CN113306403A - 一种太阳能电动汽车用光储驱系统模型预测控制方法 - Google Patents
一种太阳能电动汽车用光储驱系统模型预测控制方法 Download PDFInfo
- Publication number
- CN113306403A CN113306403A CN202110792823.2A CN202110792823A CN113306403A CN 113306403 A CN113306403 A CN 113306403A CN 202110792823 A CN202110792823 A CN 202110792823A CN 113306403 A CN113306403 A CN 113306403A
- Authority
- CN
- China
- Prior art keywords
- axis
- voltage
- phase
- current
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000005070 sampling Methods 0.000 claims abstract description 18
- 230000009466 transformation Effects 0.000 claims abstract description 4
- 230000001360 synchronised effect Effects 0.000 claims description 28
- 230000004907 flux Effects 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 abstract description 3
- 230000010349 pulsation Effects 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
- B60L8/003—Converting light into electric energy, e.g. by using photo-voltaic systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/28—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed without contact making and breaking, e.g. using a transductor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Electrical Variables (AREA)
Abstract
本发明公开了一种太阳能电动汽车用光储驱系统模型预测控制方法,首先采样太阳能电池板的输出电压、电流,通过扰动观测MPPT控制器后获得0轴电流给定值I0 *;采样电机转速与位置信号,通过电机转速控制器后获得q轴电流给定值Iq *;然后采样电机相电流,通过模型预测控制器得到到d轴、q轴、以及0轴电压量;最后,根据坐标变换后得到的相电压大小,对第二大相电压对应的载波进行取反,并通过PWM调制得到开关管的驱动信号。本发明通过模型预测控制和0轴电压脉动最小化PWM调制技术,在提升太阳能电动汽车用光储驱系统动态性能的同时,降低了零序电流纹波,有效提高了系统的动稳态性能。
Description
技术领域
本发明涉及一种太阳能电动汽车用光储驱系统模型预测控制方法,属于电力电子与电力传动领域。
背景技术
电动汽车销量逐年攀升,储能、电驱与充电等相关技术也获得了一定突破。特别对于充电系统,车载充电机、直流充电桩与无线充电等技术相继作为充电单元被应用到电动汽车的开发中,有效缩短了车辆的充电时间。
然而,无论采用何种充电方式,从电网取电仍然是最常用的手段。目前在光伏、风电等新能源发电技术尚不完备的情况下,电网电能的主要来源依然是化石燃料,新能源在整个能源结构中占比还处于比较低的水平,电动汽车距离完全实现“零排放”还有很长距离。因此,为进一步降低电动汽车排放,实现能源供给的可持续发展,发展以太阳能为代表的可再生能源为电动汽车充电逐渐引起国内外汽车生产商与学者的关注。与混合动力汽车类似,太阳能电动汽车本质上也是一种多能源结构的电动汽车。但是,为实现最大功率因数点跟踪并抬高太阳能电池板输出电压至动力电池电压等级,通常需要在动力电池与太阳能电池之间额外安装专用变流器,这无疑增加了整车的体积、成本与重量。
通过电驱重构技术,将太阳能电动汽车中太阳能电池板输出功率控制转化到电机0轴电流控制,将消除动力电池与太阳能电池之间专用变流器的安装,然而,太阳能电池光照强度频繁变化,汽车行驶过程中需要频繁加减速,这要求系统具有良好的动态性能;另外,由于电机零序电感特别小,这将造成零序电流纹波过大,进而造成电机损耗增大。
发明内容
发明目的:针对上述现有技术,提出一种太阳能电动汽车用光储驱系统模型预测控制方法,提高系统的动态性能,以应对太阳能电池光照强度频繁变化、汽车频繁加减速,并以抑制电机0轴电流纹波。
技术方案:一种太阳能电动汽车用光储驱系统模型预测控制方法,太阳能电池板的正极连接到三相永磁同步电机的中性点O,负极连接电池的负极;所述方法包括如下步骤:
步骤1:在每一个控制周期中,采样太阳能电池板的输出电压VPV、输出电流IPV,然后通过扰动观测MPPT控制器,生成0轴电流给定值I0 *;
步骤2:采样三相永磁同步电机转速n和转子位置电角度θe,利用转速控制器,实时计算出q轴电流给定值Iq *;
步骤3:采样三相永磁同步电机相电流IA、IB、IC,通过坐标变换,将相电流转化为d轴、q轴、以及0轴电流Id、Iq、I0;
步骤4:通过模型预测控制器,对电流Id、Iq、I0进行闭环控制,得到相应的d轴、q轴、以及0轴电压量Vd、Vq、V0;
步骤5:通过坐标变换,将电压量Vd、Vq、V0转化为相电压VA、VB、VC;
步骤6:根据相电压VA、VB、VC的大小,通过载波控制,将第二大相电压对应的载波取反,然后通过PWM生成模块生成三相逆变器驱动信号。
进一步的,所述步骤4中,通过模型预测控制器,对电流Id、Iq、I0进行闭环控制,通过公式(1)得到相应的d轴、q轴、以及0轴电压量Vd、Vq、V0;
式中,R为三相永磁同步电机定子内阻;Ld为三相永磁同步电机d轴电感;Lq为三相永磁同步电机q轴电感;L0为三相永磁同步电机0轴电感;ωe为三相永磁同步电机的电角速度;ψf表示永磁体磁链;Ts表示采样周期;Id *为d轴电流给定值,其始终保持为0。
进一步的,所述步骤6中,首先对相电压按照从小到大的顺序进行排序,然后对第二大相电压对应的载波进行取反,如公式(2)所示,最后通过PWM生成模块生成三相逆变器驱动信号;
式中,C1为电压最大相对应的载波;C2为电压第二大相对应的载波;C3为电压最小相对应的载波;三角载波C的表达式如公式(3);
式中,t为时间;Vb为电池电压;Ts表示采样周期;mod为取余运算。
有益效果:本发明提出的一种太阳能电动汽车用光储驱系统模型预测控制方法,通过采用连续集模型预测控制策略,大大提高了系统的动态性能,以应对太阳能电池光照强度频繁变化、汽车频繁加减速;通过采用0轴电压脉动最小化PWM调制技术,抑制了电机0轴电流纹波,降低电机的损耗。
附图说明
图1为一种太阳能电动汽车用光储驱系统模型预测控制方法控制框图;
图2为太阳能电动汽车用光储驱系统简化电路拓扑结构;
图3为电池电流、电压、0轴电流仿真结果;
图4为电机相电流仿真结果;
图5为电机转速、转矩仿真结果;
图6为太阳能电池板输出电压、电流、功率仿真结果;
具体实施方式
下面结合附图对本发明做更进一步的解释。
如图1所示,一种太阳电动汽车用光储驱系统模型预测控制方法,太阳能电池板4的正极连接到三相永磁同步电机3的中性点O,负极连接电池1的负极。其控制方法包括如下步骤:
步骤1:在每一个控制周期中,采样太阳能电池板的输出电压VPV、输出电流IPV,然后通过扰动观测MPPT控制器5,生成0轴电流给定值I0 *;具体为:
将太阳能电池板的输出电压VPV、输出电流IPV输入扰动观测MPPT控制器5,通过扰动观测法最大功率点跟踪算法得到太阳能电池板最优输出电流值,然后将该电流值除以-3作为0轴电流给定值I0 *。
步骤2:采样三相永磁同步电机转速n和转子位置电角度θe,利用转速控制器7,实时计算出q轴电流给定值Iq *;具体为:
将三相永磁同步电机转速给定值n*与当前三相永磁同步电机转速n的差值输入电机转速PI控制器,得到三相永磁同步电机q轴电流给定值Iq *。
步骤3:采样三相永磁同步电机相电流IA、IB、IC,通过坐标变换一6,将相电流转化为d轴、q轴、以及0轴电流Id、Iq、I0;具体为:
采样三相永磁同步电机相电流IA、IB、IC,根据公式(1)得出d轴、q轴、以及0轴电流Id、Iq、I0。
步骤4:通过模型预测控制器8,对电流Id、Iq、I0进行闭环控制,得到相应的d轴、q轴、以及0轴电压量Vd、Vq、V0;具体为:
通过模型预测控制器8,对电流Id、Iq、I0进行闭环控制,通过公式(2)得到相应的d轴、q轴、以及0轴电压量Vd、Vq、V0;
式中,R为三相永磁同步电机定子内阻;Ld为三相永磁同步电机d轴电感;Lq为三相永磁同步电机q轴电感;L0为三相永磁同步电机0轴电感;ωe为三相永磁同步电机的电角速度;ψf表示永磁体磁链;Ts表示采样周期;Id *为d轴电流给定值,其始终保持为0。
步骤5:通过坐标变换二9,将电压量Vd、Vq、V0转化为相电压VA、VB、VC;具体为:
根据公式(3),将d轴、q轴、以及0轴电压量Vd、Vq、V0转换为相电压VA、VB、VC。
步骤6:根据相电压VA、VB、VC的大小,通过载波控制11,将第二大相电压对应的载波12取反,然后通过PWM生成模块10生成三相逆变器2的驱动信号。具体为:
首先对相电压按照从小到大的顺序进行排序,然后对第二大相电压对应的载波进行取反,如公式(4)所示,最后通过PWM生成模块生成三相逆变器2驱动信号SA、SC、SB;
式中,C1为电压最大相对应的载波;C2为电压第二大相对应的载波;C3为电压最小相对应的载波;三角载波C的表达式如公式(5);
式中,t为时间;Vb为电池电压;mod为取余运算。
为验证本发明的技术问题,基于图2所示太阳电动汽车用光储驱系统简化电路拓扑,对本发明提出的一种太阳能电动汽车用光储驱系统模型预测控制方法进行了仿真验证。在本实施例中,太阳能电池板最大输出功率为852.6W,电池选用50AH/144V锂电池,在0.1s时将电机转速由400r/min设置为300r/min。
本实施例中,本发明方法得到的电池电流Ib、电压Vb、0轴电流I0仿真波形如图3所示,在整个过程中,电池电压Vb保持不变,由于电机转速降低,电机消耗的能量降低,电池电流由-3.5A变为-4A,电池充电电流变大,在电机转速调节过程中,电机0轴电流几乎没有波动。电机相电流IA、IB、IC仿真结果如图4所示,从图中可已看出,由于0轴电流的注入,电机相电流始终小于零,并且在电机转速调节过程中,电机电流迅速稳定,证明提出的方法具有优越的动态性能。电机转速n、转矩Te仿真结果如图5所示,从图中可以看出,电机转速跟随给定,并且在0.02s内完成转速调节,在转速调节过程中,电机输出转矩迅速减小,已完成电机转速调节,稳定状态下电机输出转矩恒定为5N·m。太阳能电池板输出电压VPV、电流IPV、功率PPV仿真结果如图6所示,从图中可以看出,太阳能电池板输出功率850W左右,证明MPPT被实现,另外,在电机转速调节过程中,太阳能电池板输出功率不受影响,由于采用了0轴电压脉动最小化PWM调制技术,太阳能电池板输出电流纹波可以忽略不计。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (3)
1.一种太阳能电动汽车用光储驱系统模型预测控制方法,其特征在于:太阳能电池板的正极连接到三相永磁同步电机的中性点O,负极连接电池的负极;所述方法包括如下步骤:
步骤1:在每一个控制周期中,采样太阳能电池板的输出电压VPV、输出电流IPV,然后通过扰动观测MPPT控制器,生成0轴电流给定值I0 *;
步骤2:采样三相永磁同步电机转速n和转子位置电角度θe,利用转速控制器,实时计算出q轴电流给定值Iq *;
步骤3:采样三相永磁同步电机相电流IA、IB、IC,通过坐标变换,将相电流转化为d轴、q轴、以及0轴电流Id、Iq、I0;
步骤4:通过模型预测控制器,对电流Id、Iq、I0进行闭环控制,得到相应的d轴、q轴、以及0轴电压量Vd、Vq、V0;
步骤5:通过坐标变换,将电压量Vd、Vq、V0转化为相电压VA、VB、VC;
步骤6:根据相电压VA、VB、VC的大小,通过载波控制,将第二大相电压对应的载波取反,然后通过PWM生成模块生成三相逆变器驱动信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110792823.2A CN113306403B (zh) | 2021-07-14 | 2021-07-14 | 一种太阳能电动汽车用光储驱系统模型预测控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110792823.2A CN113306403B (zh) | 2021-07-14 | 2021-07-14 | 一种太阳能电动汽车用光储驱系统模型预测控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113306403A true CN113306403A (zh) | 2021-08-27 |
CN113306403B CN113306403B (zh) | 2024-04-05 |
Family
ID=77382280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110792823.2A Active CN113306403B (zh) | 2021-07-14 | 2021-07-14 | 一种太阳能电动汽车用光储驱系统模型预测控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113306403B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120074892A1 (en) * | 2010-09-27 | 2012-03-29 | Zhenjie Wu | Control system and control method of an in-vehicle solar energy charger |
CN102653240A (zh) * | 2012-04-23 | 2012-09-05 | 华中科技大学 | 电动汽车混合电池驱动系统 |
CN104993543A (zh) * | 2015-07-21 | 2015-10-21 | 宋开泉 | 多电能电动汽车自充电系统 |
CN109301866A (zh) * | 2018-10-12 | 2019-02-01 | 中国葛洲坝集团机电建设有限公司 | 一种适用于电动汽车换电站的光伏发电接入系统 |
US20200189409A1 (en) * | 2018-12-12 | 2020-06-18 | Hyundai Motor Company | Apparatus for controlling charging system using motor-driving system |
CN111987954A (zh) * | 2020-09-01 | 2020-11-24 | 南通大学 | 一种电动汽车用六相光储驱系统控制方法 |
CN112803458A (zh) * | 2021-01-12 | 2021-05-14 | 南京信息工程大学 | 一种太阳能车站及并联逆变电源均流控制方法 |
CN113043891A (zh) * | 2021-04-13 | 2021-06-29 | 南通大学 | 一种太阳能电动汽车集成充电机系统统一控制方法 |
-
2021
- 2021-07-14 CN CN202110792823.2A patent/CN113306403B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120074892A1 (en) * | 2010-09-27 | 2012-03-29 | Zhenjie Wu | Control system and control method of an in-vehicle solar energy charger |
CN102653240A (zh) * | 2012-04-23 | 2012-09-05 | 华中科技大学 | 电动汽车混合电池驱动系统 |
CN104993543A (zh) * | 2015-07-21 | 2015-10-21 | 宋开泉 | 多电能电动汽车自充电系统 |
CN109301866A (zh) * | 2018-10-12 | 2019-02-01 | 中国葛洲坝集团机电建设有限公司 | 一种适用于电动汽车换电站的光伏发电接入系统 |
US20200189409A1 (en) * | 2018-12-12 | 2020-06-18 | Hyundai Motor Company | Apparatus for controlling charging system using motor-driving system |
CN111987954A (zh) * | 2020-09-01 | 2020-11-24 | 南通大学 | 一种电动汽车用六相光储驱系统控制方法 |
CN112803458A (zh) * | 2021-01-12 | 2021-05-14 | 南京信息工程大学 | 一种太阳能车站及并联逆变电源均流控制方法 |
CN113043891A (zh) * | 2021-04-13 | 2021-06-29 | 南通大学 | 一种太阳能电动汽车集成充电机系统统一控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113306403B (zh) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8035252B2 (en) | Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program for causing computer to execute temperature increase control of power storage device | |
US9166511B2 (en) | Control system for AC motor | |
Bao et al. | Experimental examination on a new switched reluctance wind power generator system for electric vehicles | |
CN111987954B (zh) | 一种电动汽车用六相光储驱系统控制方法 | |
Mishra et al. | Driving-cycle-based modeling and control of solar-battery-fed reluctance synchronous motor drive for light electric vehicle with energy regeneration | |
US7276865B2 (en) | Power output apparatus, motor driving method and computer-readable recording medium having program recorded thereon for allowing computer to execute motor drive control | |
Zan et al. | Modular battery management for SRM drives in hybrid vehicles based on a novel modular converter | |
Sreejith et al. | Position sensorless PMSM drive for solar PV-battery light electric vehicle with regenerative braking capability | |
Sato | Permanent magnet synchronous motor drives for hybrid electric vehicles | |
Gholinezhad et al. | Analysis of cascaded H-bridge multilevel inverter in DTC-SVM induction motor drive for FCEV | |
Kumar et al. | Design and control of solar-battery fed PMSM drive for LEVs | |
Ibrar et al. | Efficiency enhancement strategy implementation in hybrid electric vehicles using sliding mode control | |
CN113043891B (zh) | 一种太阳能电动汽车集成充电机系统统一控制方法 | |
CN204452072U (zh) | 一种自发电的电动汽车 | |
CN113306403B (zh) | 一种太阳能电动汽车用光储驱系统模型预测控制方法 | |
Mishra et al. | Driving cycle based modelling and control of solar-battery fed RelSyn motor drive for light electric vehicle with energy regeneration | |
Saha et al. | An Adaptive Delay Compensated Position Sensorless PMBLDC Motor Drive With Regenerative Braking for LEV Application | |
Kumar et al. | Driving Range Extension of a PV Array Fed Synchronous Reluctance Motor Drive for Electric Vehicle with Regeneration | |
Naoui et al. | Efficiency of Intelligent Control Design for Dual-Stator Machine on the EV Traction System | |
Hake et al. | Solar PV and grid interfaced BLDC motor drive system for agricultural pump application | |
Mishra et al. | Control of solar-battery fed synchronous reluctance motor drive for light electric vehicle with range extension | |
Khlifi et al. | Design, Modeling, and Control of a Brushless Permanent Magnet Motor for Electric Vehicles | |
CN115694234A (zh) | 太阳能电动汽车用光储驱系统混合载波pwm调制方法 | |
Azizi et al. | Motor and Regenerative Braking Operations for an Electric Vehicle using Field Oriented Control | |
Gupta et al. | Vector Control of Induction Motor Drive in EVs with DESS: Eliminating Current Sensors and Enhancing Battery Life |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |