CN113283135A - 一种托卡马克真空室电磁仿真等离子体电流数据提取方法 - Google Patents

一种托卡马克真空室电磁仿真等离子体电流数据提取方法 Download PDF

Info

Publication number
CN113283135A
CN113283135A CN202110535771.0A CN202110535771A CN113283135A CN 113283135 A CN113283135 A CN 113283135A CN 202110535771 A CN202110535771 A CN 202110535771A CN 113283135 A CN113283135 A CN 113283135A
Authority
CN
China
Prior art keywords
data
plasma current
extracting
current density
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110535771.0A
Other languages
English (en)
Other versions
CN113283135B (zh
Inventor
唐乐
冉红
蔡立君
黄运聪
侯吉来
宋斌斌
王正裕
孟飞
曹曾
杨青巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwestern Institute of Physics
Original Assignee
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwestern Institute of Physics filed Critical Southwestern Institute of Physics
Priority to CN202110535771.0A priority Critical patent/CN113283135B/zh
Publication of CN113283135A publication Critical patent/CN113283135A/zh
Application granted granted Critical
Publication of CN113283135B publication Critical patent/CN113283135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及有限元仿真分析技术领域,具体涉及一种托卡马克真空室电磁仿真等离子体电流数据提取方法。本发明包括以下步骤:步骤1.对初始等离子体电流密度数据的时间点简化;步骤2.对步骤1获得的等离子体电流密度数据进行坐标位置数量简化:为了简化等离子体电流数据的坐标位置数量,通过空间等间距提取坐标位置点数据的方式来完成,利用网格节点作为辅助工具;步骤3.采用Tecplot软件对步骤1中提取的电流密度数据进行可视化,并在Tecplot中将步骤1中提取的电流密度数据插值到步骤2中等离子体电流通道网格节点上,并输出新的电流密度数据文件。本发明能够真实有效地反映等离子体的电流分布及等离子体电流的动态变化情况。

Description

一种托卡马克真空室电磁仿真等离子体电流数据提取方法
技术领域
本发明涉及有限元仿真分析技术领域,具体涉及一种托卡马克真空室电磁仿真等离子体电流数据提取方法。
背景技术
托卡马克装置是当今世界研究核聚变最重要的载体,在装置工作过程中,等离子体运行在装置内部。由于等离子体在运行过程中,其状态可能发生变化,造成周围磁场的变化,进而在托卡马克真空室及其内部部件上产生感应电流,对真空室及其内部部件结构产生重大影响。
由于技术条件限制,过去的电磁仿真分析中,对等离子体电流数据的提取,一般直接采用等离子中心区域最大电流作为等离子体模型的电流输入数据,这种电流加载方式既无法模拟出正常工况下等离子体界面的电流分布情况,也无法模拟出极端工况下等离子体电流的动态变化情况,导致最终的电磁仿真结果不能真实有效地反映托卡马克真空室的电磁受力情况。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种托卡马克真空室电磁仿真等离子体电流数据提取方法,提取的电流数据能够真实有效地反映等离子体的电流分布及等离子体电流的动态变化情况。
本发明采用的技术方案:
一种托卡马克真空室电磁仿真等离子体电流数据提取方法,包括以下步骤:
步骤1.对初始等离子体电流密度数据的时间点简化:
从初始等离子体电流密度数据文件中提取适当时间点的电流密度数据,从而在保证电流密度数据的特征基础上,来简化时间点数量;
步骤2.对步骤1获得的等离子体电流密度数据进行坐标位置数量简化:
为了简化等离子体电流数据的坐标位置数量,通过空间等间距提取坐标位置点数据的方式来完成,利用网格节点作为辅助工具;
步骤3.采用Tecplot软件对步骤1中提取的电流密度数据进行可视化,并在Tecplot中将步骤1中提取的电流密度数据插值到步骤2中等离子体电流通道网格节点上,并输出新的电流密度数据文件。
所述步骤1包括以下步骤:
步骤1.1:将各时间点的初始等离子电流密度数据对坐标位置进行积分,得到各时间点的总电流密度数据;
步骤1.2:在Excel中绘制出总电流密度数据随时间的变化曲线图,根据曲线的变化趋势,提取30-40个能够体现曲线变化趋势的特征时间点;
步骤1.3:提取步骤1.2中各特征时间点对应的初始等离子体电流密度数据,至此,对初始等离子体电流数据的时间点简化完成;
步骤1.4:在Excel中将步骤1.3中对应的电流密度数据处理成Tecplot所需的.dat数据格式。
所述步骤1.1中,初始等离子体电流密度数据通过DINA分析获得。
所述步骤1.2中,提取特征时间点的依据为,依据总电流曲线的变化趋势,曲线曲率大的地方提取的时间点较多,曲率小的地方提取的时间点较少。
所述步骤2包括以下步骤:
步骤2.1:提取真空室内部部件的内轮廓边界曲线,从而确定坐标位置点的挑选范围;
步骤2.2:将挑选范围区域以网格方式划分为长宽尺寸一致的块状区域;
步骤2.3:清除边界之外的网格单元,获得节点数量为800-1000的网格。
所述步骤2.2中,网格单元尺寸为400mm×400mm,单元尺寸将直接决定等离子体电流通道的数量,网格单元尺寸越小,提取的电流数据量越多。
将步骤2.3中的网格节点作为挑选等离子体电流数据坐标位置点的工具。
所述步骤3包括以下步骤:
步骤3.1:在Tecplot中将步骤1中提取的等离子体电流密度云图显示出来;
步骤3.2:将步骤2中得到的网格文件导入Tecplot中,并将对应的电流密度数据插值到网格节点上;
步骤3.3:提取出步骤3.2中网格节点位置对应的电流密度数据,从而使电流数据中的坐标位置点得到简化,并汇总成Maxwell所需的.tab数据文本格式,便于后期等离子体电流通道建模。
所述步骤1中初始等离子体电流数据为.dat文件,由若干坐标位置点和各坐标位置点所对应时间点的等离子体电流数据组成。
所述步骤2中方形网格的边界为等离子体的运行区域边界。
所述步骤3中等离子体电流云图显示了等离子体电流的快速变化动态情况,网格节点与云图区域对应,生成一定数量位置点的等离子体电流数据文本文件。
本发明的有益效果:
相比于现有技术,本发明的优点在于:
本发明充分利用等离子体原始电流数据,从时间点和位置点两个方面入手,对电流数据进行提取,提取的数据既能真实清晰地反映等离子体电流截面各区域的分布情况,也能能有效地模拟极端工况时等离子体电流的动态特征。
附图说明
图1为本发明的工作流程图;
图2为内部部件内轮廓边界曲线图;
图3为内轮廓边界曲线与等离子体电流通道网格重合图;
图4为修剪后的等离子体电流通道网格图。
具体实施方案
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种托卡马克真空室电磁仿真等离子体电流数据提取方法,包括以下步骤:
S1.从初始等离子体电流密度数据文件中提取适当时间点的电流密度数据,从而在保证电流密度数据的特征基础上,来简化时间点数量;
步骤S1具体包括以下步骤:
S1.1:将各时间点的初始等离子电流密度数据对坐标位置进行积分,得到各时间点的总电流密度数据;
其中,原始等离子体电流数据通过DINA分析获得,由3132个时间点的电流数据构成,每个时间点包含8390个坐标点的电流数据。电流数据的简化分两步来进行,首先是对时间点的简化,然后是对坐标位置点的简化。对时间点的简化,是通过对所有位置点的电流进行积分,获得3132个时间点的总电流数据,再根据总电流随时间的变化曲线,提取能体现曲线变化趋势的特征时间点。
S1.2:在Excel中绘制出总电流密度随时间的变化曲线图,根据曲线的变化趋势,提取30-40个能够体现曲线变化趋势的特征时间点;
其中,依据总电流曲线的变化趋势,提取能够体现曲线变化特征的时间点,曲线曲率大的地方提取的时间点较多,曲率小的地方提取的时间点较少。
S1.3:提取S1.2中各特征时间点对应的初始等离子体电流密度数据,至此,对初始等离子体电流数据的时间点简化完成;
S1.4:在Excel中将S1.3中对应的电流密度数据处理成Tecplot所需的.dat数据格式。
S2.为了简化等离子体电流数据的坐标位置数量,通过空间等间距提取坐标位置点数据的方式来完成,利用网格节点作为辅助工具;
具体包括以下步骤:
S2.1:几何相交:在ICEM中进行几何相交处理,获得真空室内部部件的内轮廓边界曲线,从而确定坐标位置点的挑选范围,如附图2所示;
S2.2:Block操作:应用Block功能创建预定大小的网格,网格单元尺寸为400mm×400mm,网格单元尺寸将直接决定等离子体电流通道的数量,网格单元尺寸越小;
S2.3:网格编辑操作:生成对应的网格,并清除边界之外的网格单元,获得节点数量为800-1000的网格,如附图3、4所示,该网格节点作为挑选等离子体电流数据坐标位置点的工具;
S2.4:网格输出操作:输出成Tecplot接受的.cgns格式;
S3.采用Tecplot软件对S1中提取的电流密度数据进行可视化,并在Tecplot中将S1中提取的电流密度数据插值到等离子体电流通道网格节点上,并输出新的电流密度数据文件。
具体包括以下步骤:
S3.1:在Tecplot中将S1中提取的等离子体电流密度云图显示出来;
S3.2:将S2中得到的ICEM网格文件导入Tecplot中,并将对应的电流密度数据插值到网格节点上;
S3.3:提取出S3.2中网格节点位置对应的电流密度数据,从而使电流数据中的坐标位置点得到简化,并汇总成Maxwell所需的.tab数据文本格式,便于后期等离子体电流通道建模;
具体如下:首先,在Tecplot软件中,导入网格数据,并删除多余坐标变量,网格显示出来,网格的变量为坐标X和坐标Y;接着,导入等离子体电流插值数据,并修改坐标变量,保证网格坐标变量和等离子体电流插值坐标变量一致,使得二者在同一空间内,此时等离子体电流插值数据与网格数据重叠;接着,以等离子电流插值数据作为源域,网格数据作为目标域,选中所有的计算时刻变量,进行插值;插值完成,导出各时间点的插值数据,并汇总成Maxwell有限元软件所需的数据格式。
本发明中,对数量庞大的等离子体电流数据的选取,总的来说,主要从两个方面来进行:时间方面,提取关键特征时间点的电流数据;位置方面,通过插值方法处理,均匀密集地选取前面选取的关键时间点电流数据。最终的等离子体电流数据,既能真实地体现初始等离子体电流数据随时间的变化特征,也能有效地反映等离子体位移变化过程中截面电流分布动态变化情况。整个过程,都是利用计算机程序和软件来完成,相较于过去手动提取数据的方法,节约了大量的人力和时间,提高了数据选取的效率。
以上所述仅为本发明的一个方案而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:包括以下步骤:
步骤(1):对初始等离子体电流密度数据的时间点简化:
从初始等离子体电流密度数据文件中提取适当时间点的电流密度数据,从而在保证电流密度数据的特征基础上,来简化时间点数量;
步骤(2):对步骤(1)获得的等离子体电流密度数据进行坐标位置数量简化:
为了简化等离子体电流数据的坐标位置数量,通过空间等间距提取坐标位置点数据的方式来完成,利用网格节点作为辅助工具;
步骤(3):采用Tecplot软件对步骤(1)中提取的电流密度数据进行可视化,并在Tecplot中将步骤(1)中提取的电流密度数据插值到步骤(2)中等离子体电流通道网格节点上,并输出新的电流密度数据文件。
2.根据权利要求1所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(1)包括以下步骤:
步骤(1.1):将各时间点的初始等离子电流密度数据对坐标位置进行积分,得到各时间点的总电流密度数据;
步骤(1.2):在Excel中绘制出总电流密度数据随时间的变化曲线图,根据曲线的变化趋势,提取30-40个能够体现曲线变化趋势的特征时间点;
步骤(1.3):提取步骤(1.2)中各特征时间点对应的初始等离子体电流密度数据,至此,对初始等离子体电流数据的时间点简化完成;
步骤(1.4):在Excel中将步骤(1.3)中对应的电流密度数据处理成Tecplot所需的.dat数据格式。
3.根据权利要求2所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(1.1)中,初始等离子体电流密度数据通过DINA分析获得。
4.根据权利要求3所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(1.2)中,提取特征时间点的依据为,依据总电流曲线的变化趋势,曲线曲率大的地方提取的时间点较多,曲率小的地方提取的时间点较少。
5.根据权利要求4所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(2)包括以下步骤:
步骤(2.1):提取真空室内部部件的内轮廓边界曲线,从而确定坐标位置点的挑选范围;
步骤(2.2):将挑选范围区域以网格方式划分为长宽尺寸一致的块状区域;
步骤(2.3):清除边界之外的网格单元,获得节点数量为800-1000的网格。
6.根据权利要求5所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:
所述步骤(2.2)中,网格单元尺寸为400mm×400mm,单元尺寸将直接决定等离子体电流通道的数量,网格单元尺寸越小,提取的电流数据量越多。
7.根据权利要求6所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:将步骤(2.3)中的网格节点作为挑选等离子体电流数据坐标位置点的工具。
8.根据权利要求7所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:
所述步骤(3)包括以下步骤:
步骤(3.1):在Tecplot中将步骤(1)中提取的等离子体电流密度云图显示出来;
步骤(3.2):将步骤(2)中得到的网格文件导入Tecplot中,并将对应的电流密度数据插值到网格节点上;
步骤(3.3):提取出步骤(3.2)中网格节点位置对应的电流密度数据,从而使电流数据中的坐标位置点得到简化,并汇总成Maxwell所需的.tab数据文本格式,便于后期等离子体电流通道建模。
9.根据权利要求8所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(1)中初始等离子体电流数据为.dat文件,由若干坐标位置点和各坐标位置点所对应时间点的等离子体电流数据组成。
10.根据权利要求9所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(2)中方形网格的边界为等离子体的运行区域边界。
11.根据权利要求10所述的一种托卡马克真空室电磁仿真等离子体电流数据提取方法,其特征在于:所述步骤(3)中等离子体电流云图显示了等离子体电流的快速变化动态情况,网格节点与云图区域对应,生成一定数量位置点的等离子体电流数据文本文件。
CN202110535771.0A 2021-05-17 2021-05-17 一种托卡马克真空室电磁仿真等离子体电流数据提取方法 Active CN113283135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110535771.0A CN113283135B (zh) 2021-05-17 2021-05-17 一种托卡马克真空室电磁仿真等离子体电流数据提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110535771.0A CN113283135B (zh) 2021-05-17 2021-05-17 一种托卡马克真空室电磁仿真等离子体电流数据提取方法

Publications (2)

Publication Number Publication Date
CN113283135A true CN113283135A (zh) 2021-08-20
CN113283135B CN113283135B (zh) 2023-02-21

Family

ID=77279473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110535771.0A Active CN113283135B (zh) 2021-05-17 2021-05-17 一种托卡马克真空室电磁仿真等离子体电流数据提取方法

Country Status (1)

Country Link
CN (1) CN113283135B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412984A (zh) * 2013-07-22 2013-11-27 西安空间无线电技术研究所 一种规则波导端口微波部件电磁仿真的功率馈电方法
CN107664954A (zh) * 2017-10-16 2018-02-06 国网四川省电力公司电力科学研究院 一种电力系统电磁暂态可视化仿真模型自动生成方法
CN108521709A (zh) * 2018-05-23 2018-09-11 成都大学 基于托卡马克装置实现高流强电子加速的方法
CN108733946A (zh) * 2018-05-24 2018-11-02 大连理工大学 一种用于托卡马克中电子回旋电流剖面演化的模拟方法
CN109300553A (zh) * 2018-09-12 2019-02-01 成都大学 基于水平位移控制和磁能转移的逃逸电子束位移控制方法
CN209044996U (zh) * 2018-09-11 2019-06-28 中国人民解放军海军工程大学 一种等离子体实验装置
CN110232205A (zh) * 2019-04-28 2019-09-13 大连理工大学 用于托卡马克中共振磁扰动控制新经典撕裂模的模拟方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412984A (zh) * 2013-07-22 2013-11-27 西安空间无线电技术研究所 一种规则波导端口微波部件电磁仿真的功率馈电方法
CN107664954A (zh) * 2017-10-16 2018-02-06 国网四川省电力公司电力科学研究院 一种电力系统电磁暂态可视化仿真模型自动生成方法
CN108521709A (zh) * 2018-05-23 2018-09-11 成都大学 基于托卡马克装置实现高流强电子加速的方法
CN108733946A (zh) * 2018-05-24 2018-11-02 大连理工大学 一种用于托卡马克中电子回旋电流剖面演化的模拟方法
CN209044996U (zh) * 2018-09-11 2019-06-28 中国人民解放军海军工程大学 一种等离子体实验装置
CN109300553A (zh) * 2018-09-12 2019-02-01 成都大学 基于水平位移控制和磁能转移的逃逸电子束位移控制方法
CN110232205A (zh) * 2019-04-28 2019-09-13 大连理工大学 用于托卡马克中共振磁扰动控制新经典撕裂模的模拟方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
万宝年等: "EAST全超导托卡马克高约束稳态运行实验研究进展", 《中国科学》 *
宋云涛等: "HT-7U超导托卡马克装置真空室结构数值分析", 《机械工程学报》 *
文豪: "中国聚变工程实验堆真空室在极限工况下的电磁力分析", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
李倩等: "某托卡马克装置的环向场线圈电磁场初步分析", 《中国高新技术企业》 *
蒋晓梅等: "死区时间控制在等离子体电源中的应用", 《高电压技术》 *

Also Published As

Publication number Publication date
CN113283135B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
CN107562833B (zh) 基于等高线的复杂地形三维离散单元法数值模型建模方法
CN110765523A (zh) 一种基于bim技术的深基坑围护结构快速构建方法
CN107169191A (zh) 一种风机叶片建模方法
US11468218B2 (en) Information theoretic subgraph caching
CN109859317B (zh) 一种基于cass和catia的3dgis地形模型快速建模方法
CN111078094B (zh) 分布式机器学习可视化装置
CN111310333B (zh) 一种建筑装饰模拟施工方法
CN108520138B (zh) 基于渐进有限元网格和分割法的块体离散元模型生成方法
CN109858161A (zh) 一种基于Midas建模和Matlab转换的Abaqus网格划分方法
Matković et al. Visual analytics for simulation ensembles
CN115797568A (zh) 一种基于三维gis与bim集成的建模方法及装置
CN113486429B (zh) 一种基于插值算法的空间汇交结构自动化建造方法
CN112464040B (zh) 图结构识别、可视化展示及显示操作方法及装置
WO2020023811A1 (en) 3d object design synthesis and optimization using existing designs
CN113283135B (zh) 一种托卡马克真空室电磁仿真等离子体电流数据提取方法
CN111985014B (zh) 一种基于标准图集的建模方法及系统
CN103020402B (zh) 建模方法和装置
CN108197353A (zh) 一种基于ansys的apdl语言的固体火箭发动机工装设计方法
CN110349265B (zh) 一种四面体拓扑网格生成方法及电子设备
CN113870382A (zh) 一种曲线轨迹定向钻孔剖面图的自动绘制方法
CN114820968A (zh) 三维可视化方法和装置、机器人、电子设备和存储介质
Bocevska et al. An example of application design using solidworks application programming interface
US20210004424A1 (en) Methods and Systems for Processing Geospatial Data
CN107230176B (zh) 一种基于包络线图分析的历史资源点关联度评价方法
JPH08153130A (ja) 有限要素解析支援システム、有限要素解析方法とその装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant