CN113724880A - 一种异常脑连接预测系统、方法、装置及可读存储介质 - Google Patents
一种异常脑连接预测系统、方法、装置及可读存储介质 Download PDFInfo
- Publication number
- CN113724880A CN113724880A CN202111295888.2A CN202111295888A CN113724880A CN 113724880 A CN113724880 A CN 113724880A CN 202111295888 A CN202111295888 A CN 202111295888A CN 113724880 A CN113724880 A CN 113724880A
- Authority
- CN
- China
- Prior art keywords
- brain
- modal
- network
- connection
- abnormal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 197
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 47
- 238000009826 distribution Methods 0.000 claims abstract description 37
- 230000006870 function Effects 0.000 claims abstract description 37
- 230000008447 perception Effects 0.000 claims abstract description 36
- 230000004927 fusion Effects 0.000 claims abstract description 32
- 208000010877 cognitive disease Diseases 0.000 claims abstract description 29
- 238000012549 training Methods 0.000 claims abstract description 20
- 230000003042 antagnostic effect Effects 0.000 claims abstract description 17
- 238000012512 characterization method Methods 0.000 claims abstract description 14
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 13
- 239000000284 extract Substances 0.000 claims abstract description 10
- 230000000295 complement effect Effects 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 17
- 238000002599 functional magnetic resonance imaging Methods 0.000 claims description 17
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 12
- 238000013507 mapping Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 7
- 230000002457 bidirectional effect Effects 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 4
- 210000001320 hippocampus Anatomy 0.000 claims description 4
- 208000027061 mild cognitive impairment Diseases 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000000547 structure data Methods 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 230000008485 antagonism Effects 0.000 claims description 2
- 210000003710 cerebral cortex Anatomy 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 206010033675 panniculitis Diseases 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 claims description 2
- 210000004885 white matter Anatomy 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 3
- 238000005065 mining Methods 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 abstract 1
- 238000013135 deep learning Methods 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 201000010099 disease Diseases 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 208000014644 Brain disease Diseases 0.000 description 4
- 238000003759 clinical diagnosis Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000090 biomarker Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241001286408 Gretna Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Artificial Intelligence (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Data Mining & Analysis (AREA)
- Neurology (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Evolutionary Computation (AREA)
- Physiology (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Fuzzy Systems (AREA)
- Neurosurgery (AREA)
- Psychology (AREA)
- High Energy & Nuclear Physics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111295888.2A CN113724880A (zh) | 2021-11-03 | 2021-11-03 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
PCT/CN2021/135844 WO2023077603A1 (zh) | 2021-11-03 | 2021-12-06 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111295888.2A CN113724880A (zh) | 2021-11-03 | 2021-11-03 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113724880A true CN113724880A (zh) | 2021-11-30 |
Family
ID=78686608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111295888.2A Pending CN113724880A (zh) | 2021-11-03 | 2021-11-03 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113724880A (zh) |
WO (1) | WO2023077603A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114511737A (zh) * | 2022-01-24 | 2022-05-17 | 北京建筑大学 | 图像识别域泛化模型的训练方法 |
CN115211868A (zh) * | 2022-07-28 | 2022-10-21 | 浙大宁波理工学院 | 融合Topomap图像识别与fMRI结合的高精度EEG识别系统 |
WO2023077603A1 (zh) * | 2021-11-03 | 2023-05-11 | 深圳先进技术研究院 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
CN116206752A (zh) * | 2023-02-22 | 2023-06-02 | 南通大学 | 基于结构-功能脑网络的精神疾病识别方法 |
WO2023108712A1 (zh) * | 2021-12-18 | 2023-06-22 | 深圳先进技术研究院 | 结构-功能脑网络双向映射模型构建方法及脑网络双向映射模型 |
CN116344042A (zh) * | 2023-05-31 | 2023-06-27 | 北京智精灵科技有限公司 | 基于多模态分析的认知储备干预提升方法及系统 |
CN116434968A (zh) * | 2023-06-14 | 2023-07-14 | 之江实验室 | 一种层级聚类约束的多标签细粒度术后并发症预测装置 |
US20240065609A1 (en) * | 2022-08-24 | 2024-02-29 | Taipei Medical University | Methods and devices of generating predicted brain images |
WO2024113135A1 (zh) * | 2022-11-29 | 2024-06-06 | 深圳先进技术研究院 | 结构功能关联的多模态脑网络计算方法、装置、设备及介质 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116503680B (zh) * | 2023-06-30 | 2023-08-29 | 之江实验室 | 基于脑图谱的脑影像结构化分析和脑疾病分类系统 |
CN117011657B (zh) * | 2023-07-05 | 2024-09-03 | 深圳市龙岗中心医院 | 基于自注意力机制融合的脑ct图像处理方法及相关设备 |
CN116912576B (zh) * | 2023-07-14 | 2024-10-15 | 太原理工大学 | 基于脑网络高阶结构的自适应图卷积脑疾病分类方法 |
CN116935203B (zh) * | 2023-09-18 | 2023-11-21 | 吉林大学 | 一种基于声光融合的潜水员智能监控方法和系统 |
CN117036869B (zh) * | 2023-10-08 | 2024-01-09 | 之江实验室 | 一种基于多样性和随机策略的模型训练方法及装置 |
CN117036727B (zh) * | 2023-10-09 | 2024-01-05 | 之江实验室 | 脑网络数据多层嵌入向量特征提取方法及装置 |
CN117095824B (zh) * | 2023-10-19 | 2024-04-16 | 之江实验室 | 基于孪生脑仿真模型的多巴胺动态耦合方法、装置和设备 |
CN117218453B (zh) * | 2023-11-06 | 2024-01-16 | 中国科学院大学 | 一种不完备多模态医学影像学习方法 |
CN117349714B (zh) * | 2023-12-06 | 2024-02-13 | 中南大学 | 阿尔茨海默症医学图像的分类方法、系统、设备及介质 |
CN117372440B (zh) * | 2023-12-08 | 2024-03-19 | 北京邮电大学 | 阿尔茨海默病风险预警模型训练方法、预警方法及设备 |
CN118070127B (zh) * | 2024-03-21 | 2024-08-13 | 太原理工大学 | 基于高阶功能网络的双相情感障碍特征提取及分类方法 |
CN117952195B (zh) * | 2024-03-26 | 2024-06-21 | 博睿康医疗科技(上海)有限公司 | 基于任务相关脑电激活度的脑网络构建方法、显示设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112353381A (zh) * | 2020-11-24 | 2021-02-12 | 杭州冉曼智能科技有限公司 | 基于多模态大脑影像的阿尔茨海默症综合诊断系统 |
CN112863664A (zh) * | 2020-12-30 | 2021-05-28 | 无锡太湖学院 | 基于多模态超图卷积神经网络的阿尔茨海默病分类方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110580695B (zh) * | 2019-08-07 | 2022-06-21 | 深圳先进技术研究院 | 一种多模态三维医学影像融合方法、系统及电子设备 |
AU2020102977A4 (en) * | 2020-10-23 | 2020-12-24 | Bhima, Ravi Teja DR | A Deep learning technique to recognise brain activity by fMRI and DTI image fusion |
CN112735570B (zh) * | 2021-01-09 | 2022-02-22 | 深圳先进技术研究院 | 影像驱动的脑图谱构建方法、装置、设备及存储介质 |
CN113094566A (zh) * | 2021-04-16 | 2021-07-09 | 大连理工大学 | 一种深度对抗多模态数据聚类方法 |
CN113724880A (zh) * | 2021-11-03 | 2021-11-30 | 深圳先进技术研究院 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
-
2021
- 2021-11-03 CN CN202111295888.2A patent/CN113724880A/zh active Pending
- 2021-12-06 WO PCT/CN2021/135844 patent/WO2023077603A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112353381A (zh) * | 2020-11-24 | 2021-02-12 | 杭州冉曼智能科技有限公司 | 基于多模态大脑影像的阿尔茨海默症综合诊断系统 |
CN112863664A (zh) * | 2020-12-30 | 2021-05-28 | 无锡太湖学院 | 基于多模态超图卷积神经网络的阿尔茨海默病分类方法 |
Non-Patent Citations (1)
Title |
---|
QIANKUN ZUO 等: "A Prior Guided Adversarial Representation Learning and Hypergraph Perceptual Network for Predicting Abnormal Connections of Alzheimer’s Disease", 《HTTPS://ARXIV.ORG/PDF/2110.09302V1》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023077603A1 (zh) * | 2021-11-03 | 2023-05-11 | 深圳先进技术研究院 | 一种异常脑连接预测系统、方法、装置及可读存储介质 |
WO2023108712A1 (zh) * | 2021-12-18 | 2023-06-22 | 深圳先进技术研究院 | 结构-功能脑网络双向映射模型构建方法及脑网络双向映射模型 |
CN114511737A (zh) * | 2022-01-24 | 2022-05-17 | 北京建筑大学 | 图像识别域泛化模型的训练方法 |
CN114511737B (zh) * | 2022-01-24 | 2022-09-09 | 北京建筑大学 | 图像识别域泛化模型的训练方法 |
CN115211868A (zh) * | 2022-07-28 | 2022-10-21 | 浙大宁波理工学院 | 融合Topomap图像识别与fMRI结合的高精度EEG识别系统 |
US20240065609A1 (en) * | 2022-08-24 | 2024-02-29 | Taipei Medical University | Methods and devices of generating predicted brain images |
WO2024113135A1 (zh) * | 2022-11-29 | 2024-06-06 | 深圳先进技术研究院 | 结构功能关联的多模态脑网络计算方法、装置、设备及介质 |
CN116206752A (zh) * | 2023-02-22 | 2023-06-02 | 南通大学 | 基于结构-功能脑网络的精神疾病识别方法 |
CN116344042A (zh) * | 2023-05-31 | 2023-06-27 | 北京智精灵科技有限公司 | 基于多模态分析的认知储备干预提升方法及系统 |
CN116344042B (zh) * | 2023-05-31 | 2023-12-01 | 北京智精灵科技有限公司 | 基于多模态分析的认知储备干预提升方法及系统 |
CN116434968A (zh) * | 2023-06-14 | 2023-07-14 | 之江实验室 | 一种层级聚类约束的多标签细粒度术后并发症预测装置 |
CN116434968B (zh) * | 2023-06-14 | 2023-08-25 | 之江实验室 | 一种层级聚类约束的多标签细粒度术后并发症预测装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2023077603A1 (zh) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113724880A (zh) | 一种异常脑连接预测系统、方法、装置及可读存储介质 | |
US11693071B2 (en) | Systems and methods for mapping neuronal circuitry and clinical applications thereof | |
CN112674720B (zh) | 基于3d卷积神经网络的阿尔茨海默症的预判断方法 | |
Zhao et al. | Diagnose like a radiologist: Hybrid neuro-probabilistic reasoning for attribute-based medical image diagnosis | |
CN113592769B (zh) | 异常图像的检测、模型的训练方法、装置、设备及介质 | |
Chagas et al. | A new approach for the detection of pneumonia in children using CXR images based on an real-time IoT system | |
Abeyagunasekera et al. | LISA: Enhance the explainability of medical images unifying current XAI techniques | |
Goenka et al. | Volumetric convolutional neural network for Alzheimer detection | |
US20110022355A1 (en) | Network Characterization, Feature Extraction and Application to Classification | |
Devnath et al. | Performance comparison of deep learning models for black lung detection on chest X-ray radiographs | |
Elayaraja et al. | An efficient approach for detection and classification of cancer regions in cervical images using optimization based CNN classification approach | |
CN116864140A (zh) | 一种心内科术后护理监测数据处理方法及其系统 | |
An et al. | COVID-19 screening in chest X-ray images using lung region priors | |
Chatchaiwatkul et al. | Lung disease detection and classification with deep learning approach | |
Venkatesh et al. | An overview of interpretability techniques for explainable artificial intelligence (xai) in deep learning-based medical image analysis | |
Pallawi et al. | Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey | |
Tobias et al. | Android Application for Chest X-ray Health Classification From a CNN Deep Learning TensorFlow Model | |
de Vente et al. | Automated COVID-19 grading with convolutional neural networks in computed tomography scans: A systematic comparison | |
Zhao et al. | Machine learning approaches in comparative studies for Alzheimer’s diagnosis using 2D MRI slices | |
KR102400568B1 (ko) | 인코더를 이용한 이미지의 특이 영역 분석 방법 및 장치 | |
Mruthyunjaya et al. | A brain tumor identification using convolution neural network and fully convolution neural network | |
Liu et al. | Context-endcoding for neural network based skull stripping in magnetic resonance imaging | |
CN112086174A (zh) | 一种三维知识诊断模型构建方法和系统 | |
CN118570570B (zh) | 一种基于图像识别技术的中医舌象辨识系统及方法 | |
El Mohamadi et al. | Enhanced Deep Learning Explainability for COVID-19 Diagnosis from Chest X-ray Images by Fusing Texture and Shape Features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 1068 Xueyuan Avenue Xili University City Shenzhen Guangdong Province Applicant after: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Applicant after: Shenzhen University of Technology (preparatory) Address before: No.1068 Xueyuan Avenue, Xili University Town, Shenzhen, Guangdong 518055 Applicant before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Country or region before: China Applicant before: Shenzhen University of technology Chinese Academy of Sciences (Preparatory) |
|
CB02 | Change of applicant information |
Country or region after: China Address after: No.1068 Xueyuan Avenue, Xili University Town, Shenzhen, Guangdong 518055 Applicant after: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Applicant after: Shenzhen University of Technology Address before: No.1068 Xueyuan Avenue, Xili University Town, Shenzhen, Guangdong 518055 Applicant before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Country or region before: China Applicant before: Shenzhen University of Technology (preparatory) |