CN113284149A - Covid-19胸部ct图像识别方法、装置及电子设备 - Google Patents

Covid-19胸部ct图像识别方法、装置及电子设备 Download PDF

Info

Publication number
CN113284149A
CN113284149A CN202110841119.1A CN202110841119A CN113284149A CN 113284149 A CN113284149 A CN 113284149A CN 202110841119 A CN202110841119 A CN 202110841119A CN 113284149 A CN113284149 A CN 113284149A
Authority
CN
China
Prior art keywords
module
pcs
inputting
feature
chest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110841119.1A
Other languages
English (en)
Other versions
CN113284149B (zh
Inventor
王威
许玉燕
王新
胡亿洋
黄文迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202110841119.1A priority Critical patent/CN113284149B/zh
Publication of CN113284149A publication Critical patent/CN113284149A/zh
Application granted granted Critical
Publication of CN113284149B publication Critical patent/CN113284149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Image Analysis (AREA)

Abstract

本申请涉及一种COVID‑19胸部CT图像识别方法、装置及电子设备。所述方法获取COVID‑19的胸部CT图像,并针对胸部CT图像的特点,构建新冠肺炎CT识别网络,对该网络进行训练得到COVID‑19胸部CT图像识别模型,并利用该模型对待测CT图像进行分类。采用空洞卷积、深度卷积以及点卷积算子,减少冗余参数;采用并行结构连接方式,实现多尺度特征融合、降低模型复杂度;采用下采样方式,使用最大模糊池化以减少锯齿效应,保持信号的平移不变性;采用通道混洗操作,减少参数量与计算量,提高分类准确率,引入坐标注意力机制,使空间坐标信息与通道信息被关注,抑制不重要的信息,以解决资源匹配问题。

Description

COVID-19胸部CT图像识别方法、装置及电子设备
技术领域
本申请涉及图像识别技术领域,特别是涉及一种COVID-19胸部CT图像识别方法、装置及电子设备。
背景技术
目前诊断新型冠状病毒感染的肺炎(COVID-19)的主要医学手段有胸部计算机断层扫描(胸部CT)、胸部X射线图像检测、磁共振成像(MRI)等。COVID-19放射学检查,首选容积 CT 扫描,扫描层厚 5 mm(16 层 CT 以上均可以达到),重建为 1.0~1.5 mm 薄层。基于薄层 CT 重建,在横断面、矢状面和冠状面观察,有利于病灶早期检出,评估病变性质和范围,发现直接数字化X射线摄影系统(DR)不易观察的细微变化。但是对于放射科医生来说,通过人工阅片来检阅肺部CT图像中的病灶信息是一项极具挑战性的工作。该工作需要耗费医生大量的时间,而且可能由于视觉疲劳等原因导致误诊、漏诊的情况。因此,计算机辅助诊断(CAD)系统应运而生,并且被广泛应用于医学图像处理领域,能够解决医学图像领域中复杂的计算机视觉问题。
基于深度学习技术识别COVID-19胸部CT图像的技术已经有较多的研究,也取得的一定的研究成果。但是现有的识别方法网络结构复杂、参数量较大、计算量较大,胸部CT图像不重要的信息对分类结果产生负面影响。
发明内容
基于此,有必要针对上述技术问题,提供一种COVID-19胸部CT图像识别方法、装置及电子设备。
一种COVID-19胸部CT图像识别方法,所述方法包括:
获取COVID-19的胸部CT图像;并将所述胸部CT图像作为训练样本。
构建新冠肺炎CT识别网络;所述新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络;所述特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层;所述输入网络采用空洞卷积方式提取所述训练样本的空洞卷积特征;所述特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对所述空洞卷积特征进行特征提取,得到融合坐标注意力的特征;所述分类网络根据所述融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别。
根据所述训练样本对所述新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型。
获取COVID-19的待测胸部CT图像,并将所述待测胸部CT图像输入到所述COVID-19胸部CT图像识别模型,得到COVID-19胸部CT图像的类别。
一种COVID-19胸部CT图像识别装置,所述装置包括:
数据获取模块,用于获取COVID-19的胸部CT图像;并将所述胸部CT图像作为训练样本。
新冠肺炎CT识别网络构建模块,用于构建新冠肺炎CT识别网络;所述新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络;所述特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层;所述输入网络采用空洞卷积方式提取所述训练样本的空洞卷积特征;所述特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对所述空洞卷积特征进行特征提取,得到融合坐标注意力的特征;所述分类网络根据所述融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别。
新冠肺炎CT识别网络训练模块,用于根据所述训练样本对所述新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型。
COVID-19胸部CT图像分类模块,用于获取COVID-19的待测胸部CT图像,并将所述待测胸部CT图像输入到所述COVID-19胸部CT图像识别模型,得到COVID-19胸部CT图像的类别。
上述一种COVID-19胸部CT图像识别方法、装置及电子设备,所述方法通过获取COVID-19的胸部CT图像,并针对胸部CT图像的特点,构建新冠肺炎CT识别网络,对该网络进行训练得到COVID-19胸部CT图像识别模型,并利用该模型对待测胸部CT图像进行分类。采用空洞卷积、深度卷积,点卷积等算子,以减少冗余参数;连接方式采用并行结构,实现多尺度特征融合同时降低模型复杂度;采用下采样方式,使用最大模糊池化以减少锯齿效应,保持信号的平移不变性,采用通道混洗操作,从而减少参数量与计算量,提高分类准确率,并引入坐标注意力机制,使得空间坐标信息与通道信息得以被关注,抑制不重要的信息,以解决资源匹配问题。
附图说明
图1为一个实施例中COVID-19胸部CT图像识别方法的流程示意图;
图2为另一个实施例中PCS-D模块组成结构图;
图3为另一个实施例中PCS-S模块组成结构图;
图4为另一个实施例中PCS-D-CA模块组成结构图;
图5为另一个实施例中PCS-S-CA模块组成结构图;
图6为另一个实施例中新冠肺炎CT识别网络组成结构图;
图7为另一个实施例中实验数据集中部分COVID-19胸部CT图像,其中(a)、(b)为COVID-19胸部CT图像,(c)、(d)为未感染COVID-19胸部CT图像;
图8为另一个实施例中消融实验分类准确率示意图;
图9为一个实施例中COVID-19胸部CT图像识别装置的结构框图;
图10为一个实施例中电子设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
并行通道混洗(parallel channel shuffle 简称:PCS)模块。
PCS-D模块:并行通道混洗下采样(parallel channel shuffle-Downsample 简PCS-D称)模块。
PCS-S模块:标准并行通道混洗(parallel channel shuffle-standard简称:PCS-S)模块。
PCS-D-CA模块:并行通道混洗下采样坐标注意力(parallel channel shuffle-Downsample-Coordinate attention简称:PCS-D-CA)模块。
PCS-S-CA模块:标准并行通道混洗采样坐标注意力(parallel channel shuffle-standard-Coordinate attention简称:PCS-S-CA)模块。
在一个实施例中,如图1所示,提供了一种COVID-19胸部CT图像识别方法,该方法包括以下步骤:
步骤100:获取COVID-19的胸部CT图像;并将胸部CT图像作为训练样本。
步骤102:构建新冠肺炎CT识别网络。
新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络。
特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层。
输入网络采用空洞卷积方式提取所述训练样本的空洞卷积特征。
特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对所述空洞卷积特征进行特征提取,得到融合坐标注意力的特征。
分类网络根据融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别。
PCS-D模块用于对输入的特征进行最大模糊池化,将得到的池化特征进行通道切分,切分为通道相同的两路,并对切分结果进行空洞卷积操作,将得到的两路空洞卷积结果进行拼接,并对拼接结果进行通道混洗,得到通道拼接特征;最大模糊池化是为了消除锯齿效应,增强模型的移位等变性,在最大池化中引入模糊滤波器得到的。
PCS-S模块用于输入的特征进行通道切分,切分为通道相同的两路,并对得到的两路切分特征进行空洞卷积操作,将得到的两路空洞卷积结果进行元素相加,得到元素加和特征。
PCS-D-CA模块是在PCS-D模块中引入坐标注意力机制得到的。
PCS-S-CA模块是在PCS-S模块中引入坐标注意力机制得到的。
步骤104:根据训练样本对新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型。
步骤106:获取COVID-19的待测胸部CT图像,并将待测胸部CT图像输入到COVID-19胸部CT图像识别模型,得到COVID-19胸部CT图像的类别。
上述COVID-19胸部CT图像识别方法中,所述方法通过获取COVID-19的胸部CT图像,并针对胸部CT图像的特点,构建新冠肺炎CT识别网络,对该网络进行训练得到COVID-19胸部CT图像识别模型,并利用该模型对待测胸部CT图像进行分类。采用空洞卷积、深度卷积,点卷积等算子,以减少冗余参数;连接方式采用并行结构,实现多尺度特征融合同时降低模型复杂度;采用下采样方式,使用最大模糊池化以减少锯齿效应,保持信号的平移不变性,采用通道混洗操作,从而减少参数量与计算量,提高分类准确率,并引入坐标注意力机制,使得空间坐标信息与通道信息得以被关注,抑制不重要的信息,以解决资源匹配问题。
在其中一个实施例中,输入网络包括1层空洞卷积层。步骤104还包括:将训练样本输入到输入网络的空洞卷积层中,得到空洞卷积特征;将空洞卷积特征输入到特征提取网络中,得到融合坐标注意力的特征;将融合坐标注意力的特征输入到分类网络中,输出分类预测结果,根据分类预测结果和训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
在其中一个实施例中,特征提取网络由2个PCS-D-CA模块、3个PCS-D模块、1个PCS-S-CA模块、2个PCS-S模块、1层自适应池化层、1层Dropout层以及1层点卷积层组成。步骤104还包括:将空洞卷积特征输入到第一个PCS-D-CA模块,并将得到的第一融合坐标注意力的特征输入到第二个PCS-D-CA模块中,得到第二融合坐标注意力的特征;将第二融合坐标注意力的特征输入到第一个PCS-D模块,并将得到的第一通道拼接特征输入到第二个PCS-D模块,将输出的第二通道拼接特征输入到第三个PCS-D模块中,得到第三通道拼接特征;将第三通道拼接特征输入到PCS-S-CA模块中,得到第三融合坐标注意力的特征;将第三融合坐标注意力的特征输入到第一个PCS-S模块中,并将得到的第一元素加和特征输入到第二个PCS-S模块中,得到第二元素加和特征;将第二元素加和特征输入到自适应池化层,得到自适应池化特征;将自适应池化特征输入到Dropout层中,并将得到的输出特征输入到点卷积层中,得到融合坐标注意力的特征。
在其中一个实施例中,PCS-D模块包括最大模糊池化层、通道切分模块、两条空洞卷积支路、通道拼接模块以及通道混洗模块;两条空洞卷积支路均包括依次连接的3个空洞卷积模块,空洞卷积模块由空洞卷积核、批归一化模块和H-swish激活函数组成;第一条空洞卷积支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为2卷积核为3×3的空洞卷积、空洞率为1的点卷积;第二条空洞支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为1卷积核为3×3的空洞卷积、空洞率为1的点卷积。步骤104还包括:将第二融合坐标注意力的特征输入到第一个PCS-D模块的最大模糊池化层,并将得到的最大模糊池化特征输入到第一个PCS-D模块的通道切分模块中,得到两路切分特征;将两路切分特征分别输入到第一个PCS-D模块的两条空洞卷积支路中,得到第一空洞卷积支路特征和第二空洞卷积支路特征;将第一空洞卷积支路特征和第二空洞卷积支路特征输入到第一个PCS-D模块的通道拼接模块中进行通道拼接,得到拼接特征;将拼接特征输入到第一个PCS-D模块的通道混洗模块中进行通道混洗操作,得到第一通道拼接特征;将第一通道拼接特征输入到第二个PCS-D模块,将得到的第二通道拼接特征输入到第三个PCS-D模块中,得到第三通道拼接特征。
在其中一个实施例中,PCS-S模块是在PCS-D模块的基础上,将最大模糊池化层和通道混洗模块去掉,并将通道拼接模块替换为元素加和模块得到的;元素加和模块用于将输入的两个特征进行元素加和,得到元素加和特征。步骤104还包括:将第三融合坐标注意力的特征输入到第一个PCS-S模块的通道切分模块中,得到两路第二切分特征;将两路第二切分特征分别输入到第一个PCS-S模块的两条空洞卷积支路中,得到第三空洞卷积支路特征和第四空洞卷积支路特征;将第三空洞卷积支路特征和第四空洞卷积支路特征输入到第一个PCS-S模块的元素加和模块中,得到第一元素加和特征;将第一元素加和特征输入到第二个PCS-S模块中,得到第二元素加和特征。
在另一个实施例中,PCS-D模块PCS-S模块通称PCS模块。如图2与图3所示分别为PCS-D模块组成结构图和PCS-S模块组成结构图。
PCS-D模块使用最大模糊池化减小特征空间分辨率,实现模型尺寸减小。最大模糊池化能克服信号叠加产生的锯齿效应,增强模型鲁棒性。PCS-D模块使用通道混洗操作关联支路间的信息,增强模型识别性能。
PCS-S模块是将PCS-D模块中最大模糊池化层移去,并使用元素相加操作替换通道拼接操作,解决网络退化问题。元素相加与通道拼接的前提条件均是:特征空间分辨率需一样;但元素相加后,输出特征图的通道数不变;通道拼接后,输出特征图的通道数增加。
设置PCS-D模块与PCS-S模块的增长率均为24,即输入特征图通过一个PCS-D模块或一个PCS-S模块得到的输出特征图的通道数增加24。在PCS-D模块与PCS-S模块引入坐标注意力机制,得到PCS-D-CA模块与PCS-S-CA模块,PCS-D-CA模块的组成结构图如图4所示,PCS-S-CA模块组成结构图如图5所示。
PCS模块中运用了通道混洗、坐标注意力机制以及最大模糊池化几种高效的计算方式。其中通道混洗是用以解决群卷积中不同群组的特征的通道信息互不关联引起的模型性能损失。群卷积后的输出特征通过通道混洗后,使不同群组的特征的通道信息进行了混合,使得输送至下一层的输入包含各个群组通道的信息。
注意力机制能有效解决计算资源十分有限或信息量过大带来的信息超载问题。坐标注意力 (coordination attention, CA)机制通过将2D全局池化操作分解为两个一维编码过程,能更有效地捕捉位置信息和信道信息关系,从而获取更好的性能。坐标注意力机制是基于关注通道信息的SE注意力机制改进的,把坐标信息引入SE注意力。
给定输入特征张量
Figure 511151DEST_PATH_IMAGE001
,通过坐标注意力机制处理变成跟输入特征张量
Figure 897133DEST_PATH_IMAGE002
尺寸一样的
Figure 145711DEST_PATH_IMAGE003
。输入
Figure 806500DEST_PATH_IMAGE004
的第一维度为通道数C,第二维度为高H,第三维度为宽W。分别对输入进行X坐标方向与Y坐标方向的平均池化,得到中间输出
Figure 73402DEST_PATH_IMAGE005
Figure 364706DEST_PATH_IMAGE006
,此时得到X坐标上的全局信息与Y坐标上的全局信息,同时保留Y坐标上与X坐标上的精确信息,再经过空间维度上的拼接操作得到中间特征
Figure 897318DEST_PATH_IMAGE007
,经过一层卷积操作得到特征
Figure 299481DEST_PATH_IMAGE007
,再经过批归一化与非线性变换得到中间特征
Figure 437201DEST_PATH_IMAGE008
,相比SE块中的全连接,卷积操作具有稀疏性,能降低复杂度。对中间特征实行空间维度的切分,得到特征
Figure 696144DEST_PATH_IMAGE009
Figure 903004DEST_PATH_IMAGE010
,再使用Sigmoid激活函数对两者进行处理,增强有效的坐标信息与通道信息,抑制无关或冗余的坐标信息与通道信息。
在其中一个实施例中,PCS-D-CA模块是在PCS-D模块中引入坐标注意力机制得到的。步骤104还包括:将空洞卷积特征输入到第一个PCS-D-CA模块的PCS-D模块中,得到第四通道拼接特征;并将第四通道拼接特征输入到第一个PCS-D-CA模块的坐标注意力模块中,得到第一坐标注意力特征;将第四通道拼接特征与第一坐标注意力特征进行融合,得到第一融合坐标注意力的特征;将融合坐标注意力的特征输入到第二个PCS-D-CA模块中,得到第二融合坐标注意力的特征。
在其中一个实施例中,PCS-S-CA模块是在PCS-S模块中引入坐标注意力机制得到的。步骤104还包括:将第三通道拼接特征输入到PCS-S-CA模块的PCS-S模块中,得到第三元素加和特征;并将第三元素加和特征输入到PCS-S-CA模块的坐标注意力模块中,得到第二坐标注意力特征;将第三元素加和特征与第二坐标注意力特征进行融合,得到第三融合坐标注意力的特征。
在其中一个实施例中,分类网络包括:全连接层和Softmax分类层。步骤104还包括:将融合坐标注意力的特征输入到全连接层中,整合类间区分特征,得到全连接特征;将全连接特征输入到Softmax分类层,使用Softmax进行计算,输出分类预测结果;根据分类预测结果和训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个具体的验证性实施例中,具体涉及:网络构建、实验数据准备和模型分析。
(1)网络构建
基于PCS模块,构建了一种识别COVID-19胸部CT图像的新冠肺炎CT识别网络。调整了模型超参数,改变了激活函数种类与CA位置。PSC-D-CA模块中坐标注意力机制使用的非线性变换为h-swish激活函数。新冠肺炎CT识别网络的第一层为膨胀率为2的3×3空洞卷积, 增加局部感受野;经过2个PSC-D-CA模块,获取包含精准坐标信息、纹理信息等;经过3个PSC-D模块,一个PSC-S-CA模块,两个PSC-S模块;经过一层PyTorch提供的窗口大小为
Figure 905595DEST_PATH_IMAGE011
的自适应池化层,丢弃率为0.3的Dropout,避免过拟合。经过1层点卷积层,该层使用的激活函数是Sigmoid激活函数。经过1层全连接层,整合类间区分信息,最后利用分类器输出分类标签。新冠肺炎CT识别网络的组成结构如图6所示。
(2)实验数据准备
实验数据选自Yang等构建的开源数据集COVID-CT,其素材源于medRxiv2和bioRxiv3网址。截至5月11日COVID-CT数据集包含来自216位患者的349幅COVID-19阳性的CT图像和397幅未感染COVID-19的CT图像。未感染COVID-19的CT图像包括正常的CT图像与其他病毒性或细菌性的肺部疾病CT图像。从COVID-CT数据集随机选取300幅COVID-19阳性的CT图像和336幅未感染COVID-19的CT图像作为训练集。剩余49幅COVID-19阳性的CT图像和61幅未感染COVID-19的CT图像为作为测试集。COVID-19胸部CT图像的整体特点为双肺多发斑片状渗出影为主。图7为实验的数据集的部分示例,其中(a)、(b)为COVID-19胸部CT图像,(c)、(d)为未感染COVID-19胸部CT图像。
(3)模型分析
PCS-D模块与PCS-S模块的参数量与计算量低于
Figure 897821DEST_PATH_IMAGE012
标准卷积的参数量与计算量。表1呈现ResNet50、VGG19、ShuffleNet、新冠肺炎CT识别网络等网络模型的计算量与参数量。
表1模型计算量与参数量
Figure 530928DEST_PATH_IMAGE013
从表1可以看出,新冠肺炎CT识别网络模型的计算量与参数量最少。可见,PCS模块能减少内存占用空间与计算开销,新冠肺炎CT识别网络的结构设计具有高效性。
为了体现新冠肺炎CT识别网络模型在COVID-CT数据集上的识别效果,使用ResNet50网络模型与ShuffleNet网络模型进行对比实验。表2为每隔10个epoch记录的ResNet50网络模型、ShuffleNet网络模型与新冠肺炎CT识别网络模型在测试集上的平均准确率。
表2 模型的准确率(%)
Figure 241395DEST_PATH_IMAGE014
由表2看出新冠肺炎CT识别网络模型的分类准确率比ResNet50网络模型高出的分类准确率2%左右,比ShuffleNet网络模型高出4%左右。
可以发现新冠肺炎CT识别网络模型的准确率的数值平稳性优于ResNet50网络模型和ShuffleNet网络模型。同时,可以通过计算得出这三种网络的其他模型评价指标的值,如灵敏度,特异度,精度,
Figure 782098DEST_PATH_IMAGE015
值等,最后10个epoch的指标平均值如表3所示。
Figure 370378DEST_PATH_IMAGE015
值越大,模型稳定性越好。
表3测试集上各项指标结果对比
Figure 174386DEST_PATH_IMAGE016
综上所述,新冠肺炎CT识别网络模型的综合性能是最好的,且新冠肺炎CT识别网络模型的分类效果与鲁棒性优于ResNet50网络模型和ShuffleNet网络模型。
由图8可知,新冠肺炎CT识别网络模型的分类准确率比Conv-Net模型高了8%左右。因此,相比普通卷积,PCS模块能提升模型性能。noBlur-Net模型与noCA-Net模型的分类准确率均比新冠肺炎CT识别网络模型低了1%左右。可知,在PCS模块中应用最大模糊池化与CA能提升模型性能。
如表4所示。可知,人工分析CT图像的准确率为60%~80%,可知新冠肺炎CT识别网络检测COVID-19的CT图像,比人工更加准确。新冠肺炎CT识别网络模型是值得推荐的识别COVID-19的CT图像的智能手段。
表4 新冠肺炎CT识别网络模型的灵敏度、特异性
Figure 168886DEST_PATH_IMAGE017
上述结果表明新冠肺炎CT识别网络模型在COVID-CT数据集上的最佳准确率可达92.31%,识别COVID-19的特异性与灵敏度分别为92.00%与93.88%. 相比其他方法,新冠肺炎CT识别网络网络模型能更快速地从CT图像中检测出COVID-19,能帮助提升人工阅片的准确率,节省影像科医生的精力。新冠肺炎CT识别网络模型的分类效果能很好地泛化在自然图像上。
在一个实施例中,如图9所示,提供了一种COVID-19胸部CT图像识别装置,包括:数据获取模块、新冠肺炎CT识别网络构建模块、新冠肺炎CT识别网络训练模块和COVID-19胸部CT图像分类模块,其中:
数据获取模块,用于获取COVID-19的胸部CT图像;并将胸部CT图像作为训练样本。
新冠肺炎CT识别网络构建模块,用于构建新冠肺炎CT识别网络;新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络;特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层;输入网络采用空洞卷积方式提取训练样本的空洞卷积特征;特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对空洞卷积特征进行特征提取,得到融合坐标注意力的特征;分类网络根据融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别。
新冠肺炎CT识别网络训练模块,用于根据训练样本对新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型。
COVID-19胸部CT图像分类模块,用于获取COVID-19的待测胸部CT图像,并将待测胸部CT图像输入到COVID-19胸部CT图像识别模型,得到COVID-19胸部CT图像的类别。
在其中一个实施例中,输入网络包括1层空洞卷积层;新冠肺炎CT识别网络训练模块,还用于将训练样本输入到输入网络的空洞卷积层中,得到空洞卷积特征;将空洞卷积特征输入到特征提取网络中,得到融合坐标注意力的特征;将融合坐标注意力的特征输入到分类网络中,输出分类预测结果,根据分类预测结果和训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
在其中一个实施例中,特征提取网络由2个PCS-D-CA模块、3个PCS-D模块、1个PCS-S-CA模块、2个PCS-S模块、1层自适应池化层、1层Dropout层以及1层点卷积层组成;新冠肺炎CT识别网络训练模块,还用于将空洞卷积特征输入到第一个PCS-D-CA模块,并将得到的第一融合坐标注意力的特征输入到第二个PCS-D-CA模块中,得到第二融合坐标注意力的特征;将第二融合坐标注意力的特征输入到第一个PCS-D模块,并将得到的第一通道拼接特征输入到第二个PCS-D模块,将输出的第二通道拼接特征输入到第三个PCS-D模块中,得到第三通道拼接特征;将第三通道拼接特征输入到PCS-S-CA模块中,得到第三融合坐标注意力的特征;将第三融合坐标注意力的特征输入到第一个PCS-S模块中,并将得到的第一元素加和特征输入到第二个PCS-S模块中,得到第二元素加和特征;将第二元素加和特征输入到自适应池化层,得到自适应池化特征;将自适应池化特征输入到Dropout层中,并将得到的输出特征输入到点卷积层中,得到融合坐标注意力的特征。
在其中一个实施例中,PCS-D模块包括最大模糊池化层、通道切分模块、两条空洞卷积支路、通道拼接模块以及通道混洗模块;两条空洞卷积支路均包括依次连接的3个空洞卷积模块,空洞卷积模块由空洞卷积核、批归一化模块和H-swish激活函数组成;第一条空洞卷积支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为2卷积核为3×3的空洞卷积、空洞率为1的点卷积;第二条空洞支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为1卷积核为3×3的空洞卷积、空洞率为1的点卷积;新冠肺炎CT识别网络训练模块,还用于将第二融合坐标注意力的特征输入到第一个PCS-D模块的最大模糊池化层,并将得到的最大模糊池化特征输入到第一个PCS-D模块的通道切分模块中,得到两路切分特征;将两路切分特征分别输入到第一个PCS-D模块的两条空洞卷积支路中,得到第一空洞卷积支路特征和第二空洞卷积支路特征;将第一空洞卷积支路特征和第二空洞卷积支路特征输入到第一个PCS-D模块的通道拼接模块中进行通道拼接,得到拼接特征;将拼接特征输入到第一个PCS-D模块的通道混洗模块中进行通道混洗操作,得到第一通道拼接特征;将第一通道拼接特征输入到第二个PCS-D模块,将得到的第二通道拼接特征输入到第三个PCS-D模块中,得到第三通道拼接特征。
在其中一个实施例中,PCS-S模块是在PCS-D模块的基础上,将最大模糊池化层和通道混洗模块去掉,并将通道拼接模块替换为元素加和模块得到的;元素加和模块用于将输入的两个特征进行元素加和,得到元素加和特征。新冠肺炎CT识别网络训练模块,还用于将第三融合坐标注意力的特征输入到第一个PCS-S模块的通道切分模块中,得到两路第二切分特征;将两路第二切分特征分别输入到第一个PCS-S模块的两条空洞卷积支路中,得到第三空洞卷积支路特征和第四空洞卷积支路特征;将第三空洞卷积支路特征和第四空洞卷积支路特征输入到第一个PCS-S模块的元素加和模块中,得到第一元素加和特征;将第一元素加和特征输入到第二个PCS-S模块中,得到第二元素加和特征。
在其中一个实施例中,新冠肺炎CT识别网络训练模块,还用于将空洞卷积特征输入到第一个PCS-D-CA模块的PCS-D模块中,得到第四通道拼接特征;并将第四通道拼接特征输入到第一个PCS-D-CA模块的坐标注意力模块中,得到第一坐标注意力特征;将第四通道拼接特征与第一坐标注意力特征进行融合,得到第一融合坐标注意力的特征;将融合坐标注意力的特征输入到第二个PCS-D-CA模块中,得到第二融合坐标注意力的特征。
在其中一个实施例中,新冠肺炎CT识别网络训练模块,还用于将第三通道拼接特征输入到PCS-S-CA模块的PCS-S模块中,得到第三元素加和特征;并将第三元素加和特征输入到PCS-S-CA模块的坐标注意力模块中,得到第二坐标注意力特征;将第三元素加和特征与第二坐标注意力特征进行融合,得到第三融合坐标注意力的特征。
在其中一个实施例中,分类网络包括:全连接层和Softmax分类层;新冠肺炎CT识别网络训练模块,还用于将融合坐标注意力的特征输入到全连接层中,整合类间区分特征,得到全连接特征;将全连接特征输入到Softmax分类层,使用Softmax进行计算,输出分类预测结果;根据分类预测结果和训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
关于COVID-19胸部CT图像识别装置的具体限定可以参见上文中对于COVID-19胸部CT图像识别方法的限定,在此不再赘述。上述COVID-19胸部CT图像识别装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种电子设备,该电子设备可以是终端,其内部结构图可以如图10所示。该电子设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种COVID-19胸部CT图像识别方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种电子设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述方法实施例中的步骤。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种COVID-19胸部CT图像识别方法,其特征在于,所述方法包括:
获取COVID-19的胸部CT图像;并将所述胸部CT图像作为训练样本;
构建新冠肺炎CT识别网络;所述新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络;所述特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层;所述输入网络采用空洞卷积方式提取所述训练样本的空洞卷积特征;所述特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对所述空洞卷积特征进行特征提取,得到融合坐标注意力的特征;所述分类网络根据所述融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别;
根据所述训练样本对所述新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型;
获取COVID-19的待测胸部CT图像,并将所述待测胸部CT图像输入到所述COVID-19胸部CT图像识别模型中,得到COVID-19胸部CT图像的类别。
2.根据权利要求1所述的方法,其特征在于,所述输入网络包括1层空洞卷积层;
根据所述训练样本对所述新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型,包括:
将所述训练样本输入到所述输入网络的空洞卷积层中,得到空洞卷积特征;
将所述空洞卷积特征输入到所述特征提取网络中,得到融合坐标注意力的特征;
将所述融合坐标注意力的特征输入到所述分类网络中,输出分类预测结果,并根据所述分类预测结果和所述训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
3.根据权利要求2所述的方法,其特征在于,所述特征提取网络由2个PCS-D-CA模块、3个PCS-D模块、1个PCS-S-CA模块、2个PCS-S模块、1层自适应池化层、1层Dropout层以及1层点卷积层组成;
将所述空洞卷积特征输入到所述特征提取网络中,得到融合坐标注意力的特征,包括:
将所述空洞卷积特征输入到第一个所述PCS-D-CA模块,并将得到的第一融合坐标注意力的特征输入到第二个所述PCS-D-CA模块中,得到第二融合坐标注意力的特征;
将所述第二融合坐标注意力的特征输入到第一个所述PCS-D模块,并将得到的第一通道拼接特征输入到第二个所述PCS-D模块,将输出的第二通道拼接特征输入到第三个所述PCS-D模块中,得到第三通道拼接特征;
将所述第三通道拼接特征输入到所述PCS-S-CA模块中,得到第三融合坐标注意力的特征;
将所述第三融合坐标注意力的特征输入到第一个所述PCS-S模块,并将得到的第一元素加和特征输入到第二个所述PCS-S模块中,得到第二元素加和特征;
将所述第二元素加和特征输入到所述自适应池化层,得到自适应池化特征;
将所述自适应池化特征输入到所述Dropout层中,并将得到的输出特征输入到所述点卷积层中,得到融合坐标注意力的特征。
4.根据权利要求3所述的方法,其特征在于,所述PCS-D模块包括最大模糊池化层、通道切分模块、两条空洞卷积支路、通道拼接模块以及通道混洗模块;两条所述空洞卷积支路均包括依次连接的3个空洞卷积模块,所述空洞卷积模块由空洞卷积核、批归一化模块和H-swish激活函数组成;第一条空洞卷积支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为2卷积核为3×3的空洞卷积、空洞率为1的点卷积;第二条空洞支路的3个空洞卷积模块的空洞卷积核分别为:空洞率为1的点卷积、空洞率为1卷积核为3×3的空洞卷积、空洞率为1的点卷积;
将所述第二融合坐标注意力的特征输入到第一个所述PCS-D模块,并将得到的第一通道拼接特征输入到第二个所述PCS-D模块,将输出的第二通道拼接特征输入到第三个所述PCS-D模块中,得到第三通道拼接特征,包括:
将所述第二融合坐标注意力的特征输入到第一个所述PCS-D模块的最大模糊池化层,并将得到的最大模糊池化特征输入到第一个所述PCS-D模块的通道切分模块中,得到两路切分特征;
将两路所述切分特征分别输入到第一个所述PCS-D模块的两条空洞卷积支路中,得到第一空洞卷积支路特征和第二空洞卷积支路特征;
将所述第一空洞卷积支路特征和所述第二空洞卷积支路特征输入到第一个所述PCS-D模块的通道拼接模块中进行通道拼接,得到拼接特征;
将所述拼接特征输入到第一个所述PCS-D模块的通道混洗模块中进行通道混洗操作,得到第一通道拼接特征;
将所述第一通道拼接特征输入到所述第二个所述PCS-D模块,将得到的第二通道拼接特征输入到第三个所述PCS-D模块中,得到第三通道拼接特征。
5.根据权利要求4所述的方法,其特征在于,所述PCS-S模块是在所述PCS-D模块的基础上,将最大模糊池化层和所述通道混洗模块去掉,并将所述通道拼接模块替换为元素加和模块得到的;所述元素加和模块用于将输入的两个特征进行元素加和,得到元素加和特征;
将所述第三融合坐标注意力的特征输入到第一个所述PCS-S模块,并将得到的第一元素加和特征输入到第二个所述PCS-S模块中,得到第二元素加和特征,包括:
将所述第三融合坐标注意力的特征输入到第一个PCS-S模块的通道切分模块中,得到两路第二切分特征;
将两路所述第二切分特征分别输入到第一个所述PCS-S模块的两条空洞卷积支路中,得到第三空洞卷积支路特征和第四空洞卷积支路特征;
将所述第三空洞卷积支路特征和所述第四空洞卷积支路特征输入到第一个所述PCS-S模块的元素加和模块中,得到第一元素加和特征;
将所述第一元素加和特征输入到第二个所述PCS-S模块中,得到第二元素加和特征。
6.根据权利要求4所述的方法,其特征在于,所述PCS-D-CA模块是在PCS-D模块中引入坐标注意力机制得到的;
将所述空洞卷积特征输入到第一个所述PCS-D-CA模块,并将得到的第一融合坐标注意力的特征输入到第二个所述PCS-D-CA模块中,得到第二融合坐标注意力的特征,包括:
将所述空洞卷积特征输入到第一个所述PCS-D-CA模块的PCS-D模块中,得到第四通道拼接特征;
并将所述第四通道拼接特征输入到第一个所述PCS-D-CA模块的坐标注意力模块中,得到第一坐标注意力特征;
将所述第四通道拼接特征与所述第一坐标注意力特征进行融合,得到第一融合坐标注意力的特征;
将所述融合坐标注意力的特征输入到第二个所述PCS-D-CA模块中,得到第二融合坐标注意力的特征。
7.根据权利要求3所述的方法,其特征在于,所述PCS-S-CA模块是在PCS-S模块中引入坐标注意力机制得到的;
将所述第三通道拼接特征输入到所述PCS-S-CA模块中,得到第三融合坐标注意力的特征,包括:
将所述第三通道拼接特征输入到所述PCS-S-CA模块的PCS-S模块中,得到第三元素加和特征;
将所述第三元素加和特征输入到所述PCS-S-CA模块的坐标注意力模块中,得到第二坐标注意力特征;
将所述第三元素加和特征与所述第二坐标注意力特征进行融合,得到第三融合坐标注意力的特征。
8.根据权利要求2所述的方法,其特征在于,所述分类网络包括:全连接层和Softmax分类层;
将所述融合坐标注意力的特征输入到所述分类网络中,输出分类预测结果,并根据所述分类预测结果和所述训练样本进行反向训练,得到COVID-19胸部CT图像识别模型,包括:
将所述融合坐标注意力的特征输入到所述全连接层中,整合类间区分特征,得到全连接特征;
将所述全连接特征输入到所述Softmax分类层,使用Softmax进行计算,输出分类预测结果;
根据所述分类预测结果和所述训练样本进行反向训练,得到COVID-19胸部CT图像识别模型。
9.一种COVID-19胸部CT图像识别装置,其特征在于,所述装置包括:
数据获取模块,用于获取COVID-19的胸部CT图像;并将所述胸部CT图像作为训练样本;
新冠肺炎CT识别网络构建模块,用于构建新冠肺炎CT识别网络;所述新冠肺炎CT识别网络包括输入网络、特征提取网络以及分类网络;所述特征提取网络包括PCS-D-CA模块、PCS-D模块、PCS-S-CA模块、PCS-S模块以及自适应池化层;所述输入网络采用空洞卷积方式提取所述训练样本的空洞卷积特征;所述特征提取网络采用最大模糊池化、通道混洗操作并引入坐标注意力机制对所述空洞卷积特征进行特征提取,得到融合坐标注意力的特征;所述分类网络根据所述融合坐标注意力的特征对胸部CT图像进行分类,得到COVID-19胸部CT图像的类别;
新冠肺炎CT识别网络训练模块,用于根据所述训练样本对所述新冠肺炎CT识别网络进行训练,得到COVID-19胸部CT图像识别模型;
COVID-19胸部CT图像分类模块,用于获取COVID-19的待测胸部CT图像,并将所述待测胸部CT图像输入到所述COVID-19胸部CT图像识别模型,得到COVID-19胸部CT图像的类别。
10.一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至8中任一项所述方法的步骤。
CN202110841119.1A 2021-07-26 2021-07-26 Covid-19胸部ct图像识别方法、装置及电子设备 Active CN113284149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110841119.1A CN113284149B (zh) 2021-07-26 2021-07-26 Covid-19胸部ct图像识别方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110841119.1A CN113284149B (zh) 2021-07-26 2021-07-26 Covid-19胸部ct图像识别方法、装置及电子设备

Publications (2)

Publication Number Publication Date
CN113284149A true CN113284149A (zh) 2021-08-20
CN113284149B CN113284149B (zh) 2021-10-01

Family

ID=77287214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110841119.1A Active CN113284149B (zh) 2021-07-26 2021-07-26 Covid-19胸部ct图像识别方法、装置及电子设备

Country Status (1)

Country Link
CN (1) CN113284149B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962990A (zh) * 2021-12-16 2022-01-21 长沙理工大学 胸部ct图像识别方法、装置、计算机设备和存储介质
CN114219817A (zh) * 2022-02-22 2022-03-22 湖南师范大学 新冠肺炎ct图像分割方法及终端设备
CN115064250A (zh) * 2022-06-06 2022-09-16 大连理工大学 一种用于对住院时长的分布进行调整的方法和相关产品
CN115861745A (zh) * 2022-10-25 2023-03-28 中国交通信息科技集团有限公司 一种用于生成三维模型的二维图像特征提取方法与系统
CN116958703A (zh) * 2023-08-02 2023-10-27 德智鸿(上海)机器人有限责任公司 一种基于髋臼骨折的识别方法、装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639676A (zh) * 2020-05-07 2020-09-08 安徽医科大学第二附属医院 一种能够应用于新冠肺炎影像分析的胸部医学影像识别分类方法
CN111754497A (zh) * 2020-06-28 2020-10-09 深圳大学 一种基于几何代数的工业缺陷检测方法和系统
US20200401847A1 (en) * 2019-06-24 2020-12-24 Realtek Semiconductor Corp. Calculation method using pixel-channel shuffle convolutional neural network and operating system using the same
CN112419321A (zh) * 2021-01-25 2021-02-26 长沙理工大学 X射线图像识别方法、装置、计算机设备及存储介质
CN112784856A (zh) * 2021-01-29 2021-05-11 长沙理工大学 胸部x射线图像的通道注意力特征提取方法和识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200401847A1 (en) * 2019-06-24 2020-12-24 Realtek Semiconductor Corp. Calculation method using pixel-channel shuffle convolutional neural network and operating system using the same
CN111639676A (zh) * 2020-05-07 2020-09-08 安徽医科大学第二附属医院 一种能够应用于新冠肺炎影像分析的胸部医学影像识别分类方法
CN111754497A (zh) * 2020-06-28 2020-10-09 深圳大学 一种基于几何代数的工业缺陷检测方法和系统
CN112419321A (zh) * 2021-01-25 2021-02-26 长沙理工大学 X射线图像识别方法、装置、计算机设备及存储介质
CN112784856A (zh) * 2021-01-29 2021-05-11 长沙理工大学 胸部x射线图像的通道注意力特征提取方法和识别方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962990A (zh) * 2021-12-16 2022-01-21 长沙理工大学 胸部ct图像识别方法、装置、计算机设备和存储介质
CN114219817A (zh) * 2022-02-22 2022-03-22 湖南师范大学 新冠肺炎ct图像分割方法及终端设备
CN115064250A (zh) * 2022-06-06 2022-09-16 大连理工大学 一种用于对住院时长的分布进行调整的方法和相关产品
CN115861745A (zh) * 2022-10-25 2023-03-28 中国交通信息科技集团有限公司 一种用于生成三维模型的二维图像特征提取方法与系统
CN115861745B (zh) * 2022-10-25 2023-06-06 中国交通信息科技集团有限公司 一种用于生成三维模型的二维图像特征提取方法与系统
CN116958703A (zh) * 2023-08-02 2023-10-27 德智鸿(上海)机器人有限责任公司 一种基于髋臼骨折的识别方法、装置

Also Published As

Publication number Publication date
CN113284149B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113284149B (zh) Covid-19胸部ct图像识别方法、装置及电子设备
CN108648172B (zh) 一种基于3D-Unet的CT图肺结节检测系统
CN110996789B (zh) 执行筛查、诊断或其他基于图像的分析任务的系统和方法
CN106339571B (zh) 用于分类医学图像数据组的人工神经网络
CN111429474B (zh) 基于混合卷积的乳腺dce-mri图像病灶分割模型建立及分割方法
CN113724880A (zh) 一种异常脑连接预测系统、方法、装置及可读存储介质
CN111368849B (zh) 图像处理方法、装置、电子设备及存储介质
CN111369562B (zh) 图像处理方法、装置、电子设备及存储介质
WO2021183765A1 (en) Automated detection of tumors based on image processing
CN115019049B (zh) 基于深度神经网络的骨显像骨病灶分割方法、系统及设备
CN112508884A (zh) 一种癌变区域综合检测装置及方法
NJSRF et al. Anaylsis and Detection of Community-acquired pneumonia using pspnet with complex Daubechies wavelets
CN117710760B (zh) 残差的注意神经网络用于胸部x线病灶检测的方法
CN112967254A (zh) 基于胸部ct影像肺部疾病识别和检测方法
Azli et al. Ultrasound image segmentation using a combination of edge enhancement and kirsch’s template method for detecting follicles in ovaries
Abdulah et al. Cxr-net: An artificial intelligence pipeline for quick covid-19 screening of chest x-rays
JP2023067219A (ja) 医用画像解析装置
CN114612484A (zh) 基于无监督学习的视网膜oct图像分割方法
Al-Utaibi et al. Neural networks to understand the physics of oncological medical imaging
Xu et al. Lung segmentation in chest X‐ray image using multi‐interaction feature fusion network
Khaniki et al. Hierarchical SegNet with Channel and Context Attention for Accurate Lung Segmentation in Chest X-ray Images
Khaniki et al. A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module
Abdulah et al. Lung Segmentation in Chest X-rays with Res-CR-Net
Paul et al. EchoTrace: A 2D Echocardiography Deep Learning Approach for Left Ventricular Ejection Fraction Prediction
CN115359060B (zh) 一种肺炎ct影像的病灶实例分割方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant