CN113283924B - 需求预测方法以及需求预测装置 - Google Patents

需求预测方法以及需求预测装置 Download PDF

Info

Publication number
CN113283924B
CN113283924B CN202010166765.8A CN202010166765A CN113283924B CN 113283924 B CN113283924 B CN 113283924B CN 202010166765 A CN202010166765 A CN 202010166765A CN 113283924 B CN113283924 B CN 113283924B
Authority
CN
China
Prior art keywords
demand
material number
model
probability
extreme gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010166765.8A
Other languages
English (en)
Other versions
CN113283924A (zh
Inventor
蔡麒霖
余启豪
蓝文萱
郭玲佑
施汉羿
何佩瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wistron Corp
Original Assignee
Wistron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wistron Corp filed Critical Wistron Corp
Publication of CN113283924A publication Critical patent/CN113283924A/zh
Application granted granted Critical
Publication of CN113283924B publication Critical patent/CN113283924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Educational Administration (AREA)
  • Mathematical Analysis (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

一种需求预测方法以及需求预测装置。基于历史需求数据,获得料号对应的初步预估量。基于初步预估量,计算料号的需求几率。基于历史需求数据、初步预估量以及需求几率,获得料号对应的预测需求量。

Description

需求预测方法以及需求预测装置
技术领域
本发明涉及一种存货模拟技术,且特别涉及一种需求预测方法以及需求预测装置。
背景技术
在存货领域中,精准地预测需求是重要的一环。假如能精准地预测存货则可以在满足顾客需求的前提之下降低大量的不必要的库存,达到节省成本的效果,系统的运行时间越久,省下的金额越可观。以服务零件而言,在产品供货起至到宣布停产后的特定时间内,提供必要的零件供给,以满足客户维修或更换的需要。对供应商而言,越能掌握精准的零件需求预测,就越能在更短时间内流通零件存货、创造营收,并降低呆滞料造成的成本积压。
现有的存货预测技术大多以时间序列的手法搭配数据来进行公式化的预测。现有技术的缺陷大致有下述三点。(1)无法完全充分的利用数据,时间序列的极限通常只能考量少数的变数,所以纵然数据的信息含量丰富,由于人对所述数据的理解有限,因此最后用来产出预测的公式可能考虑的变数只有顶多10个变数。(2)而这些用来产出预测的公式是由人经验累积而出,因此当有人离职或是人员汰换时很难做一个有系统的传承交接。(3)现行系统无法快速地扩展到各个不同的区域。简单来说,欧洲、美国、亚洲的需求形态不同,因此如果要针对不同的地区去进行在地化的预测,就需要三个团队分别去进行经验累积和发展公式。
发明内容
本发明提供一种需求预测方法,可以充分考虑所有数据变数,屏除人为的计算失误,以获得更精准的预测结果。
本发明的一实施例中的需求预测方法,包括:基于历史需求数据,获得料号对应的初步预估量;基于历史需求数据与初步预估量,计算料号的需求几率;以及基于历史需求数据、初步预估量以及需求几率,获得料号对应的预测需求量。
在本发明的一实施例中,上述需求预测方法还包括:转换历史需求数据的格式,以获得对应于料号的多个特征。所述特征包括在多个先前时段对应的多个参数、在多个时段范围内的多个参数平均值以及在所述各时段范围内包括的多个参数中的最大值。
在本发明的一实施例中,上述需求预测方法还包括:建立极端梯度提升(eXtremeGradient Boosting,XGBoost)模型,极端梯度提升模型包括线性模型、分类器以及极端梯度提升回归模型。
在本发明的一实施例中,上述基于历史需求数据,获得料号对应的初步预估量的步骤包括:将所述特征输入至线性模型,借此获得初步预估量。
在本发明的一实施例中,上述需求预测方法还包括:利用极端梯度提升演算法来建立分类器,以将所述特征及初步预估量输入分类器来获得需求几率。所述需求几率为该料号未来的需求为0的几率。
在本发明的一实施例中,上述基于历史需求数据、初步预估量以及需求几率,获得料号对应的预测需求量的步骤包括:将所述特征、需求几率以及初步预估量输入极端梯度提升回归模型,以获得预测需求量。
在本发明的一实施例中,上述需求预测方法还包括:解构极端梯度提升模型,以获得历史需求数据中的每一特征的影响力。其中极端梯度提升模型包括多个树,而解构极端梯度提升模型的步骤包括:自每一棵树的根节点开始走访至最底层的每一个节点;基于每一次所走访的节点对应的规则,将变化量归因至对应的特征;以及加总各特征对应的变化量来作为其对应的影响力。
在本发明的一实施例中,上述在获得料号对应的预测需求量步骤之后,还包括:基于前次实际需求为零的料号占总料号的比例来决定门限值;倘若料号对应的需求几率大于或等于门限值,将预测需求量设定为零;以及倘若料号对应的需求几率小于门限值,输出预测需求量作为最终预测结果。
本发明的一实施例中的需求预测装置,包括:存储装置,存储有多个程序码片段;以及处理器,耦接至存储装置,执行所述程序码片段以:基于历史需求数据,获得料号对应的初步预估量;基于历史需求数据与初步预估量,计算料号的需求几率;以及基于历史需求数据、该初步预估量以及该需求几率,获得该料号对应的一预测需求量。
基于上述,本发明实施例可以充分考虑所有数据变数,屏除人为的计算失误,以获得更精准的预测结果。
附图说明
图1是依照本发明一实施例的电子装置的方框图。
图2是依照本发明一实施例的预测需求方法的流程图。
图3是依照本发明一实施例的进行需求预测程序的流程图。
图4是依照本发明一实施例的XGBoost回归模型中的其中一颗树的示意图。
图5是依照本发明一实施例的特征影响力的比对图。
附图标记说明:
100:电子装置
110:处理器
120:输出装置
130:存储装置
131:XGBoost模型
140:线性模型
150:分类器
160:XGBoost回归模型
S205~S240:预测需求方法的各步骤
S305~S315:进行需求预测程序的各步骤
具体实施方式
图1是依照本发明一实施例的电子装置的方框图。请参照图1,电子装置100包括处理器110、输出装置120以及存储装置130。在此,处理器110耦接至输出装置120及存储装置130。
处理器110例如为中央处理单元(Central Processing Unit,CPU)、物理处理单元(Physics Processing Unit,PPU)、可程序化的微处理器(Microprocessor)、嵌入式控制芯片、数字信号处理器(Digital Signal Processor,DSP)、特殊应用集成电路(ApplicationSpecific Integrated Circuits,ASIC)或其他类似装置。
输出装置120可以是阴极射线管(Cathode Ray Tube,CRT)显示器、液晶显示器(Liquid Crystal Display,LCD)、等离子体显示器(Plasma Display)、触控显示器(TouchDisplay)等显示器。或者,输出装置120可以是印表机。
存储装置130例如是任意形式的固定式或可移动式随机存取存储器(RandomAccess Memory,RAM)、只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash memory)、硬盘或其他类似装置或这些装置的组合。存储装置130中存储有多个程序码片段,上述程序码片段在被安装后,会由处理器110来执行,以实现下述需求预测方法。
举例来说,存储装置130中存储了存货模拟系统(simulation tool),通过存货模拟系统来建构极端梯度提升(eXtreme Gradient Boosting,XGBoost)模型131。XGBoost模型131包括线性模型140、分类器150以及XGBoost回归模型160。
在此,线性模型140是基于历史需求数据中的多个特征来获得一颗料号对应的初步预估量。分类器150用来预测所述料号未来的需求为零的几率。XGBoost回归模型160用来获得所述料号对应的预测需求量。
XGBoost回归模型160是树状(tree-based)的模型,主要的概念是利用不同的数据特征来建构出能通用于大部分数据的规则,进而达到后续预测的目的。在XGBoost回归模型160中每个分裂的节点是利用信息增益的理论中的熵(entropy)来衡量,期望能在每次的分裂后达到降低信息混乱程度的目标。XGBoost回归模型160的组成可能是上百棵树(分类器),即,XGBoost回归模型160是个将很多弱分类器(小棵的树模型)集成而成的强分类器(大棵的树模型)。
图2是依照本发明一实施例的预测需求方法的流程图。请参照图1及图2,在步骤S205中,处理器110自数据库中读取历史需求数据,并转换格式。在此,在自历史需求数据中取出要输入至线性模型140的特征之前,先对历史需求数据的原始数据进行转换,以确保在建立XGBoost模型131时所考虑的数据更为全面。
具体而言,转换历史需求数据的格式,以获得对应于料号的多个特征。所述特征包括在多个先前时段对应的多个参数、在多个时段范围内的多个参数平均值以及在所述时段范围内各自包括的多个所述参数中的最大值。
表1所示为一部分历史需求数据的原始数据。在表1中仅列出栏位“ord_pn”、栏位“country”、栏位“qty”、栏位“yyyymm”来进行说明,在此并不限定原始数据的栏位数量及内容。栏位“ord_pn”记录料号的编号,栏位“country”记录区域,栏位“qty”记录实际需求量,栏位“yyyymm”记录时间。
表1
表1中,每笔数据都是依照时间排序来存储。如果直接使用原始数据来建立XGBoost模型131,则会造成没有充分考虑前后序列性的缺陷。这是因为XGBoost演算法是树状学习,每个分裂点主要以栏位为考量,如表1所述的原始数据会让这种类型的演算法(树状模型的演算法)无法考虑前后几期的需求。因此,在建立XGBoost模型131之前,将原始数据转换成另一种存储的方式来让XGBoost演算法能同时参考每个料号的前后几期的需求来预测未来的需求。
表2所示为一部分历史需求数据的转换格式后的转换后数据。在表2中,仅列出栏位“GID”、栏位“REGION”、栏位“fcst_date”、栏位“x_month_01”~栏位“x_month_06”来进行说明,在此并不限定转换后数据的栏位数量及内容。栏位“GID”记录群组识别码,亦可记录对应的料号的编号,栏位“REGION”记录区域,栏位“fcst_date”记录每个月底进行预测的日期,栏位“x_month_01”~栏位“x_month_06”分别记录在其对应的预测日期之前的第1个月~第6个月的需求量,栏位“yyyymm”记录时间。栏位“QTY”记录其对应的栏位“yyyymm”该月份的需求量。
表2
在表2中,可以发现数据被转换成同一笔数据中存储了前1个月的用量(x_month01),前2个月的用量(x_month_02)…一直到前6个月的用量(x_month_06)。fcst_date则表示目前的时间点。以“2017.01.31”而言,其代表是在2017.01.31这个时间点要去预测下个月料号“717376-001”的用量。在此,会考虑前6个月该颗料号的用量。也就是说,使用这种数据的格式搭配使用树状模型的演算法去进行预测的话,虽然还是依照栏位去做分裂,但是却会有更多选择性,可以考虑到前几个月的用量的影响,而不是只能参考最近的一个月。值得一提的是,于一实施例中,依据物料规划员建议的序列性参数,例如包括了需求(demand)和保固期(warranty date)内在外流通的用量(wib)都进行了类似的数据转换处理,此举可确保演算法考虑的数据更为全面。当然还有很多其他的转换,表2提及的内容仅为方便说明,在此并不限定转换的特征。
接着,在步骤S210中,处理器110切分历史需求数据为训练集和验证集。为了精准预测未来需求,在切分训练集和验证集时需尽可能地贴近现实会发生的状况来切分和进行验证。在此,按照数据发生的前后顺序来进行切分,以某时间点之前为训练集,用以训练模型,某时间点之后为验证集来验证模型的精度。例如,以时间2017-12-31来进行切分,将2017-12-31之前的数据作为训练集,将2017-12-31之后的数据作为验证集。
值得注意的是,还在建置系统验证的时候的确是需要去切分训练集和验证集,但是验证过后确认系统是可信的之后,便可将所有手边最新的数据都当作训练集然后去预测未来的需求。验证集会用于产出预测值然后输入存货模拟系统,产出报表来看整体预测的表现状况。
在步骤S215中,建立XGBoost模型131。XGBoost模型131包括线性模型140、分类器150以及XGBoost回归模型160。在此,利用线性回归(linear regression)演算法来建立线性模型140。利用XGBoost演算法来建立分类器150以及XGBoost回归模型160。建立线性模型140的原因是因为有些料号使用线性回归就可以有不错的预测,因此,同时使用线性模型140以及XGBoost回归模型160的情况下,能够使得最终预测结果更为准确。
在建立XGBoost模型131之后,在步骤S220中,利用XGBoost模型131来进行需求预测程序。图3是依照本发明一实施例的进行需求预测程序的流程图。请参照图3,在步骤S305中,基于历史需求数据,获得料号对应的初步预估量。接着,在步骤S310中,基于历史需求数据及初步预估量,计算料号的需求几率。之后,在步骤S315中,基于历史需求数据、初步预估量以及需求几率,获得所述料号对应的预测需求量。
首先,自转换后数据中选择多个栏位来作为一颗料号的特征(变数)。在此,可通过试误学习来获得多个特征。另外,亦可视情况来挑选特征,或是选择全部的栏位作为特征。所述特征包括在多个先前时段对应的多个参数(例如前1个月的用量、前2个月的用量…等)、在多个时段范围内的多个参数平均值(例如前1个月的用量平均值、前2个月的用量平均值…等)以及在各时段范围内包括的多个参数中的最大值。接着,将所述特征输入至线性模型140,利用线性模型140来产生所述料号对应的初步预估量。而所述特征与所述初步预估量会成为新的变数输入至分类器150中训练。
在此,利用XGBoost演算法来训练出分类器150,通过分类器150来计算所述料号分类至未来需求为零的需求几率(另一新的变数)。之后,将所述特征以及所产生的新的变数(包括初步预估量以及需求几率)输入至XGBoost回归模型160。
XGBoost回归模型160包括很多棵树,这些树就像是很多规则一样,当有新数据进来需要被预测的时候,便可沿着这些树来看新数据有没有符合规则,然后选择不同的道路走到最低点进而给出预测。
图4是依照本发明一实施例的XGBoost回归模型中的其中一颗树的示意图。请参照图4,图4中的每一个节点都是特征(变数),而每一个节点中最上面的数值代表初始的预测值,“n”代表有几笔数据被分到这个节点。在此,“avg_dmd_past_3mth”代表过去3个月的用量平均值,“max_dmd”代表最大用量。每个节点都有一个判断的规则。在本实施例中,假设倘若满足节点对应的规则,则选择左边分支,倘若未满足节点对应的规则,则选择右边分支。
由图4的最上面的节点(其预测值为1.9)开始,判断该笔数据的过去3个月的用量平均值是否小于41。假如这笔数据的过去3个月的用量平均值小于41,则选择左边的分支,然后预测值会被更新为1.2,反之会走右边,然后预测值会被更新为69。以此类推,每笔数据在进行预测时,会根据每一个节点对应的规则来决定要选择哪一条分支。即,每次遇到分支只会走左或右的其中一条路径,然后一路走到底就会产出预测需求量。
在本实施例中,假设过去3个月的用量平均值小于41,选择左边的分支,然后预测值会被更新为1.2。接着,假设过去3个月的用量平均值小于8.8,选择左边分支,预测值更新为0.69。之后,假设最大用量大于等于4,选择右边分支,预测值更新为4.3。以预测值4.3来作为预测需求量。
在获得料号对应的预测需求量之后,还可进一步根据需求几率来做进一步的筛选。即,基于前次实际需求为零的料号占总料号的比例来决定门限值。倘若料号对应的未来的需求为零的需求几率大于或等于门限值,将预测需求量设定为零。倘若料号对应的未来的需求为零的需求几率小于所述门限值,输出预测需求量作为最终预测结果。
另外,也可以如表3所示,对需求几率进行量化后,再与门限值进行比对。
表3
预测需求量 需求几率 量化需求几率 最终预测结果
2 0.95 1 0
4 0.8 0.8 0
101 0.6 0.6 101
23 0.4 0.4 23
84 0.3 0.2 84
如表3所示,其包括五笔预测需求量。首先,根据需求几率的高低来排序这五笔预测需求量。之后,根据笔数对需求几率量化而获得量化需求几率。例如,有5笔预测需求量,则设定由小至大的量化需求几率为0.2、0.4、0.6、0.8、1。然后,计算上个月实际需求为零的料号占总料号的比例。假设上个月有20%的料号的实际需求量为0,因此,设定为将量化需求几率最高的20%对应的预测需求量全部修改为零。以表3而言,将量化需求几率1、0.8两者对应的预测需求量设定为0。也就是说,将门限值设定为0.8,量化预测需求量大于或等于0.8对应的预测需求量将会设定为0。
返回图2,在建立XGBoost模型131之后,在步骤S225中,通过XGBoost解释器(explainer)来解构XGBoost模型131。XGBoost模型131能被建构出来是因为从宏观的角度发掘整体数据的规则而去建构出来。但是倘若解释XGBoost模型131中的树模型,便要用微观的角度去解释(从单一笔数据走访树的角度去解构)。解构单一笔数据的过程类似图4所示的箭头,箭头是某笔数据根据自身条件去走访树的结果。
从解构的角度来说,将该笔数据走访的路径做一个归因。即,通过自每一棵树的根节点开始走访至最底层的每一节点,基于每一次所走访的节点对应的规则,将变化量归因至对应的特征,之后加总每一特征对应的变化量来作为其对应的影响力。以图4的箭头而言,因为avg_dmd_past_3mth<41的规则,预测值由1.9变成1.2的变化量-0.7被归因到avg_dmd_past_3mth这个特征上。接着,因为avg_dmd_past_3mth<8.8的规则,预测值由1.2变成0.69的变化量-0.51被归因到avg_dmd_past_3mth这个特征上。接着,因为max_dmd<4的规则,预测值由0.69变成4.3的变化量3.61被归因到max_dmd这个特征上。一路做同样的归因直到树的最底层,借此将各个变化量归因至对应的特征上,并加总每个特征对应的变化量作为该特征对应的影响力。最后,产生每个特征的影响力的比对图。
图5是依照本发明一实施例的特征影响力的比对图。可由输出装置120来输出此比对图,以供物料规划员查看。图5的解读方式为由左而右依序列出特征(重要性:重要至不重要)和其影响力,从图中可看出每个特征有可能是正向也可能是负向(例如-0.05),最后的“prediction”为全部影响力的总和。在本实施例中,列出特征“reg1”(初步预估量)、“avg_dmd_past_3mth”(前3个月的用量平均值)、“max_dmd”(最大用量)、“mth_fcst_eow”(从保固期结束至每个月底进行预测的日期的月份)、“zero_prob”(需求几率)、“wib_trend_3mth”(3个月内的在外流通量趋势)。而有些特征因为影响力不足因此被合并成为“other”,即,“other”是由很多特征合并而成,意图简化此图表。而“intercept”不为原本数据集的特征,此项为给定的定值,也就是说同个模型的解构出来的图中,每张图的这个值都会一样,可以理解为类似线性回归中的截距项。于其他实施例中,输出装置120输出比对图时,以不同的颜色标示各个特征,亦可以不同的颜色标示每个特征的影响力,例如将影响力为正向的特征标示为蓝色,将影响力为负向的特征标示为红色。
假如本笔数据的预测需求量为100,则反推特征“reg1”造成的影响,也就是说特征“reg1”贡献了预测值29.12的量。在解构XGBoost模型131后,可由输出装置120输出比对图,并于步骤S230中,进行量化解释。于一实施例中,输出装置120输出比对图后,输出装置120接收到任一特征的量化解释指令时,显示该特征对应的量化解释。输出装置120在输出比对图后,输出装置120可供物料规划员选择欲进行量化解释的特征,并进一步显示该特征对应的量化解释。
在获得最终预测结果之后,在步骤S235中,判断对于预测结果是否有疑虑。若对预测结果有疑虑,在步骤S230中,进行量化解释。倘若对预测结果没有疑虑,在步骤S240中,产出存货指标报表。并且,将通过输出装置120来输出存货指标报表。另外,也可以不经过步骤S235,而直接产出存货指标报表。
例如,存货指标报表中包括了预测准确性指标、存货降低指标、潜在存货指标以及客户满意度指标。预测准确性指标为衡量演算法准确度的指标。存货降低指标以及潜在存货指标皆作为节省多少钱的指标。其中,存货降低指标所使用的存货是表示还有可能会被消耗的库存。潜在存货指标所使用的存货则是表示超出产品的授权期间或是保固期,无法被消耗的库存。存货降低指标为将基于上述实施例所获得的每个月给出的预测需求量乘上每个料号的成本所计算出的总成本,减去旧系统所获得的总成本的值。客户满意度指标则是代表客户的满意度。举例来说,假如客户的需求为10片,而我方只能提供9片,则客户满意度指标就是90%。假如客户的需求为10片,而我方能够提供10片以上,则客户满意度指标就是100%。然,需注意的是,并不能为了100%的客户满意度指标就备很多料,仍需视考虑到存货降低指标以及潜在存货指标。
于步骤S235中,输出装置120显示预测需求量,让物料规划员判断预测结果是否有疑虑,若物料规划员对预测结果有疑虑,于步骤S230中,物料规划员会通过输出装置120去筛选出在验证区间内的预测需求量跟实际值之间的差距太大的料号。表4为一实施例的一笔预测结果。
表4
GID Anna-AB-73-SP
fcst_date 2019/1/31
x_month_03 72
x_month_02 72
x_month_01 59
y_month_01 110
fcst_m1 36.40958
以表4为例,y_month_01代表实际值,fcst_m1代表预测需求量,x_month_01~x_month_03代表过去1~3个月的用量。其中,实际值与预测需求量为36.40958两者差了73片左右的量,因此被筛选出来当作是潜在问题的预测。接着,物料规划员会去看数据的表现,例如查看x_month_01~x_month_03之后发现过去的量都差不多相同水准,因此物料规划员通过输出装置120会去调阅这该笔数据的解释器的图出来参考(例如通过输出装置120显示图5)。假如是数据过去水准跟未来根本就差异太大导致不管用任何演算法都不太可能能预估到该趋势的话,就会标记该料号可能有需求激增(surge demand)。因此在计算顾客满意度指标的时候可以排除这些变异太大的料号。
综上所述,所述实施例利用线性回归来执行最初步的预测,然后将所获得的初步预估量当成变数输入至第二阶段的分类器去学习,借此获得该笔料号未来的需求为0的需求几率。之后再将先前使用的变数(包括新创的初步预估量、需求几率)输入XGBoost回归模型160来获得预测需求量。
导入机器学习领域中的XGBoost模型来当作最主要的演算法进行预测。XGBoost模型适用于大规模数据的演算。严格来说,将所有的数据变数都放进XGBoost模型来产出结果,可屏除人为的计算失误。据此,在进行预测时参考的数据会比现有方法还要全面,进而获得更准确的预测需求量,以有效控管库存,进而节省成本。并且,经验证后发现可以在存货领域衡量预测优劣的指标(省钱指标、顾客信心水准)上达到维持顾客信心水准。
另外,使用XGBoost模型的系统可以提供使用者接口轻松的产出预测结果,甚至可以完全不需要人为的介入,只需要让开发好的系统自动在该产出预测的时候自动产出即可,可以降低或是避免人员汰换时的不便。
又,使用XGBoost模型的系统的使用前提是只需要有每个不同地区的数据即可运行,快速的在几个小时之内对区域内的数据进行模式的识别和萃取重要信息以建造出模型,并提供准确的预测。故,本发明的可扩展性(把同个系统快速应用到不同区域进行预测的能力)以及可移植性(把系统切换到不同电脑上运行的能力)都优于现有系统。
此外,本发明实施例也导入可使XGBoost演算法有解释能力的技术(XGBoost解释器),使预测的结果具有可解释性。所谓的可解释性是指当给出某个料号的预测需求量之后,物料规划员(客户/系统使用者/决策者)会想知道预测需求量是怎么来的,也就是说假如使用预测的数据里面包含了产品目前处于何种周期、保固期内料号在外流通的总量、该物料过去几个月的需求量等参数,可用于解释预测结果。本发明实施例除了用XGBoost模型提供出精准的预测之外,也提供每个特征(变数)对于该笔预测的量化影响,此量化影响包含了该特征对预测需求量的正向影响或是负向影响,也包含的量的多寡,使物料规划员可以快速接受信息。

Claims (10)

1.一种需求预测方法,包括:
转换一历史需求数据的格式,以获得对应于料号的多个特征;
建立一极端梯度提升模型,该极端梯度提升模型包括一线性模型、一分类器以及一极端梯度提升回归模型;
将所述多个特征输入至该线性模型,借此获得一初步预估量;
利用一极端梯度提升演算法来建立该分类器,以将所述多个特征及该初步预估量输入该分类器来获得该料号的一需求几率;以及
将所述多个特征、该需求几率以及该初步预估量输入该极端梯度提升回归模型,以获得该料号对应的一预测需求量,其中该需求几率为该料号未来的需求为0的几率。
2.如权利要求1所述的需求预测方法,还包括:
其中,所述多个特征包括在多个先前时段对应的多个参数、在多个时段范围内的多个参数平均值以及在所述多个时段范围内各自包括的多个所述参数中的一最大值。
3.如权利要求1所述的需求预测方法,还包括:
解构该极端梯度提升模型,以获得该历史需求数据中的每一特征的影响力。
4.如权利要求3所述的需求预测方法,其中该极端梯度提升模型包括多个树,而解构该极端梯度提升模型的步骤包括:
自每一所述多个树的根节点开始走访至最底层的每一节点;
基于每一次所走访的节点对应的规则,将一变化量归因至对应的特征;以及
加总每一特征对应的变化量来作为其对应的影响力。
5.如权利要求1所述的需求预测方法,其中在获得该料号对应的该预测需求量步骤之后,还包括:
基于前次实际需求为零的料号占总料号的比例来决定一门限值;
倘若该料号对应的该需求几率大于或等于该门限值,将该预测需求量设定为零;以及
倘若该料号对应的该需求几率小于该门限值,输出该预测需求量作为最终预测结果。
6.一种需求预测装置,包括:
一存储装置,存储有多个程序码片段,其中该存储装置包括一极端梯度提升模型,该极端梯度提升模型由所述多个程序码片段组成,该极端梯度提升模型包括:一线性模型、一分类器以及一极端梯度提升回归模型;以及
一处理器,耦接至该存储装置,执行所述多个程序码片段以:
转换历史需求数据的格式,以获得对应于料号的多个特征;
将所述多个特征输入至该线性模型,借此获得一料号对应的一初步预估量;
利用一极端梯度提升演算法来建立该分类器,以将所述多个特征及该初步预估量输入该分类器来获得该料号的一需求几率;以及
将所述多个特征、该需求几率以及该初步预估量输入该极端梯度提升回归模型,以获得该料号对应的一预测需求量,
其中该需求几率为该料号未来的需求为0的几率。
7.如权利要求6所述的需求预测装置,
其中,所述多个特征包括在多个先前时段对应的多个参数、在多个时段范围内的多个参数平均值以及在所述多个时段范围内各自包括的多个所述参数中的一最大值。
8.如权利要求7所述的需求预测装置,其中该处理器解构该极端梯度提升模型,以获得该历史需求数据中的每一特征的影响力。
9.如权利要求8所述的需求预测装置,其中该极端梯度提升模包括多个树,该处理器自每一所述多个树的根节点开始走访至最底层的每一节点,基于每一次所走访的节点对应的规则,将一变化量归因至对应的特征,并且加总每一特征对应的变化量来作为其对应的影响力。
10.如权利要求7所述的需求预测装置,其中该处理器执行所述多个程序码片段以:
基于前次实际需求为零的料号占总料号的比例来决定一门限值;
倘若该料号对应的该需求几率大于或等于该门限值,将该预测需求量设定为零;以及
倘若该料号对应的该需求几率小于该门限值,输出该预测需求量作为最终预测结果。
CN202010166765.8A 2020-02-20 2020-03-11 需求预测方法以及需求预测装置 Active CN113283924B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109105457 2020-02-20
TW109105457A TWI786376B (zh) 2020-02-20 2020-02-20 需求預測方法以及需求預測裝置

Publications (2)

Publication Number Publication Date
CN113283924A CN113283924A (zh) 2021-08-20
CN113283924B true CN113283924B (zh) 2024-05-07

Family

ID=77275179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010166765.8A Active CN113283924B (zh) 2020-02-20 2020-03-11 需求预测方法以及需求预测装置

Country Status (3)

Country Link
US (1) US11568429B2 (zh)
CN (1) CN113283924B (zh)
TW (1) TWI786376B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11321654B2 (en) * 2020-04-30 2022-05-03 International Business Machines Corporation Skew-mitigated evolving prediction model
KR102412461B1 (ko) * 2020-09-02 2022-06-22 이현정 상품의 비주얼 스키마를 이용한 수요 예측 방법 및 그 시스템
US20220277263A1 (en) * 2021-02-26 2022-09-01 Fiix Inc. System and method for predictive inventory
TWI793580B (zh) * 2021-04-21 2023-02-21 財團法人工業技術研究院 庫存自動化管理方法及其系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037376A1 (en) * 2000-10-27 2002-05-10 Manugistics, Inc. Supply chain demand forecasting and planning
CN109284856A (zh) * 2018-07-25 2019-01-29 顺丰科技有限公司 一种快递包材物料需求预测方法、装置及设备、存储介质
CN109886445A (zh) * 2018-12-13 2019-06-14 国网浙江省电力有限公司衢州供电公司 一种基于物资需求特性量化的未来需求预测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027863B2 (en) * 2006-10-31 2011-09-27 Caterpillar Inc. Method for forecasting a future inventory demand
US20170185904A1 (en) * 2015-12-29 2017-06-29 24/7 Customer, Inc. Method and apparatus for facilitating on-demand building of predictive models
CN106780173B (zh) 2016-12-01 2021-02-23 携程计算机技术(上海)有限公司 Ota酒店库存管理方法及系统
CN107274231A (zh) 2017-06-29 2017-10-20 北京京东尚科信息技术有限公司 数据预测方法及装置
CN107248094B (zh) 2017-06-30 2020-12-18 联想(北京)有限公司 一种电子产品激活量预测方法及一种服务器集群
US11113751B2 (en) * 2020-01-28 2021-09-07 Walmart Apollo, Llc Systems and methods for predicting lost demand using machine learning architectures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037376A1 (en) * 2000-10-27 2002-05-10 Manugistics, Inc. Supply chain demand forecasting and planning
CN109284856A (zh) * 2018-07-25 2019-01-29 顺丰科技有限公司 一种快递包材物料需求预测方法、装置及设备、存储介质
CN109886445A (zh) * 2018-12-13 2019-06-14 国网浙江省电力有限公司衢州供电公司 一种基于物资需求特性量化的未来需求预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Forecasting of sales by using fusion of Machine Learning techniques;Mohit Gurnani et al.;2017 International Conference on Data Management, Analytics and Innovation (ICDMAI);第93-101页 *

Also Published As

Publication number Publication date
US11568429B2 (en) 2023-01-31
US20210264449A1 (en) 2021-08-26
TWI786376B (zh) 2022-12-11
CN113283924A (zh) 2021-08-20
TW202133061A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
CN113283924B (zh) 需求预测方法以及需求预测装置
JP6344395B2 (ja) 払出量予測装置、払出量予測方法、プログラム、及び、払出量予測システム
US10740773B2 (en) Systems and methods of utilizing multiple forecast models in forecasting customer demands for products at retail facilities
CN106485262A (zh) 一种母线负荷预测方法
JP6459968B2 (ja) 商品推薦装置、商品推薦方法、及び、プログラム
US20060184460A1 (en) Automated learning system
JP6344396B2 (ja) 発注量決定装置、発注量決定方法、プログラム、及び、発注量決定システム
JP6330901B2 (ja) 階層隠れ変数モデル推定装置、階層隠れ変数モデル推定方法、払出量予測装置、払出量予測方法、及び記録媒体
CN113656691A (zh) 数据预测方法、装置及存储介质
CN117094535B (zh) 基于人工智能的能源补给管理方法及系统
KR102646061B1 (ko) Ai 기반 모델 선택 알고리즘을 이용한 수요 예측 방법
CN109753683B (zh) 一种继电保护整定软件保护装置模型的形成方法
CN111260161A (zh) 一种众包任务下发的方法及设备
Nahm New competitive priority rating method of customer requirements for customer-oriented product design
CN114385121B (zh) 一种基于业务分层的软件设计建模方法及系统
KR20200112495A (ko) 상권 분석 서비스 제공 서버 및 그 방법
CN116049765A (zh) 数据分析处理方法、装置及设备
Dorokhov et al. Customer churn predictive modeling by classification methods
CN113743994A (zh) 一种供应商的旺季预测方法、系统、设备及存储介质
CN111178637A (zh) 一种电网短期负荷预测方法和装置
KR102510463B1 (ko) 상권 분석 정보 제공 방법 및 이를 기록한 기록매체
CN116645221A (zh) 风险评估方法及装置、设备和存储介质
CN116266292A (zh) 产品需求预测方法、装置、设备和计算机存储介质
CN118195671A (zh) 物品销量预测方法、装置、存储介质及电子设备
CN116485152A (zh) 一种基于能源统计分析的能源管理方法、装置及相关介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant