easy)-COVID-19,对重组质粒pGEMT(easy)-COVID-19进行酶切,酶切结果符合预期;回收酶切产物,对其进行测序;3) Construction of recombinant plasmid pGEMT(easy)-COVID-19: link the partial nucleotide sequence of the 2019-COV to the pGEMT(easy) vector to obtain recombinant plasmid pGEMT(easy)-COVID-19, for the recombinant plasmid pGEMT (easy)-COVID-19 was digested, and the digestion results were in line with expectations; the digested products were recovered and sequenced;

4)PCR扩增:PCR扩增的反应体系为:4) PCR amplification: the reaction system of PCR amplification is:

Figure BDA0003047521340000101
Figure BDA0003047521340000101

PCR扩增的反应程序为:The reaction procedure of PCR amplification is:

Figure BDA0003047521340000111
Figure BDA0003047521340000111

以pGEMT(easy)-COVID-19为模板,以COVID-19-F1和COVID-19-R2按照上述体系和程序对其进行扩增,并将扩增产物进行2%琼脂糖电泳,参照DNAmarker切取位置回收纯化扩增产物,参照DNAmarker切取位置在凝胶产物上937bp处的条带,即为所需目的产物条带;将切取的目的产物条带,用胶回收试剂盒进行回收,得到纯化的PCR扩增产物,对其进行琼脂糖凝胶电泳,并测量其浓度(30ng/μL),得到DNA模板;Using pGEMT(easy)-COVID-19 as a template, amplify it with COVID-19-F1 and COVID-19-R2 according to the above system and procedure, and perform 2% agarose electrophoresis on the amplified product, and cut it out with reference to DNAmarker Recover and purify the amplified product by position, and refer to the DNA marker to cut out the band at 937 bp on the gel product, which is the desired target product band; recover the cut target product band with a gel recovery kit to obtain purified The PCR amplified product was subjected to agarose gel electrophoresis, and its concentration (30ng/μL) was measured to obtain a DNA template;

5)利用上述DNA模板进行体外转录,合成带有地高辛标记的反义RNA探针;所述体外转录的体系为:5) Utilizing the above-mentioned DNA template for in vitro transcription, and synthesizing antisense RNA probes with digoxin labeling; the system for in vitro transcription is:

Figure BDA0003047521340000112
Figure BDA0003047521340000112

转录过程为:The transcription process is:

1)将所述体外转录体系加入到1.5mL EP管中,混匀后,于37℃水浴2h;1) Add the in vitro transcription system into a 1.5mL EP tube, mix well, and put it in a water bath at 37°C for 2h;

2)水浴结束后,加入DNase消化15min,然后以琼脂糖电泳检测;2) After the water bath, add DNase to digest for 15 minutes, and then detect by agarose electrophoresis;

3)用RNeasy Mini kit试剂盒纯化转录成功的RNA,最终得到带有地高辛标记的反义RNA探针,保存于-80℃环境中,如SEQ ID NO.21所示。3) The successfully transcribed RNA was purified using the RNeasy Mini kit to obtain a digoxigenin-labeled antisense RNA probe, which was stored at -80°C, as shown in SEQ ID NO.21.

其中,2019-nCOV的部分碱基序列如SEQ ID NO.5所示。Among them, the partial base sequence of 2019-nCOV is shown in SEQ ID NO.5.

在SEQ ID NO.21所示序列的基础上经取代、缺失和/或增加碱基和/或末端修饰后得到的具有90%以上同源性的序列,如SEQ ID NO.22或SEQ ID NO.23所示。如SEQ IDNO.22或SEQ ID NO.23所示的RNA探针序列具有与SEQ ID NO.21所示序列相同的效果。A sequence with more than 90% homology obtained after substitution, deletion and/or addition of bases and/or terminal modifications on the basis of the sequence shown in SEQ ID NO.21, such as SEQ ID NO.22 or SEQ ID NO .23 shown. The RNA probe sequence shown in SEQ ID NO.22 or SEQ ID NO.23 has the same effect as the sequence shown in SEQ ID NO.21.

实施例5:Example 5:

实施例4所述的RNA探针在检测2019-nCOV中的应用。Application of the RNA probe described in Example 4 in the detection of 2019-nCOV.

1、检测方法1. Detection method

1)杂交预处理1) hybridization pretreatment

(1)将培养好的Hek293细胞中滴加200ul蛋白酶K(10ng/μL),于37℃孵育30min;(1) Add 200ul proteinase K (10ng/μL) dropwise to the cultured Hek293 cells, and incubate at 37°C for 30min;

(2)用DEPC水配制的PBST溶液漂洗3次,每次5min;(2) Rinse with PBST solution prepared with DEPC water for 3 times, each time for 5 minutes;

(3)用DEPC水配制的4%多聚甲醛固定20min;(3) Fix with 4% paraformaldehyde prepared with DEPC water for 20 min;

(4)用DEPC水配制的PBST溶液漂洗3次,每次5min;(4) Rinse 3 times with PBST solution prepared with DEPC water, 5 min each time;

2)预杂交2) Pre-hybridization

滴加200μL预杂交液(50%甲酰胺;2*SSC;50ug/mL肝素;5mM EDTA,PH8.0;50ug/mL核糖体RNA;1.84%V/V 1M柠檬酸(citric acid;0.1%Tween,将24孔培养皿放入68℃水浴锅中水浴60min。Add 200 μL prehybridization solution (50% formamide; 2*SSC; 50ug/mL heparin; 5mM EDTA, pH8.0; 50ug/mL ribosomal RNA; 1.84% V/V 1M citric acid; 0.1% Tween , put the 24-well petri dish in a 68°C water bath for 60 minutes.

3)杂交3) hybridization

(1)吸掉预杂交液,滴加200μL本发明的杂交液(含有2ng/uL地高辛标记物的反义RNA,其序列如SEQ ID NO.21所示),将24孔培养皿放入68℃水浴锅中孵育过夜。(1) Suck off the pre-hybridization solution, add dropwise 200 μL of the hybridization solution of the present invention (antisense RNA containing 2ng/uL digoxin marker, its sequence is shown in SEQ ID NO.21), put the 24-well culture dish Incubate overnight in a 68°C water bath.

4)杂交后处理4) Post-hybridization treatment

(1)吸出杂交夜,加入200ul 68℃预热的50%甲酰胺/2×SSCT缓冲液中洗2次,每次30min;(1) Aspirate the hybridization night, add 200ul 68°C preheated 50% formamide/2×SSCT buffer and wash twice, 30min each time;

(2)68℃预热的2×SSCT缓冲液中洗1次,30min;(2) Wash once in 68°C preheated 2×SSCT buffer for 30 minutes;

(3)68℃预热的0.2×SSCT缓冲液中洗2次,每次30min;(3) Wash twice in 0.2×SSCT buffer preheated at 68°C, 30 min each time;

(4)吸出液体,滴加阻断溶液,室温℃孵育60min。(4) Aspirate the liquid, add the blocking solution dropwise, and incubate at room temperature for 60 min.

(5)加入新用阻断溶液3000倍稀释的地高辛抗体(Anti-Digoxigenin-AP,Fabfragments),4℃过夜。(5) Digoxigenin antibody (Anti-Digoxigenin-AP, Fabfragments) diluted 3000 times with blocking solution was added, overnight at 4°C.

5)显色、照相5) Color development, photography

(1)加入到1%热处理羔羊血清(heat treated lamb serum)的MABT溶液中,室温洗25min;(1) Add to MABT solution of 1% heat treated lamb serum, wash at room temperature for 25min;

(2)MABT洗3次,每次25min;(2) Wash 3 times with MABT, 25 minutes each time;

(3)检测缓冲液(每50mL溶液:100mM NaCl(1mL 5M);50mM MgCl2(2.5mL 1M);100mM三羟甲基氨基甲烷(Tris)-HCl(5mL 1M,pH9.5);0.1%Tween-20;1mM左旋咪唑(50uL1M))洗2次,每次5min;(3) Detection buffer (per 50mL solution: 100mM NaCl (1mL 5M); 50mM MgCl2 (2.5mL 1M); 100mM Tris-HCl (5mL 1M, pH9.5); 0.1% Tween -20; 1mM levamisole (50uL1M)) washed twice, 5min each time;

(4)加入200uLAP底物染色缓冲液(每1mL检测缓冲液加入:4.5uLNBT,3.5uLBCIP又称X-磷酸盐,加入4uL左旋咪唑),室温温育,金属箔片包裹避光;(4) Add 200uLAP substrate staining buffer (per 1mL detection buffer: 4.5uLNBT, 3.5uLBCIP, also known as X-phosphate, add 4uL levamisole), incubate at room temperature, wrap with metal foil to avoid light;

(5)当目标着色出现后,用PBS洗2次,每次5min,以停止反应;(5) When the target coloration appears, wash it twice with PBS, each time for 5 minutes, to stop the reaction;

(6)显微镜观察、照相,结果显示出现阳性信号。(6) Microscopic observation and photography showed positive signals.

2、本发明的RNA探针突变容忍度2. RNA probe mutation tolerance of the present invention

目前的2019-nCOV突变率极高,序列并不稳定,而目前采用的RNAscope方法与荧光定量PCR方法一样,需要非常特异的碱基序列,当目的序列发生突变的时候,靶序列与目的序列的结合效率会显著下降甚至失败,导致检测结果失败。目前,2019-nCOV突变种类已经达到6000多种,平均5个碱基就有一个碱基发生突变,如果采用常规的实验性检测方式,目的序列中50个碱基,平均就有10个碱基发生突变,在实际检测中,如果50个靶序列中有一个碱基发生了突变,就会导致该方法灵敏度急剧下降甚至检测失败。如图15为其中的突变类型。而本发明要求保护的RNA探针序列采用的原位杂交技术,利用了单序列、长片段结合的方法,与靶基因相结合,即使目的序列发生了突变,不会影响整体的结合效率。即使在目标序列中有多个核酸发生突变,也可以与RNA探针的大部分碱基序列杂交,不会影响整体的杂交效果。The current 2019-nCOV mutation rate is extremely high, and the sequence is not stable. The RNAscope method currently used, like the fluorescent quantitative PCR method, requires a very specific base sequence. When the target sequence mutates, the target sequence and the target sequence The binding efficiency will decrease significantly or even fail, resulting in the failure of the detection result. At present, there are more than 6,000 types of 2019-nCOV mutations, with an average of 1 base mutation in 5 bases. If conventional experimental detection methods are used, there are 50 bases in the target sequence, and an average of 10 bases In actual detection, if one of the 50 target sequences is mutated, the sensitivity of the method will drop sharply or even the detection will fail. Figure 15 shows the mutation types. However, the in situ hybridization technology adopted by the RNA probe sequence claimed in the present invention utilizes the single-sequence and long-fragment combination method to combine with the target gene, even if the target sequence is mutated, it will not affect the overall binding efficiency. Even if there are multiple nucleic acid mutations in the target sequence, it can hybridize with most of the base sequences of the RNA probe without affecting the overall hybridization effect.

为进一步验证本发明的RNA探针(其序列如SEQ ID NO.21所示)对2019-nCOV的部分碱基序列(如SEQ ID NO.5所示,937nt)的突变容忍度,进行如下实验:In order to further verify the mutation tolerance of the RNA probe of the present invention (its sequence as shown in SEQ ID NO.21) to the partial base sequence of 2019-nCOV (as shown in SEQ ID NO.5, 937nt), the following experiments were carried out :

实验设计1:同样的RNA探针序列,采用不同的信号放大系统进行原位杂交实验。利用地高辛标记,碱性磷酸酶信号放大系统,本发明的RNA探针与2019-nCOV部分碱基序列(937nt)的细胞原位杂交实验得到特异的、非常强的杂交信号(见图11A);同样的RNA探针片段,利用荧光原位杂交实验,荧光显微镜下检测不到杂交信号(见图11B)。Experimental Design 1: The same RNA probe sequence was used for in situ hybridization experiments using different signal amplification systems. Using digoxigenin labeling and alkaline phosphatase signal amplification system, the RNA probe of the present invention and the 2019-nCOV partial base sequence (937nt) cell in situ hybridization experiment obtained a specific and very strong hybridization signal (see Figure 11A ); the same RNA probe fragment, using fluorescence in situ hybridization experiment, no hybridization signal can be detected under the fluorescence microscope (see Figure 11B).

实验设计2:利用地高辛标记,碱性磷酸酶信号放大系统,本发明的RNA探针可以得到很强的杂交信号(见图11A);RNA探针片段缩短后(如SEQ ID NO.8所示的序列,255nt,该序列为本发明的RNA探针截短后所得的UTP带地高辛标记的RNA探针序列;如SEQ ID NO.9所示的序列,255nt,该序列为与2019-nCOV编码E蛋白的核酸结合的RNA探针序列),细胞原位杂交结果为阴性(见图11C)。Experimental Design 2: Using digoxin labeling and alkaline phosphatase signal amplification system, the RNA probe of the present invention can obtain a strong hybridization signal (see Figure 11A); after the RNA probe fragment is shortened (such as SEQ ID NO.8 The sequence shown, 255nt, this sequence is the UTP band digoxin-labeled RNA probe sequence obtained after the RNA probe of the present invention is truncated; as shown in the sequence of SEQ ID NO.9, 255nt, this sequence is the same as 2019-nCOV nucleic acid binding RNA probe sequence encoding E protein), the result of cell in situ hybridization was negative (see Figure 11C).

实验设计3:突变实验,qPCR实验突变扩增效率检测Experimental design 3: mutation experiment, qPCR experiment mutation amplification efficiency detection

将野生型质粒以及突变后的质粒转染到HEK293T细胞中,提取细胞的RNA,用qPCR进行验证,在突变位点附近设计qPCR引物,一共设计了8组突变型引物(分别用m1,m2,m3,m4,r1,r2,r3,r4表示)。qPCR实验结果见图13,结果表明,以f作为参照(病毒未发生突变),PCR扩增效率为100%,当病毒发生突变后,m1,m2,m3,r1,r3完全检测不到信号,m4,r2,r4的效率为别为突变前的1%,6%,4%,而原位杂交实验结果表明本发明的RNA探针不受核酸突变的影响,仍然得到非常强的阳性信号(见图14右图),该实验证明了本发明的RNA探针对2019-nCOV突变的容忍度高,而qPCR方法对病毒的突变非常敏感,容易导致假阴性结果的出现。同理可以类推,常用的短探针结合的方法,其核酸杂交的大小与qPCR类似,因此短探针结合方法对突变也非常敏感。The wild-type plasmid and the mutated plasmid were transfected into HEK293T cells, the RNA of the cells was extracted, verified by qPCR, and qPCR primers were designed near the mutation site. A total of 8 sets of mutant primers were designed (m1, m2, m3, m4, r1, r2, r3, r4). The results of the qPCR experiment are shown in Figure 13. The results show that with f as a reference (the virus has not mutated), the PCR amplification efficiency is 100%. The efficiency of m4, r2, r4 is respectively 1%, 6%, 4% before the mutation, and the in situ hybridization experiment result shows that the RNA probe of the present invention is not affected by the nucleic acid mutation, and still obtains a very strong positive signal ( See Figure 14 on the right), this experiment proves that the RNA probe of the present invention has a high tolerance to 2019-nCOV mutations, while the qPCR method is very sensitive to virus mutations, which can easily lead to false negative results. In the same way, it can be deduced that the commonly used short probe binding method has a nucleic acid hybridization size similar to that of qPCR, so the short probe binding method is also very sensitive to mutations.

如SEQ ID NO.10所示为野生型质粒qPCR后得到的核苷酸序列。The nucleotide sequence obtained after qPCR of the wild-type plasmid is shown as SEQ ID NO.10.

qPCR实验采用的野生型引物(如SEQ ID NO.11~12所示):Wild-type primers used in qPCR experiments (as shown in SEQ ID NO.11-12):

qPCR-F2:tgcttgtgaaattgtcggtgga;qPCR-F2: tgcttgtgaaattgtcggtgga;

qPCR-R2:agagtcagcacacaaagccaa;qPCR-R2:agagtcagcacacaaagccaa;

qPCR实验采用的8组突变型引物:(大写标记的为突变位点,序列如SEQ ID NO.13~20所示)8 sets of mutant primers used in qPCR experiments: (The uppercase marks are the mutation sites, and the sequences are shown in SEQ ID NO.13-20)

SNP1:qPCR-F2 m1:tgcttgtgaaattgtcggtggT;SNP1: qPCR-F2 m1: tgcttgtgaaattgtcggtggT;

SNP2:qPCR-F2 m2:tgcttgtgaaattgtcggtgCT;SNP2: qPCR-F2 m2: tgcttgtgaaattgtcggtgCT;

SNP3:qPCR-F2 m3:tgcttgtgaaTAtgtcggtgga;SNP3: qPCR-F2 m3: tgcttgtgaaTAtgtcggtgga;

SNP4:qPCR-F2 m4:tgcttgtgaaaAtgtcggtgga;SNP4: qPCR-F2 m4: tgcttgtgaaaAtgtcggtgga;

SNP5:qPCR-R2 r1:agagtcagcacacaaagccaT;SNP5: qPCR-R2 r1:agagtcagcacacaaagccaT;

SNP6:qPCR-2 r2:agagtcagcacacaaagccGT;SNP6: qPCR-2 r2:agagtcagcacacaaagccGT;

SNP7:qPCR-2 r3:agagtcagcacaGaaagccaa;SNP7: qPCR-2 r3:agagtcagcacaGaaagccaa;

SNP8:qPCR-2 r4:agagtcagcaGTcaaagccaa。SNP8: qPCR-2 r4:agagtcagcaGTcaaagccaa.

SNP1-SNP8分别为qPCR实验的正向引物m1-m4,反向引物为r1-r4。基因突变对qPCR的扩增效率有非常大的影响,当突变位点在引物的3'端时,影响非常大,突变位点在引物中间的时候也有影响,但是不如在3'端大。SNP1-SNP8 are the forward primers m1-m4 and the reverse primers r1-r4 of the qPCR experiment, respectively. Gene mutation has a great impact on the amplification efficiency of qPCR. When the mutation site is at the 3' end of the primer, the impact is very large. When the mutation site is in the middle of the primer, it also has an impact, but it is not as large as at the 3' end.

实验设计4:原位杂交突变实验设计Experimental Design 4: In Situ Hybridization Mutation Experimental Design

在目的杂交序列(如SEQ ID NO.5所示,937nt)基础上,我们设计了连续2个、3个碱基突变的实验,如图13所示,其中截取了其中360个碱基,未匹配的为突变碱基)。On the basis of the target hybridization sequence (as shown in SEQ ID NO.5, 937nt), we designed an experiment of consecutive 2 and 3 base mutations, as shown in Figure 13, wherein 360 bases were intercepted, and no The matched base is the mutant base).

实验结果参见图14,左图为转染了pCMVB myc hisA空载体的实验对照,右图为本发明的RNA探针原位杂交实验结果。结果表明:将目的序列进行突变后,本发明的RNA探针仍然得到非常强的、特异性的杂交信号。即使目的病毒的核酸序列发生单个或者多个碱基突变,本发明的RNA探针仍然得到非常强的阳性信号,本方法对核酸突变的容忍度比较高。本发明的RNA探针,成本低,制作简单,效果好,具有抗突变的效果。See Figure 14 for the experimental results. The left figure is the experimental control transfected with pCMVB myc hisA empty vector, and the right figure is the result of the RNA probe in situ hybridization experiment of the present invention. The results show that after the target sequence is mutated, the RNA probe of the present invention still obtains a very strong and specific hybridization signal. Even if single or multiple base mutations occur in the nucleic acid sequence of the target virus, the RNA probe of the present invention still obtains very strong positive signals, and the method has a relatively high tolerance to nucleic acid mutations. The RNA probe of the invention has low cost, simple manufacture, good effect and anti-mutation effect.

上述实验进一步证明了本发明的RNA探针(其序列如SEQ ID NO.21所示)对病毒突变的容忍度高,而qPCR方法对病毒的突变非常敏感,容易导致假阴性结果的出现。同理可以类推,常用的短探针结合的方法,其核酸杂交的大小与qPCR类似,因此短探针结合方法对突变也非常敏感。因此,对于突变频率非常高的新冠病毒而言,本发明要明显优于常规的方法。The above experiment further proves that the RNA probe of the present invention (its sequence is shown in SEQ ID NO.21) has a high tolerance to virus mutation, while the qPCR method is very sensitive to virus mutation, which easily leads to false negative results. In the same way, it can be deduced that the commonly used short probe binding method has a nucleic acid hybridization size similar to that of qPCR, so the short probe binding method is also very sensitive to mutations. Therefore, for the new coronavirus with a very high mutation frequency, the present invention is obviously better than conventional methods.

根据本RNA探针的检测原理可推断,SEQ ID NO.21所示的序列在蝙蝠冠状病毒prc31株、蝙蝠冠状病毒RacCS203株、蝙蝠冠状病毒264株、蝙蝠冠状病毒253株、蝙蝠冠状病毒224株或穿山甲冠状病毒MP789株等病毒的检测方面也能达到相当的效果。According to the detection principle of this RNA probe, it can be inferred that the sequence shown in SEQ ID NO. Or the detection of viruses such as pangolin coronavirus MP789 strain can also achieve considerable results.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

序列表sequence listing

<110> 湖南师范大学,中南大学湘雅二医院<110> Hunan Normal University, Second Xiangya Hospital of Central South University

<120> 一种检测2019-nCOV的RNA探针及其制备方法与应用<120> An RNA probe for detecting 2019-nCOV and its preparation method and application

<160> 24<160> 24

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 960<211> 960

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

ugugcuugug aaauugucgg uggacaaauu gucaccugug caaaggaaau uaaggagagu 60ugugcuugug aaauugucgg uggacaaauu gucaccugug caaaggaaau uaaggagagu 60

guucagacau ucuuuaagcu uguaaauaaa uuuuuggcuu ugugugcuga cucuaucauu 120guucagacau ucuuuaagcu uguaaauaaa uuuuuggcuu ugugugcuga cucuaucauu 120

auugguggag cuaaacuuaa agccuugaau uuaggugaaa cauuugucac gcacucaaag 180auugguggag cuaaacuuaa agccuugaau uuaggugaaa cauuugucac gcacucaaag 180

ggauuguaca gaaagugugu uaaauccaga gaagaaacug gccuacucau gccucuaaaa 240ggauuguaca gaaagugugu uaaauccaga gaagaaacug gccuacucau gccucuaaaa 240

gccccaaaag aaauuaucuu cuuagaggga gaaacacuuc ccacagaagu guuaacagag 300gccccaaaag aaauuaucuu cuuagaggga gaaacacuuc ccacagaagu guuaacagag 300

gaaguugucu ugaaaacugg ugauuuacaa ccauuagaac aaccuacuag ugaagcuguu 360gaaguugucu ugaaaacugg ugauuuacaa ccauuagaac aaccuacuag ugaagcuguu 360

gaagcuccau ugguugguac accaguuugu auuaacgggc uuauguugcu cgaaaucaaa 420gaagcuccau ugguuggac accaguuugu auuaacgggc uuauguugcu cgaaaucaaa 420

gacacagaaa aguacugugc ccuugcaccu aauaugaugg uaacaaacaa uaccuucaca 480gacacagaaa aguacugugc ccuugcaccu aauaugaugg uaacaaacaa uaccuucaca 480

cucaaaggcg gugcaccaac aaagguuacu uuuggugaug acacugugau agaagugcaa 540cucaaaggcg gugcaccaac aaagguuacu uuuggugaug acacugugau agaagugcaa 540

gguuacaaga gugugaauau cacuuuugaa cuugaugaaa ggauugauaa aguacuuaau 600gguuacaaga gugugaauau cacuuuugaa cuugaugaaa ggauugauaa aguacuuaau 600

gagaagugcu cugccuauac aguugaacuc gguacagaag uaaaugaguu cgccuguguu 660gagaagugcu cugccuauac aguugaacuc gguacagaag uaaaugaguu cgccuguguu 660

guggcagaug cugucauaaa aacuuugcaa ccaguaucug aauuacuuac accacugggc 720guggcagaug cugucauaaa aacuuugcaa ccaguaucug aauuacuuac accacugggc 720

auugauuuag augaguggag uauggcuaca uacuacuuau uugaugaguc uggugaguuu 780auugauuuag augaguggag uauggcuaca uacuacuuau uugaugaguc uggugaguu 780

aaauuggcuu cacauaugua uuguucuuuc uacccuccag augaggauga agaagaaggu 840aaauuggcuu cacauaugua uuguucuuuc uacccuccag augaggauga agaagaaggu 840

gauugugaag aagaagaguu ugagccauca acucaauaug aguaugguac ugaagaugau 900gauugugaag aagaagaguu ugagccauca acucaauaug aguauguac ugaagaugau 900

uaccaaggua aaccuuugga auuuggugcc acuucugccc uauagugagu cguauuacgc 960uaccaaggua aaccuuugga auuuggugcc acuucugccc uauagugagu cguauuacgc 960

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

tgtgcttgtg aaattgtcgg t 21tgtgcttgtg aaattgtcgg t 21

<210> 3<210> 3

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

cagaagtggc accaaattcc a 21cagaagtggc accaaattcc a 21

<210> 4<210> 4

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

gcgtaatacg actcactata gggcagaagt ggcaccaaat tcca 44gcgtaatacg actcactata gggcagaagt ggcaccaaat tcca 44

<210> 5<210> 5

<211> 937<211> 937

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

tgtgcttgtg aaattgtcgg tggacaaatt gtcacctgtg caaaggaaat taaggagagt 60tgtgcttgtg aaattgtcgg tggacaaatt gtcacctgtg caaaggaaat taaggagagt 60

gttcagacat tctttaagct tgtaaataaa tttttggctt tgtgtgctga ctctatcatt 120gttcagacat tctttaagct tgtaaataaa tttttggctt tgtgtgctga ctctatcatt 120

attggtggag ctaaacttaa agccttgaat ttaggtgaaa catttgtcac gcactcaaag 180attggtggag ctaaacttaa agccttgaat ttaggtgaaa catttgtcac gcactcaaag 180

ggattgtaca gaaagtgtgt taaatccaga gaagaaactg gcctactcat gcctctaaaa 240ggattgtaca gaaagtgtgt taaatccaga gaagaaactg gcctactcat gcctctaaaa 240

gccccaaaag aaattatctt cttagaggga gaaacacttc ccacagaagt gttaacagag 300gccccaaaag aaattatctt cttagaggga gaaacacttc ccacagaagt gttaacagag 300

gaagttgtct tgaaaactgg tgatttacaa ccattagaac aacctactag tgaagctgtt 360gaagttgtct tgaaaactgg tgattacaa ccattagaac aacctactag tgaagctgtt 360

gaagctccat tggttggtac accagtttgt attaacgggc ttatgttgct cgaaatcaaa 420gaagctccat tggttggtac accagtttgt attaacgggc ttatgttgct cgaaatcaaa 420

gacacagaaa agtactgtgc ccttgcacct aatatgatgg taacaaacaa taccttcaca 480gacacagaaa agtactgtgc ccttgcacct aatatgatgg taacaaacaa taccttcaca 480

ctcaaaggcg gtgcaccaac aaaggttact tttggtgatg acactgtgat agaagtgcaa 540ctcaaaggcg gtgcaccaac aaaggttact tttggtgatg acactgtgat agaagtgcaa 540

ggttacaaga gtgtgaatat cacttttgaa cttgatgaaa ggattgataa agtacttaat 600ggttacaaga gtgtgaatat cacttttgaa cttgatgaaa ggattgataa agtacttaat 600

gagaagtgct ctgcctatac agttgaactc ggtacagaag taaatgagtt cgcctgtgtt 660gagaagtgct ctgcctatac agttgaactc ggtacagaag taaatgagtt cgcctgtgtt 660

gtggcagatg ctgtcataaa aactttgcaa ccagtatctg aattacttac accactgggc 720gtggcagatg ctgtcataaa aactttgcaa ccagtatctg aattacttac accactgggc 720

attgatttag atgagtggag tatggctaca tactacttat ttgatgagtc tggtgagttt 780attgatttag atgagtggag tatggctaca tactacttat ttgatgagtc tggtgagttt 780

aaattggctt cacatatgta ttgttctttc taccctccag atgaggatga agaagaaggt 840aaattggctt cacatatgta ttgttctttc taccctccag atgaggatga agaagaaggt 840

gattgtgaag aagaagagtt tgagccatca actcaatatg agtatggtac tgaagatgat 900gattgtgaag aagaagagtt tgagccatca actcaatatg agtatggtac tgaagatgat 900

taccaaggta aacctttgga atttggtgcc acttctg 937taccaaggta aacctttgga atttggtgcc acttctg 937

<210> 6<210> 6

<211> 64<211> 64

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

cccaagctgg ctagttaagc ttggtaccat gtcaacctgt gcttgtgaaa ttgtcggtgg 60cccaagctgg ctagttaagc ttggtaccat gtcaacctgt gcttgtgaaa ttgtcggtgg 60

acaa 64acaa 64

<210> 7<210> 7

<211> 59<211> 59

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

ctgagatgag tttttgttcg aagggcccag cagcagaagt ggcaccaaat tccaaaggt 59ctgagatgag tttttgttcg aagggcccag cagcagaagt ggcaccaaat tccaaaggt 59

<210> 8<210> 8

<211> 225<211> 225

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

cagaaguggc accaaauucc aaagguuuac cuugguaauc aucuucagua ccauacucau 60cagaaguggc accaaauucc aaagguuuac cuuggaauc aucucagua ccauacucau 60

auugaguuga uggcucaaac ucuucuucuu cacaaucacc uucuucuuca uccucaucug 120augaguuga uggcucaaac ucuucuucuu cacaaucacc uucuucuuca uccucaucug 120

gaggguagaa agaacaauac auaugugaag ccaauuuaaa cucaccagac ucaucaaaua 180gaggguagaa agaacaauac auaugugaag ccaauuuaaa cucaccagac ucaucaaaua 180

aguaguaugu agccauacuc cacucaucua aaucaaugcc cagug 225aguaguaugu agccauacuc cacucaucua aaucaaugcc cagug 225

<210> 9<210> 9

<211> 225<211> 225

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

gaccagaaga ucaggaacuc uagaagaauu cagauuuuua acacgagagu aaacguaaaa 60gaccagaaga ucaggaacuc uagaagaauu cagauuuuua acacgagagu aaacguaaaa 60

agaagguuuu acaagacuca cguuaacaau auugcagcag uacgcacaca aucgaagcgc 120agaagguuuu acaagacuca cguuaacaau auugcagcag uacgcacaca aucgaagcgc 120

aguaaggaug gcuaguguaa cuagcaagaa uaccacgaaa gcaagaaaaa gaaguacgcu 180aguaaggaug gcuaguguaa cuagcaagaa uaccacgaaa gcaagaaaaa gaaguacgcu 180

auuaacuauu aacguaccug ucucuuccga aacgaaugag uacau 225auuaacuauu aacguaaccug ucucuuccga aacgaaugag uacau 225

<210> 10<210> 10

<211> 112<211> 112

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

tgcttgtgaa attgtcggtg gacaaattgt cacctgtgca aaggaaatta aggagagtgt 60tgcttgtgaa attgtcggtg gacaaattgt cacctgtgca aaggaaatta aggagagtgt 60

tcagacattc tttaagcttg taaataaatt tttggctttg tgtgctgact ct 112tcagacattc tttaagcttg taaataaatt tttggctttg tgtgctgact ct 112

<210> 11<210> 11

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

tgcttgtgaa attgtcggtg ga 22tgcttgtgaa attgtcggtg ga 22

<210> 12<210> 12

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

agagtcagca cacaaagcca a 21agagtcagca cacaaagcca a 21

<210> 13<210> 13

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

tgcttgtgaa attgtcggtg gt 22tgcttgtgaa attgtcggtg gt 22

<210> 14<210> 14

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

tgcttgtgaa attgtcggtg ct 22tgcttgtgaa attgtcggtg ct 22

<210> 15<210> 15

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

tgcttgtgaa tatgtcggtg ga 22tgcttgtgaa tatgtcggtg ga 22

<210> 16<210> 16

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

tgcttgtgaa aatgtcggtg ga 22tgcttgtgaa aatgtcggtg ga 22

<210> 17<210> 17

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

agagtcagca cacaaagcca t 21agagtcagca cacaaagcca t 21

<210> 18<210> 18

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

agagtcagca cacaaagccg t 21agagtcagca cacaaagccg t 21

<210> 19<210> 19

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

agagtcagca cagaaagcca a 21agagtcagca cagaaagcca a 21

<210> 20<210> 20

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 20<400> 20

agagtcagca gtcaaagcca a 21agagtcagca gtcaaagcca a 21

<210> 21<210> 21

<211> 937<211> 937

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

cagaaguggc accaaauucc aaagguuuac cuugguaauc aucuucagua ccauacucau 60cagaaguggc accaaauucc aaagguuuac cuuggaauc aucucagua ccauacucau 60

auugaguuga uggcucaaac ucuucuucuu cacaaucacc uucuucuuca uccucaucug 120augaguuga uggcucaaac ucuucuucuu cacaaucacc uucuucuuca uccucaucug 120

gaggguagaa agaacaauac auaugugaag ccaauuuaaa cucaccagac ucaucaaaua 180gaggguagaa agaacaauac auaugugaag ccaauuuaaa cucaccagac ucaucaaaua 180

aguaguaugu agccauacuc cacucaucua aaucaaugcc caguggugua aguaauucag 240aguaguaugu agccauacuc cacucaucua aaucaaugcc caguggugua aguaauucag 240

auacugguug caaaguuuuu augacagcau cugccacaac acaggcgaac ucauuuacuu 300auacugguug caaaguuuuu augacagcau cugccacaac acaggcgaac ucauuuacuu 300

cuguaccgag uucaacugua uaggcagagc acuucucauu aaguacuuua ucaauccuuu 360cuguaccgag uucaacugua uaggcagagc acuucucauu aaguacuuua ucaauccuuu 360

caucaaguuc aaaagugaua uucacacucu uguaaccuug cacuucuauc acagugucau 420caucaaguuc aaaagugaua uucacacucu uguaaccuug cacuucuauc acagugucau 420

caccaaaagu aaccuuuguu ggugcaccgc cuuugagugu gaagguauug uuuguuacca 480caccaaaagu aaccuuuguu ggugcaccgc cuuugagugu gaagguauug uuuguuacca 480

ucauauuagg ugcaagggca caguacuuuu cugugucuuu gauuucgagc aacauaagcc 540ucauauuagg ugcaagggca caguacuuuu cugugucuuu gauuucgagc aacauaagcc 540

cguuaauaca aacuggugua ccaaccaaug gagcuucaac agcuucacua guagguuguu 600cguuaauaca aacuggugua ccaaccaaug gagcuucaac agcuucacua guagguuguu 600

cuaaugguug uaaaucacca guuuucaaga caacuuccuc uguuaacacu ucugugggaa 660cuaaugguug uaaaucacca guuuucaaga caacuuccuc uguuaacacu ucugugggaa 660

guguuucucc cucuaagaag auaauuucuu uuggggcuuu uagaggcaug aguaggccag 720guguuucucc cucuaagaag auaauuucuu uuggggcuuu uagaggcaug aguaggccag 720

uuucuucucu ggauuuaaca cacuuucugu acaaucccuu ugagugcgug acaaauguuu 780uuucuucucu ggauuuaaca cacuuucugu acaaucccuu ugagugcgug acaaauguuu 780

caccuaaauu caaggcuuua aguuuagcuc caccaauaau gauagaguca gcacacaaag 840caccuaaauu caaggcuuua aguuuagcuc caccaauaau gauagaguca gcacacaaag 840

ccaaaaauuu auuuacaagc uuaaagaaug ucugaacacu cuccuuaauu uccuuugcac 900ccaaaaauuu auuuacaagc uuaaagaaug ucugaacacu cuccuuaauu uccuuugcac 900

aggugacaau uuguccaccg acaauuucac aagcaca 937aggugacaau uuguccaccg acaauuucac aagcaca 937

<210> 22<210> 22

<211> 857<211> 857

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

ucuucuucuu cacaaucacc uucuucuuca uccucaucug gaggguagaa agaacaauac 60ucuucuucuu cacaaucacc uucuucuuca uccucaucug gaggguagaa agaacaauac 60

auaugugaag ccaauuuaaa cucaccagac ucaucaaaua aguaguaugu agccauacuc 120auaugugaag ccaauuuaaa cucaccagac ucaucaaaua aguaguaugu agccauacuc 120

cacucaucua aaucaaugcc caguggugua aguaauucag auacugguug caaaguuuuu 180cacucaucua aaucaaugcc caguggugua aguaauucag auacugguug caaaguuuuu 180

augacagcau cugccacaac acaggcgaac ucauuuacuu cuguaccgag uucaacugua 240augacagcau cugccacaac acaggcgaac ucauuuacuu cuguaccgag uucaacugua 240

uaggcagagc acuucucauu aaguacuuua ucaauccuuu caucaaguuc aaaagugaua 300uaggcagagc acuucucauu aaguacuuua ucaauccuuu caucaaguuc aaaagugaua 300

uucacacucu uguaaccuug cacuucuauc acagugucau caccaaaagu aaccuuuguu 360uucacacucu uguaaccuug cacuucuauc acagugucau caccaaaagu aaccuuuguu 360

ggugcaccgc cuuugagugu gaagguauug uuuguuacca ucauauuagg ugcaagggca 420ggugcaccgc cuuugagugu gaagguauug uuuguuacca ucauauuagg ugcaagggca 420

caguacuuuu cugugucuuu gauuucgagc aacauaagcc cguuaauaca aacuggugua 480caguacuuuu cugugucuuu gauuucgagc aacauaagcc cguuaauaca aacuggugua 480

ccaaccaaug gagcuucaac agcuucacua guagguuguu cuaaugguug uaaaucacca 540ccaaccaaug gagcuucaac agcuucacua guagguuguu cuaaugguug uaaaucacca 540

guuuucaaga caacuuccuc uguuaacacu ucugugggaa guguuucucc cucuaagaag 600guuuucaaga caacuuccuc uguuaacacu ucugugggaa guguuucucc cucuaagaag 600

auaauuucuu uuggggcuuu uagaggcaug aguaggccag uuucuucucu ggauuuaaca 660auaauuucuu uuggggcuuu uagaggcaug aguaggccag uuucuucucu ggauuuaaca 660

cacuuucugu acaaucccuu ugagugcgug acaaauguuu caccuaaauu caaggcuuua 720cacuuucugu acaaucccuu ugagugcgug acaaauguuu caccuaaauu caaggcuuua 720

aguuuagcuc caccaauaau gauagaguca gcacacaaag ccaaaaauuu auuuacaagc 780aguuuagcuc caccaauaau gauagaguca gcacacaaag ccaaaaauuu auuuacaagc 780

uuaaagaaug ucugaacacu cuccuuaauu uccuuugcac aggugacaau uuguccaccg 840uuaaagaaug ucugaacacu cuccuuaauu uccuuugcac aggugacau uuguccaccg 840

acaauuucac aagcaca 857acaauuucac aagcaca 857

<210> 23<210> 23

<211> 1072<211> 1072

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

uaauugaggu ugaaccucaa caauuguuug aauaguaguu gucugauugu ccucacugcc 60uaauugaggu ugaaccucaa caauuguuug aauaguaguu gucugauugu ccucacugcc 60

gucuuguuga ccaacaguuu guugacuauc aucaucuaac caaucuucuu cuugcucuuc 120gucuuguuga ccaacaguuu guugacuauc aucaucuaac caaucuucuu cuugcucuuc 120

uucagguuga agagcagcag aaguggcacc aaauuccaaa gguuuaccuu gguaaucauc 180uucagguuga agagcagcag aaguggcacc aaauuccaaa gguuuaccuu gguaaucauc 180

uucaguacca uacucauauu gaguugaugg cucaaacucu ucuucuucac aaucaccuuc 240uucaguacca uacucauauu gaguugaugg cucaaacucu ucuucuucac aaucaccuuc 240

uucuucaucc ucaucuggag gguagaaaga acaauacaua ugugaagcca auuuaaacuc 300uucuucaucc ucaucuggag gguagaaaga acaauacaua ugugaagcca auuuaaacuc 300

accagacuca ucaaauaagu aguauguagc cauacuccac ucaucuaaau caaugcccag 360accagacuca ucaaauaagu aguauguagc cauacuccac ucaucuaaau caaugcccag 360

ugguguaagu aauucagaua cugguugcaa aguuuuuaug acagcaucug ccacaacaca 420ugguguaagu aauucagaua cugguugcaa aguuuuuaug acagcaucug ccacaacaca 420

ggcgaacuca uuuacuucug uaccgaguuc aacuguauag gcagagcacu ucucauuaag 480ggcgaacuca uuuacuucug uaccgaguuc aacuguauag gcagagcacu ucucauuaag 480

uacuuuauca auccuuucau caaguucaaa agugauauuc acacucuugu aaccuugcac 540uacuuuauca auccuuucau caaguucaaa agugauauuc acacucuugu aaccuugcac 540

uucuaucaca gugucaucac caaaaguaac cuuuguuggu gcaccgccuu ugagugugaa 600uucuaucaca gugucaucac caaaaguaac cuuuguuggu gcaccgccuu ugagugugaa 600

gguauuguuu guuaccauca uauuaggugc aagggcacag uacuuuucug ugucuuugau 660gguauuguuu guuaccauca uauuaggugc aagggcacag uacuuuucug ugucuuugau 660

uucgagcaac auaagcccgu uaauacaaac ugguguacca accaauggag cuucaacagc 720uucgagcaac auaagcccgu uaauacaaac ugguguacca accaauggag cuucaacagc 720

uucacuagua gguuguucua augguuguaa aucaccaguu uucaagacaa cuuccucugu 780uucacuagua gguuguucua auguuguaa aucaccaguu uucaagacaa cuuccucugu 780

uaacacuucu gugggaagug uuucucccuc uaagaagaua auuucuuuug gggcuuuuag 840uaacacuucu ggggaagug uuucucccuc uaagaagaua auuucuuuug gggcuuuuag 840

aggcaugagu aggccaguuu cuucucugga uuuaacacac uuucuguaca aucccuuuga 900aggcaugagu aggccaguuu cuucucugga uuuaacacac uuucuguaca aucccuuuga 900

gugcgugaca aauguuucac cuaaauucaa ggcuuuaagu uuagcuccac caauaaugau 960gugcgugaca aauguuucac cuaaauucaa ggcuuuaagu uuagcuccac caauaaugau 960

agagucagca cacaaagcca aaaauuuauu uacaagcuua aagaaugucu gaacacucuc 1020agagucagca cacaaagcca aaaauuuauu uacaagcuua aagaaugucu gaacacucuc 1020

cuuaauuucc uuugcacagg ugacaauuug uccaccgaca auuucacaag ca 1072cuuaauuucc uuugcacagg ugacaauuug uccaccgaca auuucacaag ca 1072

<210> 24<210> 24

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

gcgtaatacg actcactata gggtgtgctt gtgaaattgt cggt 44gcgtaatacg actcactata gggtgtgctt gtgaaattgt cggt 44

Claims (5)

1.一种检测2019-nCOV的RNA探针,其特征在于,所述RNA探针的序列如SEQ ID NO.1所示;所述RNA探针为带有地高辛标记的反义RNA探针。1. An RNA probe for detecting 2019-nCOV, characterized in that, the sequence of the RNA probe is as shown in SEQ ID NO.1; the RNA probe is an antisense RNA probe with digoxin labeling Needle. 2.一种RNA探针的制备方法,其特征在于,包括下述步骤:2. a preparation method of RNA probe, is characterized in that, comprises the steps: 1)设计引物:根据目标物2019-nCOV的部分碱基序列设计引物,得到正向引物和反向引物;所述正向引物为COVID-19-F1,其序列如SEQ ID NO.2所示;在反向引物的5'端之前,添加T7 RNA聚合酶启动子,得到的反向引物为COVID-19-R2,其序列如SEQ ID NO.4;1) Design primers: design primers according to the partial base sequence of the target 2019-nCOV to obtain forward primers and reverse primers; the forward primer is COVID-19-F1, and its sequence is shown in SEQ ID NO.2 ; Before the 5' end of the reverse primer, a T7 RNA polymerase promoter is added, and the obtained reverse primer is COVID-19-R2, and its sequence is as SEQ ID NO.4; 2)构建重组质粒:将目标物2019-nCOV的部分碱基序列进行PCR扩增,所述PCR扩增采用的正向引物为COVID-19-F2,其序列如SEQ ID NO.6所示;所述PCR扩增采用的反向引物为COVID-19-R3,其序列如SEQ ID NO.7所示;利用克隆技术,将所述目标物的部分碱基序列连接到载体上,得到重组质粒,将得到的重组质粒进行双酶切验证,判断酶切结果是否符合预期;2) Constructing a recombinant plasmid: performing PCR amplification on the partial nucleotide sequence of the target 2019-nCOV, the forward primer used in the PCR amplification is COVID-19-F2, and its sequence is shown in SEQ ID NO.6; The reverse primer used in the PCR amplification is COVID-19-R3, and its sequence is shown in SEQ ID NO.7; using cloning technology, the partial base sequence of the target is connected to the vector to obtain a recombinant plasmid , carry out double enzyme digestion verification on the obtained recombinant plasmid, and judge whether the enzyme digestion results meet expectations; 3)PCR扩增:以所述步骤2)酶切结果符合预期的重组质粒为模板,以上述正向引物和反向引物对其进行扩增,回收纯化扩增产物,得到DNA模板;3) PCR amplification: using the recombinant plasmid with the expected digestion result in step 2) as a template, amplifying it with the above-mentioned forward primer and reverse primer, recovering and purifying the amplified product, and obtaining a DNA template; 4)用所述步骤3)后得到的DNA模板进行体外转录,合成带有地高辛标记的反义RNA探针,即为检测目标物的RNA探针;4) performing in vitro transcription with the DNA template obtained after step 3), and synthesizing a digoxin-labeled antisense RNA probe, which is an RNA probe for detecting the target; 所述目标物的部分碱基序列如SEQ ID NO.5所示。The partial base sequence of the target object is shown in SEQ ID NO.5. 3.根据权利要求2所述的制备方法,其特征在于,在步骤1)中,采用的载体为pGEM-TEasy,双酶切采用的酶为HindⅢ和MluⅠ的组合;在步骤2)中,采用的载体为pCDNA3.1 mycHis A,双酶切采用的酶为Kpn Ⅰ和Apa Ⅰ的组合。3. The preparation method according to claim 2, characterized in that, in step 1), the carrier used is pGEM-TEasy, and the enzyme used for double digestion is the combination of HindIII and MluI; in step 2), using The vector used was pCDNA3.1 mycHis A, and the enzyme used for double digestion was the combination of Kpn Ⅰ and Apa Ⅰ. 4.一种RNA探针在非诊断目的检测RNA病毒中的应用,其特征在于,所述RNA病毒为新型冠状病毒2019-nCOV,所述RNA探针的序列如SEQ ID NO.1所示;所述RNA探针为带有地高辛标记的反义RNA探针。4. An application of an RNA probe in the detection of RNA viruses for non-diagnostic purposes, wherein the RNA virus is a novel coronavirus 2019-nCOV, and the sequence of the RNA probe is as shown in SEQ ID NO.1; The RNA probe is an antisense RNA probe labeled with Digoxigenin. 5.根据权利要求4所述的应用,其特征在于,非诊断目的检测RNA病毒的方法包括如下步骤:5. application according to claim 4, is characterized in that, the method for non-diagnostic purpose detection RNA virus comprises the steps: (1)杂交预处理:取待测样本进行预处理;(1) hybridization pretreatment: take the sample to be tested for pretreatment; (2)预杂交:向预处理的样本中滴加预杂交液,放入湿盒孵育;(2) Pre-hybridization: add the pre-hybridization solution dropwise to the pretreated sample, and put it into a wet box for incubation; (3)杂交:将预杂交液吸干,向其中滴加所述RNA探针,进行孵育;(3) Hybridization: blot the pre-hybridization liquid, drop the RNA probe thereinto, and incubate; (4)杂交后处理:将孵育过夜的RNA探针回收,漂洗样本;再向样本中加入阻断溶液,室温孵育;最后,加入新用阻断溶液稀释的地高辛抗体,得到杂交样本;(4) Post-hybridization treatment: recover the RNA probe incubated overnight, rinse the sample; then add blocking solution to the sample and incubate at room temperature; finally, add Digoxigenin antibody diluted with the blocking solution to obtain a hybridized sample; (5)显色、照相:将杂交样本加入到热处理羔羊血清的MABT溶液中,室温洗涤;再分别以MABT、检测缓冲液洗;最后向其中加入AP底物染色缓冲液,室温温育,包裹避光,当目标着色出现后,用PBS洗涤,显微镜观察,照相,判断是否出现阳性信号。(5) Color development and photography: add the hybridization sample to the MABT solution of heat-treated lamb serum, wash at room temperature; then wash with MABT and detection buffer respectively; finally add AP substrate staining buffer to it, incubate at room temperature, wrap Protect from light, when the target coloration appears, wash with PBS, observe under a microscope, and take pictures to judge whether there is a positive signal.
CN202110476368.5A 2020-04-29 2021-04-29 RNA probe for detecting 2019-nCOV, and preparation method and application thereof Active CN113308568B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020103581878 2020-04-29
CN202010358187.8A CN111647684A (en) 2020-04-29 2020-04-29 RNA probe for detecting 2019-nCOV, and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113308568A CN113308568A (en) 2021-08-27
CN113308568B true CN113308568B (en) 2023-03-17

Family

ID=72345514

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010358187.8A Pending CN111647684A (en) 2020-04-29 2020-04-29 RNA probe for detecting 2019-nCOV, and preparation method and application thereof
CN202110476368.5A Active CN113308568B (en) 2020-04-29 2021-04-29 RNA probe for detecting 2019-nCOV, and preparation method and application thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010358187.8A Pending CN111647684A (en) 2020-04-29 2020-04-29 RNA probe for detecting 2019-nCOV, and preparation method and application thereof

Country Status (1)

Country Link
CN (2) CN111647684A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647684A (en) * 2020-04-29 2020-09-11 湖南师范大学 RNA probe for detecting 2019-nCOV, and preparation method and application thereof
CN112266985A (en) * 2020-11-24 2021-01-26 谢东阳 Anti-sense RNA probe for detecting coronavirus, preparation method thereof, kit and method for detecting coronavirus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647684A (en) * 2020-04-29 2020-09-11 湖南师范大学 RNA probe for detecting 2019-nCOV, and preparation method and application thereof
CN111705162B (en) * 2020-05-27 2021-08-06 湖南师范大学 A kind of RNA probe for detecting novel coronavirus 2019-nCOV, preparation method and application thereof
CN111593146A (en) * 2020-06-19 2020-08-28 马彬 High-sensitivity single-molecule RNA virus detection method based on RNA fluorescent in-situ hybridization
CN111748654B (en) * 2020-08-07 2021-06-18 湖南师范大学 RNA probe for detecting covid-2019 coronavirus, and preparation method and application thereof

Also Published As

Publication number Publication date
CN111647684A (en) 2020-09-11
CN113308568A (en) 2021-08-27

Similar Documents

Publication Publication Date Title
CN110106290B (en) A field rapid detection method and kit for the detection of ASFV based on CRISPR/Cas system
CN110117675B (en) Reagent and method for real-time fluorescent quantitative PCR detection of RCL
CN113308568B (en) RNA probe for detecting 2019-nCOV, and preparation method and application thereof
CN108841926A (en) A kind of primer, probe and the kit of RT-RPA- Sidestream chromatography double check Hepatitis E virus and hepatitis A virus
CN110777220A (en) Primer group, probe, RPA test strip kit and identification method
WO2017143866A1 (en) Kit and method for quantitative detection of dna methylation in rprm genes
CN112662821A (en) Fluorescent probe primer combination, kit and application of porcine epidemic diarrhea virus M gene
CN116356079A (en) A kit for the visual detection of Getta virus based on RPA-CRISPR-Cas12a and its application
CN111705162A (en) A kind of RNA probe for detecting novel coronavirus 2019-nCOV, preparation method and application thereof
CN111748654A (en) An RNA probe for detecting covid-2019 coronavirus and its preparation method and application
CN117265186B (en) TaqMan fluorescent quantitative PCR primer group, kit and method for detecting pangolin east yang virus
CN112126716A (en) A primer pair for qRT-PCR detection of Tembusu virus and its application
CN110857451A (en) Primer combination, MLPA probe, gene chip and kit for detecting microdeletion or/and microduplication of recurrent abortion
JP2019165752A (en) Methods for isolating nucleic acid from specimens in liquid based cytodiagnosis preservatives containing formaldehyde
CN102140498A (en) Method for predicting tumor metastasis and invasion capacity in vitro and nucleotide fragments
CN106244730B (en) RT-LAMP detection primers group, kit and the detection method of the thermophilic T lymphotropic virus type Is of monkey
CN108611442A (en) The fluorescence quantitative RT-PCR primer and probe and method of a kind of detection pig atypia pestivirus and application
CN113881773A (en) Marker for predicting lymph node metastasis of medullary thyroid carcinoma and application thereof
CN114875032B (en) A kind of overexpression AURKA gene plasmid and its construction method and application
CN110684847B (en) Application of biomarker related to breast cancer occurrence and development
CN108866199B (en) mRNA marker for breast cancer diagnosis, detection kit and application thereof
CN111454944B (en) Method for synthesizing separated RNA and DNA template thereof
CN110241219B (en) Application of MYOM3 in melanoma metastasis
CN108048537A (en) DNA molecular probe and the application detected to miRNA real-time quantitative PCRs in the tumour cell of S1 nucleases
CN112094927A (en) Primer set, detection reagent and detection kit for distinguishing rhesus monkey and human nucleic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant