CN113043891A - 一种太阳能电动汽车集成充电机系统统一控制方法 - Google Patents

一种太阳能电动汽车集成充电机系统统一控制方法 Download PDF

Info

Publication number
CN113043891A
CN113043891A CN202110392848.3A CN202110392848A CN113043891A CN 113043891 A CN113043891 A CN 113043891A CN 202110392848 A CN202110392848 A CN 202110392848A CN 113043891 A CN113043891 A CN 113043891A
Authority
CN
China
Prior art keywords
current
phase
voltage
permanent magnet
magnet synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110392848.3A
Other languages
English (en)
Other versions
CN113043891B (zh
Inventor
於锋
朱志豪
胡德林
吴晓新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202110392848.3A priority Critical patent/CN113043891B/zh
Publication of CN113043891A publication Critical patent/CN113043891A/zh
Application granted granted Critical
Publication of CN113043891B publication Critical patent/CN113043891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Abstract

本发明公开了一种太阳能电动汽车集成充电机系统统一控制方法,首先采样车顶太阳能电池板的输出电压和输出电流信号,并采样电机转速信号;然后,通过统一控制模块,生成六相对称永磁同步电机各个空间电流给定值;接着采样电机相电流,并通过电流PI控制器得到其对应的电压量;最后,进行PWM调制得到开关管的驱动信号。本发明通过将太阳能电动汽车充电状态、行驶状态以及边跑边充状态的控制目标转换到电机驱动过程中各个空间的电流给定值,实现了通过一套控制方法对太阳能电动汽车三种状态的统一控制的目标,避免了太阳能电动汽车运行期间不同状态切换引起的控制策略的切换,可有效提高太阳能电动汽车的稳定性、可靠性。

Description

一种太阳能电动汽车集成充电机系统统一控制方法
技术领域
本发明涉及一种太阳能电动汽车集成充电机系统统一控制方法。
背景技术
随着人们生活水平的提高,汽车行业得到了蓬勃发展,这引起了汽车数量的迅速增长,传统汽车以石油能源为动力源,其不仅加剧全球石油资源的枯竭,而且加剧了环境的恶化,因此,采用清洁无污染能源代替石油能源作为汽车动力源是汽车未来发展的趋势。电动汽车以电池作为动力源,不消耗石油资源,不排放废气,运行时噪声小,易于控制,因此电动汽车是解决石油能源枯竭、环境恶化的最好方式,电动汽车是汽车行业未来发展的趋势。
目前电动汽车续航能力与充电技术是制约其发展的关键技术。为了提高电动汽车续航能力,近几年,多车企相继推出太阳能电动汽车,该汽车可以在阳光充足期间通过一套额外添加的DC/DC变换器对电池进行充电,但是,额外添加的DC/DC变换器不仅占用一定的车内空间,而且将增加太阳能电动汽车的成本。如果采用近年来兴起的电驱集成充电技术,利用电驱系统对电池进行充电,虽然可以降低太阳能电动汽车的成本,但是其在充电状态、行驶状态以及边跑边充状态的控制策略不同,当电动汽车频繁在三种状态之间切换时,需要频繁切换太阳能电动汽车控制策略,这将影响太阳能电动汽车的稳定性。
发明内容
发明目的:针对上述现有技术,提出一种太阳能电动汽车集成充电机系统统一控制方法,可以实现太阳能电动汽车充电状态、行驶状态以及边跑边充状态的统一控制,避免了太阳能电动汽车运行期间不同状态切换引起的控制策略的切换,可有效提高太阳能电动汽车的稳定性。
技术方案:一种太阳能电动汽车集成充电机系统统一控制方法,车顶太阳能电池板连接到六相对称永磁同步电机中性点和电池的负极之间,其中车顶太阳能电池板的正极先串联一个二极管,再连接到六相对称永磁同步电机中性点,车顶太阳能电池板的负极连接电池的负极;所述方法包括如下步骤:
步骤1:在每一个控制周期中,采样当前电池电压Vb和电流Ib,通过电池电压电流控制模块产生太阳能电池板输出电流补偿值I0I和I0V
步骤2:在每一个控制周期中,采样太阳能电池板输出电压VPV和电流IPV、当前六相对称永磁同步电机转速n,通过系统统一控制模块产生六相对称永磁同步电机q轴和02轴电流给定值Iq *和I02 *
步骤3:采样当前六相对称永磁同步电机相电流IA、IB、IC、IU、IV、IW,利用空间矢量解耦矩阵T1,将相电流转化为解耦电流Iɑ、Iβ、Ix、Iy、I01、I02,并通过Park变换矩阵TPark,将解耦电流Iɑ和Iβ转化为旋转坐标系电流Id、Iq
步骤4:通过电流PI控制器模块,对电流Id、Iq、Ix、Iy、I01、I02进行闭环控制,得到相应的电压量Vd、Vq、Vx、Vy、V01、V02
步骤5:通过反Park变换矩阵TPark -1,将旋转坐标系电压量Vd、Vq转化为静止坐标系电压量Vɑ、Vβ,并利用反空间矢量解耦矩阵T1 -1将电压量Vɑ、Vβ、Vx、Vy、V01、V02转化为相电压VA、VB、VC、VU、VV、VW
步骤6:步骤5得到的相电压VA、VB、VC、VU、VV、VW经过PWM调制模块后得到六相逆变器开关管驱动信号S1~12
进一步的,所述步骤1具体包括:将电池最大允许充电电流Ibm与当前电池电流Ib的差值输入电池电流PI控制器,得到太阳能电池板输出电流补偿值I0I,其中电池电流PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流;将电池最大允许充电电压Vbm与当前电池电压Vb的差值输入电池电压PI控制器,得到太阳能电池板输出电流补偿值I0V,其中电池电压PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流。
进一步的,所述步骤2具体包括:将太阳能电池板的输出电压VPV和电流IPV输入基于扰动观测法的最大功率点跟踪模块得到太阳能电池板理想输出电流IPV *,然后减去太阳能电池板输出电流补偿值I0I和I0V得到六相对称永磁同步电机02轴电流给定值I02 *;将六相对称永磁同步电机转速给定值n*与当前六相对称永磁同步电机转速n的差值输入电机转速PI控制器,得到六相对称永磁同步电机q轴电流给定值Iq *;六相对称永磁同步电机d轴、x轴、y轴、01轴的给定电流为0。
进一步的,所述步骤3中T1的表达式为:
Figure BDA0003017430270000031
所述步骤5中T1 -1的表达式为:
Figure BDA0003017430270000032
进一步的,所述步骤6具体包括:相电压VA、VB、VC的载波依次相差三分之一周期,相电压VU、VV、VW的载波依次相差三分之一周期,相电压VA、VU载波相差六分之一周期;相电压VA、VB、VC、VU、VV、VW与其对应的载波比较后得到开关管驱动信号S1、S2、S3、S7、S8、S9;开关管驱动信号S1、S2、S3、S7、S8、S9取反得到开关管驱动信号S4、S5、S6、S10、S11、S12
进一步的,在充电状态,六相对称永磁同步电机转速给定值n*为0,在行驶状态和边跑边冲状态六相对称永磁同步电机转速给定值n*为设定转速;系统根据太阳能电池板输出功率在行驶状态和边跑边冲状态自动切换。
有益效果:本发明通过将太阳能电动汽车充电状态、行驶状态以及边跑边充状态的控制目标转换到电机驱动过程中各个空间的电流给定值,可以实现太阳能电动汽车充电状态、行驶状态以及边跑边充状态的统一控制,避免了太阳能电动汽车运行期间不同状态切换,特别是太阳能电动汽车频繁启停引起的控制策略的切换,可有效提高太阳能电动汽车的稳定性、可靠性。
附图说明
图1为一种太阳能电动汽车集成充电机系统统一控制方法控制框图;
图2为简化太阳能电动汽车集成充电机系统电路拓扑结构;
图3为电池电流、太阳能电池板电流仿真结果;
图4为电机A相、U相电流仿真结果;
图5为电机转速、转矩仿真结果。
具体实施方式
下面结合附图对本发明做更进一步的解释。
如图1所示,一种太阳能电动汽车集成充电机系统统一控制方法,车顶太阳能电池板1连接到六相对称永磁同步电机2中性点和电池4的负极之间,具体的,车顶太阳能电池板的正极先串联一个二极管,再连接到六相对称永磁同步电机中性点,车顶太阳能电池板的负极连接电池的负极。控制方法包括如下步骤:
步骤1:在每一个控制周期中,采样当前电池电压Vb和电流Ib,通过电池电压电流控制模块5产生太阳能电池板输出电流补偿值I0I和I0V;具体为:
将电池最大允许充电电流Ibm与当前电池电流Ib的差值输入电池电流PI控制器6,得到太阳能电池板输出电流补偿值I0I,其中电池电流PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流。将电池最大允许充电电压Vbm与当前电池电压Vb的差值输入电池电压PI控制器7,得到太阳能电池板输出电流补偿值I0V,其中电池电压PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流。
步骤2:在每一个控制周期中,采样太阳能电池板输出电压VPV和电流IPV、当前六相对称永磁同步电机转速n,通过系统统一控制模块10产生六相对称永磁同步电机q轴和02轴电流给定值Iq *和I02 *
具体为:将太阳能电池板的输出电压VPV和电流IPV输入基于扰动观测法的最大功率点跟踪模块8得到太阳能电池板理想输出电流IPV *,然后减去太阳能电池板输出电流补偿值I0I和I0V得到六相对称永磁同步电机02轴电流给定值I02 *。将六相对称永磁同步电机转速给定值n*与当前六相对称永磁同步电机转速n的差值输入电机转速PI控制器9,得到六相对称永磁同步电机q轴电流给定值Iq *。六相对称永磁同步电机d轴、x轴、y轴、01轴的给定电流为0。其中,在充电状态,六相对称永磁同步电机转速给定值n*为0,在行驶状态和边跑边冲状态六相对称永磁同步电机转速给定值n*不为0;系统根据太阳能电池板输出功率在行驶状态和边跑边冲状态自动切换。
步骤3:采样当前六相对称永磁同步电机相电流IA、IB、IC、IU、IV、IW,利用空间矢量解耦矩阵T1 11,将相电流转化为解耦电流Iɑ、Iβ、Ix、Iy、I01、I02,并通过Park变换矩阵TPark12,将解耦电流Iɑ和Iβ转化为旋转坐标系电流Id、Iq
具体为:首先采样当前六相对称永磁同步电机相电流IA、IB、IC、IU、IV、IW,根据公式(1),将相电流转化为解耦电流Iɑ、Iβ、Ix、Iy、I01、I02,并根据公式(2)将解耦电流Iɑ和Iβ转化为旋转坐标系电流Id、Iq
Figure BDA0003017430270000051
Figure BDA0003017430270000052
其中,θe为六相对称永磁同步电机转子电角度。
步骤4:通过电流PI控制器模块13,对电流Id、Iq、Ix、Iy、I01、I02进行闭环控制,得到相应的电压量Vd、Vq、Vx、Vy、V01、V02
具体为:将电流Ik(k=d,q,x,y,01,02)与其对应参考值Ik *(k=d,q,x,y,01,02)的差值输入其对应的PI控制器,得到相应的电压量Vk(k=d,q,x,y,01,02)。
步骤5:通过反Park变换矩阵TPark -1 14,将旋转坐标系电压量Vd、Vq转化为静止坐标系电压量Vɑ、Vβ,并利用反空间矢量解耦矩阵T1 -1 15将电压量Vɑ、Vβ、Vx、Vy、V01、V02转化为相电压VA、VB、VC、VU、VV、VW
具体为:首先根据公式(3)将旋转坐标系电压量Vd、Vq转化为静止坐标系电压量Vɑ、Vβ,然后根据公式(4)将电压量Vɑ、Vβ、Vx、Vy、V01、V02转化为相电压VA、VB、VC、VU、VV、VW
Figure BDA0003017430270000053
Figure BDA0003017430270000054
步骤6:步骤5得到的相电压VA、VB、VC、VU、VV、VW经过PWM调制模块16后得到六相逆变器3开关管驱动信号S1~12
具体为:相电压VA、VB、VC的载波依次相差三分之一周期,相电压VU、VV、VW的载波依次相差三分之一周期,相电压VA、VU载波相差六分之一周期;相电压VA、VB、VC、VU、VV、VW与其对应的载波比较后得到开关管驱动信号S1、S2、S3、S7、S8、S9;开关管驱动信号S1、S2、S3、S7、S8、S9取反得到开关管驱动信号S4、S5、S6、S10、S11、S12
为验证本发明的技术问题,如图2所示,建立了简化的太阳能电动汽车集成充电机系统电路拓扑结构,对本发明提出的一种太阳能电动汽车集成充电机系统统一控制方法进行验证。
本实施例中,本发明方法得到的电池电流、太阳能电池板电流仿真波形如图3所示,在0.1s前太阳能电动汽车集成充电机系统工作在充电状态,在0.1s时通过给定六相永磁同步电机转速为1000rpm,进而将太阳能电动汽车集成充电机系统由充电状态切换到边跑边充状态,系统达到稳态后,电池充电电流减小,证明此时太阳能电池板输出能量一部分给电池充电,一部分驱动六相永磁同步电机旋转,系统实现了充电状态、边跑边充状态的统一控制。电机A相、U相电流仿真结果如图4所示,从图中可以看出,在整个充电状态运行过程中,电机相电流始终保持为恒定值,当系统由充电状态切换到边跑边充状态后,电机相电流保持正弦,即叠加一个充电状态时的电流恒定值。电机转速、转矩仿真结果如图5所示,从图中可以看出,在充电状态,电机转速和转矩为零,当系统由充电状态切换到边跑边充状态后,电机转速迅速达到给定值1000rpm,满足应用需求。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:车顶太阳能电池板(1)连接到六相对称永磁同步电机(2)中性点和电池(4)的负极之间,其中车顶太阳能电池板的正极先串联一个二极管,再连接到六相对称永磁同步电机中性点,车顶太阳能电池板的负极连接电池的负极;所述方法包括如下步骤:
步骤1:在每一个控制周期中,采样当前电池电压Vb和电流Ib,通过电池电压电流控制模块(5)产生太阳能电池板输出电流补偿值I0I和I0V
步骤2:在每一个控制周期中,采样太阳能电池板输出电压VPV和电流IPV、当前六相对称永磁同步电机转速n,通过系统统一控制模块(10)产生六相对称永磁同步电机q轴和02轴电流给定值Iq *和I02 *
步骤3:采样当前六相对称永磁同步电机相电流IA、IB、IC、IU、IV、IW,利用空间矢量解耦矩阵T1(11),将相电流转化为解耦电流Iɑ、Iβ、Ix、Iy、I01、I02,并通过Park变换矩阵TPark(12),将解耦电流Iɑ和Iβ转化为旋转坐标系电流Id、Iq
步骤4:通过电流PI控制器模块(13),对电流Id、Iq、Ix、Iy、I01、I02进行闭环控制,得到相应的电压量Vd、Vq、Vx、Vy、V01、V02
步骤5:通过反Park变换矩阵TPark -1(14),将旋转坐标系电压量Vd、Vq转化为静止坐标系电压量Vɑ、Vβ,并利用反空间矢量解耦矩阵T1 -1(15)将电压量Vɑ、Vβ、Vx、Vy、V01、V02转化为相电压VA、VB、VC、VU、VV、VW
步骤6:步骤5得到的相电压VA、VB、VC、VU、VV、VW经过PWM调制模块(16)后得到六相逆变器(3)开关管驱动信号S1~12
2.根据权利要求1所述的一种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:所述步骤1具体包括:将电池最大允许充电电流Ibm与当前电池电流Ib的差值输入电池电流PI控制器(6),得到太阳能电池板输出电流补偿值I0I,其中电池电流PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流;将电池最大允许充电电压Vbm与当前电池电压Vb的差值输入电池电压PI控制器(7),得到太阳能电池板输出电流补偿值I0V,其中电池电压PI控制器输出的下限值为0,上限值为太阳能电池板最大允许输出电流。
3.根据权利要求1所述的种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:所述步骤2具体包括:将太阳能电池板的输出电压VPV和电流IPV输入基于扰动观测法的最大功率点跟踪模块(8)得到太阳能电池板理想输出电流IPV *,然后减去太阳能电池板输出电流补偿值I0I和I0V得到六相对称永磁同步电机02轴电流给定值I02 *;将六相对称永磁同步电机转速给定值n*与当前六相对称永磁同步电机转速n的差值输入电机转速PI控制器(9),得到六相对称永磁同步电机q轴电流给定值Iq *;六相对称永磁同步电机d轴、x轴、y轴、01轴的给定电流为0。
4.根据权利要求1所述的种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:所述步骤3中T1的表达式为:
Figure FDA0003017430260000021
所述步骤5中T1 -1的表达式为:
Figure FDA0003017430260000022
5.根据权利要求1所述的种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:所述步骤6具体包括:相电压VA、VB、VC的载波依次相差三分之一周期,相电压VU、VV、VW的载波依次相差三分之一周期,相电压VA、VU载波相差六分之一周期;相电压VA、VB、VC、VU、VV、VW与其对应的载波比较后得到开关管驱动信号S1、S2、S3、S7、S8、S9;开关管驱动信号S1、S2、S3、S7、S8、S9取反得到开关管驱动信号S4、S5、S6、S10、S11、S12
6.根据权利要求3所述的种太阳能电动汽车集成充电机系统统一控制方法,其特征在于:在充电状态,六相对称永磁同步电机转速给定值n*为0,在行驶状态和边跑边冲状态六相对称永磁同步电机转速给定值n*为设定转速;系统根据太阳能电池板输出功率在行驶状态和边跑边冲状态自动切换。
CN202110392848.3A 2021-04-13 2021-04-13 一种太阳能电动汽车集成充电机系统统一控制方法 Active CN113043891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110392848.3A CN113043891B (zh) 2021-04-13 2021-04-13 一种太阳能电动汽车集成充电机系统统一控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110392848.3A CN113043891B (zh) 2021-04-13 2021-04-13 一种太阳能电动汽车集成充电机系统统一控制方法

Publications (2)

Publication Number Publication Date
CN113043891A true CN113043891A (zh) 2021-06-29
CN113043891B CN113043891B (zh) 2024-01-26

Family

ID=76519453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110392848.3A Active CN113043891B (zh) 2021-04-13 2021-04-13 一种太阳能电动汽车集成充电机系统统一控制方法

Country Status (1)

Country Link
CN (1) CN113043891B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306403A (zh) * 2021-07-14 2021-08-27 南通大学 一种太阳能电动汽车用光储驱系统模型预测控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182508A (en) * 1992-04-16 1993-01-26 Westinghouse Electric Corp. Reconfigurable AC induction motor drive for battery-powered vehicle
US20080236920A1 (en) * 2007-03-27 2008-10-02 Swindell Edward Leroy All-electric motor car
CN102233823A (zh) * 2011-04-21 2011-11-09 江苏磁源动力科技有限公司 一种电力和弹力复合动力装置
WO2012035832A1 (ja) * 2010-09-14 2012-03-22 ヤンマー株式会社 電動作業機
US20180351397A1 (en) * 2014-05-09 2018-12-06 Tanhum AHARONI Improved energetic efficacy electrical system for generating power to rechargeable battery from versatile energy sources
DE102017212844A1 (de) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Bidirektionaler Inverterlader
CN110492578A (zh) * 2019-08-30 2019-11-22 上海大学 一种电动汽车用车载充电与驱动一体化装置
CN111231724A (zh) * 2020-02-27 2020-06-05 国网山东省电力公司潍坊供电公司 一种电动汽车充电站运行控制系统及方法
US20200298722A1 (en) * 2015-09-11 2020-09-24 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
CN111987954A (zh) * 2020-09-01 2020-11-24 南通大学 一种电动汽车用六相光储驱系统控制方法
CN112046312A (zh) * 2020-09-01 2020-12-08 南通大学 汽车用六相电驱重构型直流快速充电机及其控制方法
CN112531867A (zh) * 2019-09-18 2021-03-19 现代自动车株式会社 太阳能控制器及用于车辆的太阳能充电系统和方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182508A (en) * 1992-04-16 1993-01-26 Westinghouse Electric Corp. Reconfigurable AC induction motor drive for battery-powered vehicle
US20080236920A1 (en) * 2007-03-27 2008-10-02 Swindell Edward Leroy All-electric motor car
WO2012035832A1 (ja) * 2010-09-14 2012-03-22 ヤンマー株式会社 電動作業機
CN102233823A (zh) * 2011-04-21 2011-11-09 江苏磁源动力科技有限公司 一种电力和弹力复合动力装置
US20180351397A1 (en) * 2014-05-09 2018-12-06 Tanhum AHARONI Improved energetic efficacy electrical system for generating power to rechargeable battery from versatile energy sources
US20200298722A1 (en) * 2015-09-11 2020-09-24 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
DE102017212844A1 (de) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Bidirektionaler Inverterlader
CN110492578A (zh) * 2019-08-30 2019-11-22 上海大学 一种电动汽车用车载充电与驱动一体化装置
CN112531867A (zh) * 2019-09-18 2021-03-19 现代自动车株式会社 太阳能控制器及用于车辆的太阳能充电系统和方法
CN111231724A (zh) * 2020-02-27 2020-06-05 国网山东省电力公司潍坊供电公司 一种电动汽车充电站运行控制系统及方法
CN111987954A (zh) * 2020-09-01 2020-11-24 南通大学 一种电动汽车用六相光储驱系统控制方法
CN112046312A (zh) * 2020-09-01 2020-12-08 南通大学 汽车用六相电驱重构型直流快速充电机及其控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S.RANJITH; V. VIDYA; R. SUDHARSHAN KAARTHIK: "An Integrated EV Battery Charger With Retrofit Capability", 《IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION》, vol. 6, no. 3, pages 985 - 994, XP011809948, DOI: 10.1109/TTE.2020.2980147 *
李木子;祝龙记: "蓄电池电机车充电驱动一体化控制电路的探讨", 《电工技术》, no. 1, pages 36 - 39 *
罗潇; 於锋; 彭勇: "太阳能电动汽车用六相电驱重构型充电机", 《电力电子技术》, vol. 56, no. 6, pages 78 - 81 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306403A (zh) * 2021-07-14 2021-08-27 南通大学 一种太阳能电动汽车用光储驱系统模型预测控制方法
CN113306403B (zh) * 2021-07-14 2024-04-05 南通大学 一种太阳能电动汽车用光储驱系统模型预测控制方法

Also Published As

Publication number Publication date
CN113043891B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
US8297391B2 (en) Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
Hinago et al. A single-phase multilevel inverter using switched series/parallel dc voltage sources
US20080205106A1 (en) Power Supply Device For Vehicle
CN111987954B (zh) 一种电动汽车用六相光储驱系统控制方法
Anand Photovoltaic actuated induction motor for driving electric vehicle
WO2018105323A1 (ja) 駆動システム
WO2018117084A1 (ja) 電力変換装置
US7276865B2 (en) Power output apparatus, motor driving method and computer-readable recording medium having program recorded thereon for allowing computer to execute motor drive control
Zan et al. Modular battery management for SRM drives in hybrid vehicles based on a novel modular converter
CN110350836B (zh) 共直流母线型开绕组永磁同步电机系统的直接转矩控制方法
CN113043891B (zh) 一种太阳能电动汽车集成充电机系统统一控制方法
Sato Permanent magnet synchronous motor drives for hybrid electric vehicles
Cao et al. Energy-regenerative fuzzy sliding mode controller design for ultracapacitor-battery hybrid power of electric vehicle
CN106870236A (zh) 一种数码发电机系统用机组启动蓄电池装置
Kim et al. A new multilevel inverter with reduced switch count for renewable power applications
CN113306403B (zh) 一种太阳能电动汽车用光储驱系统模型预测控制方法
Ke et al. Adaptive capacitor voltage-based model predictive control for open-winding PMSM system with a floating capacitor
Saha et al. An Improved Flux Observer Based Position Sensorless Single Stage BLDC Motor Drive With Regenerative Braking For Solar Powered LEV
Saha et al. Sensorless PMBLDC Motor Driven Solar-PV Battery Fed EV System With Regenerative Braking Employing Zeta Converter
Hussain et al. Sensor-less control of a BLDC motor for the conversion of a conventional petrol vehicle into a solar-electric powered vehicle
Kumar et al. Driving Range Extension of a PV Array Fed Synchronous Reluctance Motor Drive for Electric Vehicle with Regeneration
Zhou et al. Research of electric vehicle on-board controller based on inverter time division multiplexing
CN115694234A (zh) 太阳能电动汽车用光储驱系统混合载波pwm调制方法
Saha et al. An Adaptive Delay Compensated Position Sensorless PMBLDC Motor Drive With Regenerative Braking for LEV Application
Murshid et al. Solar PV powered PMSM driven encoder-less electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant